首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The object of this investigation was to study luteinizing hormone (LH) response to different doses of synthetic gonadotropin-releasing hormone (GnRH) in prepubertal gilts. Four crossbred prepubertal gilts, 128–134 days old and body weight 57–63 kg, were used in this study. Four doses, 0. 5, 25 and 125 μg, of GnRH were administered via a jugular vein catheter in a latin square design. Each treatment consisted of 3 injections at 90 min intervals. Frequent blood samples were taken during a period of 90 min before up to 90 min after treatment. Total LH responses were measured from post-treatment samples as the area under the curve above base level obtained from pre-treatment samples. A positive relationship between GnRH dose and LH release was obtained in all gilts, except for 1 treatment given to a gilt with high plasma level of oestradiol-17β on the day of treatment. This study has demonstrated the responsiveness of the pituitary gland by LH release to different doses of GnRH in 4.5-month-old prepubertal gilts.  相似文献   

2.
GnRH-A免疫与母兔生殖激素浓度的变化   总被引:1,自引:0,他引:1  
目的探讨促性腺激素释放激素类似物(GnRH-A)对动物生殖功能调节的效果和作用机制。方法 24只日本大耳白兔分为四组,分别在实验Ⅰ组(EG-I)、实验Ⅱ组(EG-II)和实验III(EG-III)组兔的颈背侧注射1.0 mL(100、100和50μg/mL)GnRH-A抗原,实验II组和实验III组于第3周以原剂量加强注射一次,用ELISA法测定血清GnRH抗体效价、促卵泡刺激素(FSH)和促黄体生成素(LH)含量。结果注射GnRH-A后10 d实验组兔均出现GnRH抗体,而对照组未检测到;EG-I在第30天达到高峰,而EG-II和EG-III于40~50 d至峰值,但在实验结束时(70 d)实验组均高于对照组,40~70 d时EG-II显著高于EG-I和EG-III。30~50 d时EG-II的LH明显高于EG-I和EG-III及对照组。EG-II和EG-III的FSH浓度在40 d达到峰值,但EG-II高于EG-I、对照组及EG-III,EG-I和对照组无显著差异。结论兔体内注射GnRH-A可以明显提高GnRH抗体效价,增强LH和FSH的合成与分泌,加强注射效果更明显,且与注射剂量相关,持续时间为40 d左右。  相似文献   

3.
The effects of weekly injections of a gonadotropin-releasing hormone (GnRH) antagonist (GnRHa) ([N-acetyl-DβNal1-D-pCl-Phe2-D-Phe3-D-Arg6-Phe7-Arg8D-Ala10] NH2 GnRH) on pituitary and ovarian function were examined in the marmoset monkey, Callithrix jacchus. In experiment 1, five cyclic females were given weekly injections of vehicle (50% propylene glycol in saline) for 6 weeks followed by GnRHa for 20 weeks, animals receiving either 200 μg GnRHa/injection (n = 2) or 67 μg GnRHa/injection (n = 3) for 10 weeks, after which the treatment was reversed. Bioactive luteinizing hormone (LH) and progesterone (Po) were measured in blood samples (0.2–0.4 ml) collected twice weekly until at least 8 weeks after the last GnRHa injection. GnRHa treatment, timed to begin in the midluteal phase, caused a rapid decline in LH and Po and luteal regression after a single injection (both doses). Po levels were consistently low (<10 ng/ml), and ovulation was inhibited throughout 200 μg treatment in all animals. Short periods of elevated Po (>10 ng/ml) were, however, occasionally seen during 67 μg treatment, indicating incomplete ovarian suppression. Mean LH levels were significantly lower during GnRHa treatment compared with the period of vehicle injection (all animals 200 μg; three animals 67 μg), and there were significant differences in LH levels between GnRHa treatments (200 μg vs. 67 μg) in four animals. Four animals resumed normal ovarian cycles after the end of GnRHa treatment (15/16 days, three animals; 59 days, one animal); the fifth animal died of unknown causes 32 days after the last GnRHa injection. In a second experiment, pituitary responsiveness to exogenous GnRH was tested 1 day after a single injection of vehicle or antagonist (200 or 67 μg). Measurement of bioactive LH indicated that pituitary response to 200 ng native GnRH was significantly suppressed in animals receiving the antagonist, the degree of suppression being dose related. A third experiment examined the effect of four weekly injections of 200 μg GnRHa on follicular size and granulosa cell responsiveness to human follicle-stimulating hormone (hFSH) in vitro. Follicular development beyond 1 mm was inhibited by GnRHa treatment (preovulatory follicles normally 2-4 mm) although granulosa cell responsiveness to FSH during 48 hr of culture was not impaired. These results suggest that the GnRHa-induced suppression of follicular development and ovulation was mediated primarily by an inhibition of pituitary gonadotropin secretion and not by a direct action at the level of the ovary.  相似文献   

4.
Gonadotrophin releasing hormone (GnRH, 5 μg every 4 h) was administered to six dairy cows between days 5 and 10 post-partum and the release of luteinizing hormone (LH) and the onset of ovulation were determined. LH was measured using a specific radioimmunoassay and the occurrence of ovulation was assessed from changes in the concentration of progesterone in milk. Treatment with GnRH resulted in a median time of first ovulation of 17.0 days after calving. This was less (P < 0.05) than that observed for control cows (21.5 days, n = 7). Determinations of plasma LH concentrations over an 8-h period on days 6 and 10 post-partum indicated that there was a tendency for GnRH-treated cows to have higher levels of LH on these days. The 5 μg dose of GnRH did not repeatably induce a release of LH between days 6 and 10. Endogenous pulsatile release of LH did, however, increase in frequency from 3.18 pulses per 8 h on day 6 to 5.18 pulses per 8 h on day 14 post-partum (P < 0.01).In a second experiment groups of 20 cows were treated with either 5 μg GnRH every 4 h or 15 μg GnRH every 12 h from days 5 to 10 post-partum. Seventeen untreated cows served as controls. The median times to first ovulation were 27.0 days for the control cows, 22.5 days for those cows treated with 5 μg GnRH every 4 h and 17.0 days for cows treated with 15 μg every 12 h. The latter treatment significantly advanced the time of first ovulation (P < 0.05) relative to controls. This difference had, however, disappeared by the time of the second and third ovulations. Primiparous cows ovulated later (P < 0.01) than the pluriparous cows in the group treated with 5 μg GnRH every 4 h. This was a major reason for the lack of effect of this treatment. Some treated cows were blood sampled at frequent intervals on day 8 to evaluate the LH responses to GnRH injections. The administration of 5 μg GnRH on day 8 did not elicit a pulse of LH which could be distinguished from endogenous pulsatile secretion at this time. The dose of 15 μg on this day did, however, elicit a more defined pulse on some, but not all, occasions.The injection of a small dose of GnRH twice a day from day 5 to day 10 after calving, therefore, advanced the time of first ovulation in dairy cows by 10 days.  相似文献   

5.
Twenty lactating Holstein and Guernsey cows, diagnosed by rectal palpation as having ovarian cysts, were randomly divided within breed into two groups to receive either a single intramuscular injection of 100 μg of synthetic gonadotropin releasing hormone (GnRH) or an intravenous injection of 10,000 IU of human chorionic gonadotropin (HCG). The objective was to compare hormonal and clinical changes in cows with ovarian cysts following treatment with GnRH and HCG. Eight of ten and nine of ten cows given either GnRH and HCG, respectively, responded to treatment and subsequent fertility was not different between the two groups. Pre-injection plasma levels of LH, progesterone, and estradiol were highly variable. Mean plasma levels of LH, progesterone and estradiol did not differ between groups either following treatment (days 1–17 post-treatment), at the subsequent estrus, or during days 1–13 following the subsequent estrus. Mean LH levels did not differ significantly on the days either post-treatment or post-estrus except that levels were higher (P < .01) at the subsequent estrus as compared to the other days. Mean progesterone levels increased after treatment with either GnRH or HCG and were higher on days 5, 9 and 13 post-estrus and post-treatment as compared to the subsequent estrus. Mean levels of estradiol were higher (P < .05) at the subsequent estrus than any other time post-treatment or post-estrus. No other days were significantly different. In conclusion, GnRH and HCG are effective treatments for ovarian cysts in cattle. Endocrine response on days following treatment are similar for both compounds.  相似文献   

6.
A gonadoliberin (GnRH) analogue nonapeptide (Hoe 766) was administered intramuscularly in concentrations between 2.5 and 50 μg to m?ture cows in order to study the response of lutropin (LH) and follitropin (FSH). Results were compared with those from experiments of the GnRH decapeptide (Hoe 471). Plasma LH and FSH were radio-immunologically determined. Increasing doses of GnRH analogue up to 15–20 μg caused an approximately linear increase in total plasma LH and FSH until the response reached a plateau. With these amounts peak values were about 60 fold higher for LH and 3.5 fold higher for FSH than basal levels about 135 minutes after injection. Higher values lasted for more than 6 h for LH and about 5 h for FSH. The LH response was much greater and more prolonged than for FSH.Doses of the nonapeptide analogue 50 to 70 times lower than the GnRH decapeptide provoked about the same height and duration of LH and FSH response.  相似文献   

7.
Ovariectomized rats that were 3–4, 12 or 22 months old were injected s.c. with 4 mg, of testosterone propionate and 3 days later were injected s.c. with 2.8 mg. progesterone or the oil vehicle. Blood samples were collected by heart puncture 5 hrs. later. Serum levels of LH and FSH decreased significantly as age increased. Progesterone significantly increased serum LH and FSH levels regardless of age. The increase in serum LH concentration attributed to progesterone was greatest in the young and least in the old rats. To determine if age effects were due to differences in pituitary response to GnRH, ovariectomized rats that were 2.5 to 23 months old were injected i.v. with GnRH at doses of 100 ng or 40 ng/100 g body weight or were primed with 25 mg progesterone and 50 μg estradiol-benzoate 3 days before an injection of 2 ng GnRH/100 g body weight. Blood was obtained by heart puncture before and 20 min. after GnRH. In each experiment serum LH levels significantly decreased with increasing age but were significantly elevated by GnRH. This increase in serum LH level in response to GnRH declined with increasing age. The data suggest that the elevation in serum LH level in response to GnRH declines as a result of aging in female rats and that this effect is independent of circulating ovarian steroid levels.  相似文献   

8.
Heterologous radioimmunoassays (RIA) for macaque LH and FSH were validated for the measurement of these hormones in the sooty mangabey and mangabey pituitary LH was characterized relative to rhesus monkey LH. Dilutions of a pituitary mangabey extract and a partially purified preparation of mangabey LH ran parallel to a rhesus monkey standard (LER 1909-2) in the ovine-ovine (o-o) LH assay but showed some deviation from parallelism in the rhesus monkey FSH assay. The LH potency of the mangabey extract and standard were six and 190 times more potent, respectively, than LER 1909-2 in the LH RIA. Mangabey LH was estimated to have a molecular weight of 40,000–42,000 daltons vs 35,000–38,000 daltons for rhesus LH on Sephadex G-100 chromatography. Plasma levels of radioimmunoreactive LH, FSH, and testosterone were assayed before and after a bolus administration of 25, 50, or 100 μg synthetic go-nadotropin releasing hormone (GnRH) to adult male mangabeys. A significant increase in serum levels of LH was seen within 30 min with levels more than fourfold higher than the basal level of LH after administration of 100 μg GnRH. However, no consistent increases in plasma FSH values were detected. The integrated mean LH response above preinjection levels following 25, 50, or 100 μg GnRH was dose related. Serum levels of testosterone were also elevated after administration of GnRH, but peak concentrations of testosterone lagged behind peak levels of LH by approximately 30 min. These studies indicate that the heterologous RIAs may be used for measuring gonadotropins in the mangabey and that the male mangabey is apparently more sensitive to GnRH than the rhesus monkey.  相似文献   

9.
Mature female guinea pigs that had been observed to undergo three consecutive periods of estrus at approximately 16-day intervals were immunized with either 100 μg gonadotropin releasing hormone (GnRH) conjugated to 100 μg bovine serum albumin (BSA) or 100 μg BSA alone during diestrus (day 5–10) of the fourth cycle. Booster immunizations were administered 32 days after the first injection. Animals were bled by cardiac puncture at the time of first injection and at 16, 32, 48 and 64 days. Animals were necropsied at 64 days after first treatment.Daily observation indicated that vaginal manifestation of estrus was not apparent after a period equal to one estrous cycle in seven of ten GnRH immunized guinea pigs and after two cycles in the remaining three GnRH immunized guinea pigs. Estrous cycles persisted in BSA treated females throughout the experiment.Serum luteinizing hormone (LH) declined significantly by 32 days after the first immunization against GnRH and remained lower than both pretreatment values and levels in control animals at the same bleeding times throughout the experiment. Serum progesterone levels were significantly lower in the GnRH immunized group than in the control group at 48 and 64 days.At necropsy the weight of the ovaries of GnRH immunized guinea pigs was significantly lower than that of controls. Corpora lutea and antral follicles were present in both GnRH treated and control females. The presence of serum progesterone levels and of antral follicles in the GnRH immunized females suggests that a low level of gonadotropic support may have persisted to 64 days after initiation of treatment.Results indicate that immunization against GnRH can reduce LH and progesterone levels and induce cessation of estrous cycles in the guinea pig.  相似文献   

10.
Silva ME  Colazo MG  Ratto MH 《Theriogenology》2012,77(9):1802-1810
Gonadotrophin releasing hormone (GnRH) is commonly used in llamas to induce ovulation; however, the consequence of reduced doses of GnRH on luteinizing hormone (LH) release, ovulatory response, and subsequent corpus luteum (CL) development and function have apparently not been investigated. Hence, we examined the effect of gradual reduction of gonadorelin acetate (GnRH) dosage on pituitary LH release, ovulatory response, CL development, and plasma progesterone concentrations in llamas. Non-pregnant, non-lactating adult llamas were examined once daily by transrectal ultrasonography, and those with a follicle ≥8 mm in diameter that had grown for three consecutive days were randomly assigned to receive 50 (GnRH50, n = 23), 25 (GnRH25, n = 29), 12.5 (GnRH12.5, n = 29), or 6.25 μg (GnRH6.25, n = 29) of GnRH, or 0.5 mL of PBS (Control group, n = 16) im. In a subset (7 or 8 animals/group), intense blood sampling was done to measure LH concentrations. All females were examined by ultrasonography every 12 h from treatment (Day 0) to Day 2 to determinate ovulation, and thereafter on alternate days until Day 16 to evaluate CL development (9-13 animals/group). Also, blood samples for progesterone determination were taken (9 or 10 animals/group) on alternate days from Days 0-16. Ovulatory response (%) was highest (P < 0.05) in the GnRH50 (82.6), intermediate in the GnRH25 (72.3) and GnRH12.5 (75.9) groups, and lowest in the GnRH6.25 group (48.3). No ovulations were detected in the Control group. Mean peak LH concentrations (ng/mL) were highest (P < 0.05) for GnRH50 (6.2), intermediate for GnRH25 (4.4) and GnRH12.5 (2.9), and lowest for GnRH6.25 (2.2) groups. In addition, based on regression analysis, llamas with an LH peak <4 ng/mL were less likely to ovulate. Llamas given 50 μg of GnRH released more (P < 0.05) pituitary LH and had an LH surge of longer duration than those given 25, 12.5, or 6.25 μg. However, in those that ovulated, neither GnRH treatment nor treatment by time interaction affected (P > 0.05) CL diameter or plasma progesterone concentrations. In summary, reducing the dose of GnRH gradually decreased the magnitude of the preovulatory LH surge and ovulatory response; however, subsequent CL development and plasma progesterone concentrations were not affected.  相似文献   

11.
The effects of intracarotid injection of synthetic gonadotrophin releasing hormone (GnRH) as well as of intracarotid oestradiol infusion, on plasma luteinizing hormone (LH) levels in heifers were examined. The LH response in five ovariectomized heifers after administration of 100 μg of GnRH was biphasic, and more abrupt than in the cycling animals or in heifers with reproductive disorders. The first LH peak in ovariectomized heifers appeared 2 min after injection (fast response), and the second one about 15–30 min later (slow response). In all other heifers the fast response was never observed, and the mean estimated LH secretion was much lower. The LH response to intracarotid infusion of 3 μg of oestradiol-17β observed in ovariectomized heifers was also biphasic, although the first peak of LH was observed 4 h after the infusion had been terminated.  相似文献   

12.
Three trials were conducted to examine the effect of GnRH injection on the reproductive performance of Friesian cows. In the first trial 100 μg gonadotrophin releasing hormone synthetic analogue (GnRH) was given at the time of A.I. to 32 cows while a control group received a saline placebo injection. Conception rate to first insemination was significantly higher in treated than control cows (81.3 v. 54.8%, P < 0.05).In the second trial, two groups of 19 cows each received either 100 μg GnRH or saline at 15 days postpartum. A total of 60 cows was used in the third trial in which GnRH was given at either 50 or 100 μg dose level on either days 7 or 15 postpartum while control cows were untreated. In both trials GnRH treatment reduced the intervals from calving to complete uterine involution, first ovulation and first detected oestrus. The effect was most pronounced when 100 μg GnRH was given on day 7 postpartum. Number of days open and number of services per conception were appreciably reduced when 100 μg GnRH was given at either 7 or 15 days postpartum with maximal effect when given 15 days after calving.  相似文献   

13.
Five Zebu x British crossbred bulls 17 months of age and of uniform liveweight (320+/-3 kg) were used to study testosterone responses to single intramuscular doses of exogenous gonadotropin-releasing hormone (GnRH). The eight dose levels used were 0, 31.25, 62.5, 125, 250, 500, 1000, and 2000 ng GnRH/kg live weight. Plasma samples for hormone responses were collected at 30-minute intervals from zero to three hours and at one-hour intervals from three to seven hours postinjection. Luteinizing hormone (LH) and testosterone responses were measured as peak heights or as areas under response curves. Increasing the dosage of GnRH increased the time to reach the peak LH response, the height and duration of the response, and the area under the response curve. The maximum LH peak height was reached by the 1 mug/kg dose. In contrast to LH, testosterone responses reached the same peak heights (two hours postinjection of GnRH) for all doses of GnRH. The only effect of increased dosage was to increase the duration of response. Testosterone responses showed repeatable differences (P<0.01) between animals, but LH responses did not. It was demonstrated that the testosterone status of bulls can be accurately assessed by simply measuring testosterone in a single plasma sample collected two to three hours after the intramuscular injection of 100 mug or more (dose unimportant) of GnRH per bull.  相似文献   

14.
In the deep anoestrous period (June), five intact ewes and five ovariectomized ewes received 50 ug synthetic gonadotrophin-releasing hormone (GnRH). In the mid-breeding season (October), the GnRH administrations were repeated in five intact and four ovariectomized ewes; the former were in the luteal phase of the cycle. Blood samples were collected every 30 sec for 15 min, then at 15-min intervals. Release of luteinizing hormone (LH) occurred as soon as the second minute after injection in all ewes. This early response was earlier and more abrupt in the ovariectomized ewes than in the intact animals. In a second experiment three intact ewes that were in deep anoestrus received 50 ug GnRH followed 5 h 20 min later by a second identical injection. Another three intact ewes in deep anoestrus received two injections of 1 ug GnRH. Blood samples were taken every 15 sec for 15 min, then every 20 min until the next injection, and for a further 5 h after the second injection. This regimen was repeated in mid-breeding season during the luteal phase. There was again a very early release of LH; the magnitude of response was similar after the first injection of either 50 ug or 1 ug GnRH to intact ewes either in the breeding season or during deep anoestrus. However, a greater early release of LH was obtained at the lower dose only after the second injection of GnRH. Apart from this exception, the similar early release of LH occurred in spite of different amounts of LH released thereafter in response to the two doses of GnRH. It is suggested that the early response to GnRH consists of LH stored in a "readily releasable" pool in the pituitary, whereas the main release of LH may be a result of increased synthesis and/or release of a more stable pool.  相似文献   

15.
Four adult Romney rams were utilized in a study of LH and testosterone secretory responses following intravenous administration of GnRH by continuous infusions over 8 h (total doses were 12.5, 50 and 200 μg) or by single rapid injections (doses were 3.1, 12.5, 50 and 200 μg). In the former case infusions of sterile saline were made in control experiments. Blood samples were collected via jugular catheters at intervals during and for 7 h after GnRH infusion, and for 4 h following GnRH injection. Plasma LH and testosterone concentrations were measured by specific radioimmunoassays.Each infusion of GnRH resulted in the secretion of LH with peak levels being reached within 1 – 3 h of commencing the experiment, then levels decreased slowly despite continued infusion. Plasma testosterone levels rose subsequent to the LH elevation and continued to be elevated after completion of the GnRH infusion. Each GnRH injection resulted in a rapid and marked elevation of plasma LH concentrations to a peak within 15 – 20 min. Higher GnRH doses (50 and 200 μg) generally resulted in a second peak occurring approximately 1.5 – 2 h later. Testosterone levels rose subsequent to each LH elevation.  相似文献   

16.
The object of our experiments was to characterize the response of plasma follicle stimulating hormone (FSH) within minutes of an i.v. injection of high or low doses of gonadotrophin releasing hormone (GnRH), especially in relation to contemporary changes in luteinizing hormone (LH) concentrations. In the deep anoestrous period (June), three intact ewes and two ovariectomized ewes were injected with 1 mug synthetic GnRH followed 2 h later by a second identical injection. A week later, the same regimen was repeated with the same sheep but with 50 mug GnRH after an interval of 5 h 20 min. Blood samples were collected every 15 sec for 15 min after each injection (early release), then at longer intervals (main release) till the next treatment, followed by sampling for a further 6-h period after the second treatment. FSH was released as soon as the second minute after GnRH injection in all ewes. The mean pituitary FSH response, during this early release, in intact and ovariectomized ewes was similar after either 1 or 50 mug GnRH. However, the main release was less pronounced in the ovariectomized sheep and was not stimulated after the second treatment in all sheep. Three other ewes were injected with 40 mug GnRH and sampled every 15 sec for seven, 6-min periods during the period of release to compare FSH and LH secretion. The profiles reflected a similarity in sensitivity and responsiveness to GnRH, especially soon after GnRH injection. Increases in both hormones were formed by several grouped associated spikes. It is suggested that a readily releasable pool of FSH exists in the ewe. There are probably differences in the mechanisms of synthesis and/or release between pituitary FSH and LH.  相似文献   

17.
The aim of this experiment with ram and ewe lambs was to test the hypothesis that there are consistent individual differences in Luteinising Hormone (LH) response to Gonadotrophin Releasing Hormone (GnRH).Pre-puberal Border-Leicester × Merino lambs (15 of each sex) aged 9 weeks were challenged with either 0, 30 or 60 μg synthetic GnRH each month for 7 months (December to June). The lambs were then rested from this monthly routine until they were challenged an eighth time in September at 48 weeks of age. Luteinising Hormone response (area under LH release curve) was measured each month and the repeatability of individual LH responses calculated.There was a significant interaction (P < 0.01) between treatment month and sex reflecting a fall in LH response by ram lambs after a peak in February, while at the same time responses by ewe lambs increased to peak again in May. LH response also increased with GnRH dose (30 vs. 60 μg; P < 0.05).Responses by individual lambs were ranked 1 to 5 each month within sex and GnRH doses (30 and 60 μg only). Highest ranked lambs had LH responses 1.4 to 7.0 times larger than lowest ranked lambs. Repeatability of rank between months was poor in all groups except ewe lambs given 60 μg GnRH, where three of the five lambs repeated a particular rank at 5 of the 8 sample months. However, the repeatability of response in this group was not considered to be sufficient to reject the null hypothesis. It was concluded that if consistent individual differences do exist they may be subtle and easily masked by factors such as GnRH dose, sex, age and season.  相似文献   

18.
Six cows at different times postpartum (days 1, 7, 14, 21, 28, 35, 42 and 49) were treated with 20 μg gonadotrophin releasing hormone (GnRH) and 1.0 mg oestradiol benzoate. There was a gradual regain of plasma luteinizing hormone (LH) response to GnRH up to day 14 postpartum. No response of LH was achieved after oestradiol benzoate treatment on day 1, and thereafter the response continued to increase until day 21, occurring between 14 and 34 h (24.6 ± 2.6, mean ± SE) after injection. There was a significant negative correlation between the time to peak concentration and day postpartum. Cows which had plasma progesterone concentrations > 0.3 ng/ml did not respond to oestradiol benzoate treatment.Cows challenged in the follicular and luteal phases of established cycles had LH responses to GnRH which were significantly (P < 0.0005) greater than in the postpartum cows, but there was no difference between the responses in the follicular and luteal phases (P > 0.1). In those cows which responded to oestradiol benzoate, the peak LH release was greater than that achieved in the responding postpartum cows (P < 0.05) and the increased LH values occurred 18–30 h (24.7 ± 2.5 h) after injection.A physiological endocrine challenge test has been established to investigate changes in pituitary responses to GnRH and oestradiol benzoate in dairy cows.  相似文献   

19.
Previous work with female rats showed that serum levels of follicle-stimulating hormone (FSH) are suppressed by gonadotropin-releasing hormone (GnRH) antagonists less than are levels of serum luteinizing hormone (LH), suggesting a lesser dependency of FSH on GnRH stimulation. The differential regulation of LH and FSH is known to have some aspects that are sexually asymmetrical, and it was of interest to see if males also show differential gonadotropin suppressibility after injection of an antagonist to GnRH. Male rats were prepared for serial sampling 4 wk after castration. After a blood sample was removed at Time Zero, [Ac-3-Pro1, pF-D-Phe2, -D-Trp3,6]-GnRH (Antag) was injected subcutaneously in oil; doses were 0, 4, 20, 100, 500, and 2500 micrograms. Blood was sampled at 2, 5, 12, 24 and 36 h postinjection. All doses above 4 micrograms had lowered LH levels by 2 h, and LH remained suppressed for 12 to 24 h at the three higher doses. By contrast, serum FSH was unaffected by any dose at 5 h, and was only marginally suppressed by the highest doses thereafter. As in females, therefore, FSH secretion in male rats appears not to be as dependent on GnRH as is LH secretion.  相似文献   

20.
Three experiments (EXP) were conducted to determine the role of insulin-like growth factor-I (IGF-I) in the control of growth hormone (GH) and LH secretion. In EXP I, prepuberal gilts, 65 ± 6 kg body weight and 140 days of age received intracerebroventricular (ICV) injections of saline (n = 4), 25 μg (n = 4) or 75 μg (n = 4) IGF-I and jugular blood samples were collected. In EXP II, anterior pituitary cells in culture collected from 150-day-old prepuberal gilts (n = 6) were challenged with 0.1, 10 or 1000 nM [Ala15]-h growth hormone-releasing hormone-(1-29)NH2 (GHRH), or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 1000 nM GHRH. Secreted GH was measured at 4 and 24 h after treatment. In EXP III, anterior pituitary cells in culture collected from 150-day-old barrows (n = 5) were challenged with 10, 100 or 1000 nM gonadotropin-releasing hormone (GnRH) or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 100 nM GnRH. Secreted LH was measured at 4 h after treatment. In EXP I, serum GH and LH concentrations were unaffected by ICV IGF-I treatment. In EXP II, relative to control all doses of GHRH increased (P < 0.01) GH secretion. Only 1, 10, 30 nM IGF-I enhanced (P < 0.02) basal GH secretion at 4 h, whereas by 24 h all doses except for 30 nM IGF-I suppressed (P < 0.02) basal GH secretion compared to control wells. All doses of IGF-I in combination with 1000 nM GHRH increased (P < 0.04) the GH response to GHRH compared to GHRH alone at 4 h, whereas by 24 h all doses of IGF-I suppressed (P < 0.04) the GH response to GHRH. In EXP III, all doses of IGF-I increased (P < 0.01) basal LH levels while the LH response to GnRH was unaffected by IGF-I (P > 0.1). In conclusion, under these experimental conditions the results suggest that the pituitary is the putative site for IGF-I modulation of GH and LH secretion. Further examination of the role of IGF-I on GH and LH secretion is needed to understand the inhibitory and stimulatory action of IGF-I on GH and LH secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号