首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The marine bryozoan, Bugula neritina, is the source of the bryostatins, a family of macrocyclic lactones with anticancer activity. Bryostatins have long been suspected to be bacterial products. B. neritina harbors the uncultivated gamma proteobacterial symbiont “Candidatus Endobugula sertula.” In this work several lines of evidence are presented that show that the symbiont is the most likely source of bryostatins. Bryostatins are complex polyketides similar to bacterial secondary metabolites synthesized by modular type I polyketide synthases (PKS-I). PKS-I gene fragments were cloned from DNA extracted from the B. neritina-“E. sertula” association, and then primers specific to one of these clones, KSa, were shown to amplify the KSa gene specifically and universally from total B. neritina DNA. In addition, a KSa RNA probe was shown to bind specifically to the symbiotic bacteria located in the pallial sinus of the larvae of B. neritina and not to B. neritina cells or to other bacteria. Finally, B. neritina colonies grown in the laboratory were treated with antibiotics to reduce the numbers of bacterial symbionts. Decreased symbiont levels resulted in the reduction of the KSa signal as well as the bryostatin content. These data provide evidence that the symbiont E. sertula has the genetic potential to make bryostatins and is necessary in full complement for the host bryozoan to produce normal levels of bryostatins. This study demonstrates that it may be possible to clone bryostatin genes from B. neritina directly and use these to produce bryostatins in heterologous host bacteria.  相似文献   

2.
The bryozoans Bugula neritina and Bugula simplex harbor bacteria in the pallial sinuses of their larvae as seen by electron microscopy. In B. neritina, the bacterial symbiont has been characterized as a gamma-proteobacterium, “Candidatus Endobugula sertula.” “Candidatus E. sertula” has been implicated as the source of the bryostatins, polyketides that provide chemical defense to the host and are also being tested for use in human cancer treatments. In this study, the bacterial symbiont in B. simplex larvae was identified by 16S rRNA-targeted PCR and sequencing as a gamma-proteobacterium closely related to and forming a monophyletic group with “Candidatus E. sertula.” In a fluorescence in situ hybridization, a 16S ribosomal DNA probe specific to the B. simplex symbiont hybridized to long rod-shaped bacteria in the pallial sinus of a B. simplex larva. The taxonomic status “Candidatus Endobugula glebosa” is proposed for the B. simplex larval symbiont. Degenerate polyketide synthase (PKS) primers amplified a gene fragment from B. simplex that closely matched a PKS gene fragment from the bryostatin PKS cluster. PCR surveys show that the symbiont and this PKS gene fragment are consistently and uniquely associated with B. simplex. Bryostatin activity assays and chemical analyses of B. simplex extracts reveal the presence of compounds similar to bryostatins. Taken together, these findings demonstrate a symbiosis in B. simplex that is similar and evolutionarily related to that in B. neritina.  相似文献   

3.
Candidatus Endobugula sertula,” the uncultured microbial symbiont of the bryozoan Bugula neritina, produces ecologically and biomedically important polyketide metabolites called bryostatins. We isolated two gene fragments from B. neritina larvae that have high levels of similarity to polyketide synthase genes. These gene fragments are clearly associated with the symbiont and not with the host.  相似文献   

4.
Lopanik N  Lindquist N  Targett N 《Oecologia》2004,139(1):131-139
Larvae of the sessile marine invertebrate Bugula neritina (Bryozoa) are protected by an effective chemical defense. From the larvae, we isolated three bryostatin-class macrocyclic polyketides, including the novel bryostatin 20, that deterred feeding by a common planktivorous fish that co-occurs with B. neritina. A unique bacterial symbiont of B. neritina, Endobugula sertula, was hypothesized as the putative source of the bryostatins. We show that: (1) bryostatins are concentrated in B. neritina larvae and protect them against predation by fish; (2) the adults are not defended by bryostatins; and (3) E. sertula produces bryostatins. This study represents the first example from the marine environment of a microbial symbiont producing an anti-predator defense for its host and, in this case, specifically for the hosts larval stage, which is exceptionally vulnerable to predators.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

5.
The bryozoans Bugula neritina and Bugula simplex harbor bacteria in the pallial sinuses of their larvae as seen by electron microscopy. In B. neritina, the bacterial symbiont has been characterized as a gamma-proteobacterium, "Candidatus Endobugula sertula." "Candidatus E. sertula" has been implicated as the source of the bryostatins, polyketides that provide chemical defense to the host and are also being tested for use in human cancer treatments. In this study, the bacterial symbiont in B. simplex larvae was identified by 16S rRNA-targeted PCR and sequencing as a gamma-proteobacterium closely related to and forming a monophyletic group with "Candidatus E. sertula." In a fluorescence in situ hybridization, a 16S ribosomal DNA probe specific to the B. simplex symbiont hybridized to long rod-shaped bacteria in the pallial sinus of a B. simplex larva. The taxonomic status "Candidatus Endobugula glebosa" is proposed for the B. simplex larval symbiont. Degenerate polyketide synthase (PKS) primers amplified a gene fragment from B. simplex that closely matched a PKS gene fragment from the bryostatin PKS cluster. PCR surveys show that the symbiont and this PKS gene fragment are consistently and uniquely associated with B. simplex. Bryostatin activity assays and chemical analyses of B. simplex extracts reveal the presence of compounds similar to bryostatins. Taken together, these findings demonstrate a symbiosis in B. simplex that is similar and evolutionarily related to that in B. neritina.  相似文献   

6.
"Candidatus Endobugula sertula," the uncultured microbial symbiont of the bryozoan Bugula neritina, produces ecologically and biomedically important polyketide metabolites called bryostatins. We isolated two gene fragments from B. neritina larvae that have high levels of similarity to polyketide synthase genes. These gene fragments are clearly associated with the symbiont and not with the host.  相似文献   

7.
Colonial organisms host a large diversity of symbionts (collectively, parasites, mutualists, and commensals) that use vertical transmission (from parent colony to offspring colony) and/or horizontal transmission to disperse between host colonies. The early life of some colonies, characterized by the dispersal and establishment of solitary individuals, may constrain vertical transmission and favor horizontal transmission between large established colonies. We explore this possibility with the miniature cockroach Attaphila fungicola, a symbiont of leaf‐cutter ants and the mutualist fungal gardens they cultivate. The early life of a leaf‐cutter colony is characterized by the dispersal of a female alate (winged “queen”) carrying a fungal pellet, and the subsequent establishment of a foundress (workerless “queen”) raising her incipient fungal garden and colony. Roaches hitchhike on female alates during leaf‐cutter nuptial flights, which strongly suggests that roaches are vertically transmitted to foundresses and their incipient colonies; however, weak compatibility between roaches and incipient gardens may constrain roach vertical transmission. Reciprocally, opportunities for horizontal transmission between large established colonies with abundant fungal gardens may weaken selection against roach‐induced harm (virulence) of incipient gardens. We use a laboratory experiment, behavioral observations, field surveys, and a transmission model to estimate the effect roaches have on the survivorship of incipient gardens and the frequency of roach vertical transmission. Contrary to traditional assumptions, our results indicate that roaches harm incipient gardens and predominantly use horizontal transmission between established leaf‐cutter colonies. Ultimately, “costs of generalism” associated with infecting disparate stages of a host''s lifecycle (e.g., incipient vs. established colonies) may constrain the vertical transmission of roaches and a broad range of symbionts.  相似文献   

8.
Bacterial endosymbionts of the pine bark adelgid, Pineus strobi (Insecta: Hemiptera: Adelgidae), were investigated using transmission electron microscopy, 16S and 23S rRNA-based phylogeny, and fluorescence in situ hybridization. Two morphologically different symbionts affiliated with the Gammaproteobacteria were present in distinct bacteriocytes. One of them (“Candidatus Annandia pinicola”) is most closely related to an endosymbiont of Adelges tsugae, suggesting that they originate from a lineage already present in ancient adelgids before the hosts diversified into the two major clades, Adelges and Pineus. The other P. strobi symbiont (“Candidatus Hartigia pinicola”) represents a novel symbiont lineage in members of the Adelgidae. Our findings lend further support for a complex evolutionary history of the association of adelgids with a phylogenetically diverse set of bacterial symbionts.  相似文献   

9.
The marine bryozoan, Bugula neritina, is the source of the bryostatins, a family of macrocyclic lactones with anticancer activity. Bryostatins have long been suspected to be bacterial products. B. neritina harbors the uncultivated gamma proteobacterial symbiont "Candidatus Endobugula sertula." In this work several lines of evidence are presented that show that the symbiont is the most likely source of bryostatins. Bryostatins are complex polyketides similar to bacterial secondary metabolites synthesized by modular type I polyketide synthases (PKS-I). PKS-I gene fragments were cloned from DNA extracted from the B. neritina-"E. sertula" association, and then primers specific to one of these clones, KSa, were shown to amplify the KSa gene specifically and universally from total B. neritina DNA. In addition, a KSa RNA probe was shown to bind specifically to the symbiotic bacteria located in the pallial sinus of the larvae of B. neritina and not to B. neritina cells or to other bacteria. Finally, B. neritina colonies grown in the laboratory were treated with antibiotics to reduce the numbers of bacterial symbionts. Decreased symbiont levels resulted in the reduction of the KSa signal as well as the bryostatin content. These data provide evidence that the symbiont E. sertula has the genetic potential to make bryostatins and is necessary in full complement for the host bryozoan to produce normal levels of bryostatins. This study demonstrates that it may be possible to clone bryostatin genes from B. neritina directly and use these to produce bryostatins in heterologous host bacteria.  相似文献   

10.
11.
Predation is one of the most important drivers of natural selection. In consequence a huge variety of anti-predator defenses have evolved in prey species. Under unpredictable and temporally variable predation pressure, the evolution of phenotypically plastic defensive traits is favored. These “inducible defenses”, range from changes in behavior, life history, physiology to morphology and can be found in almost all taxa from bacteria to vertebrates. An important group of model organisms in ecological, evolutionary and environmental research, water fleas of the genus Daphnia (Crustacea: Cladocera), are well known for their ability to respond to predators with an enormous variety of inducible morphological defenses. Here we report on the “twist”, a body torsion, as a so far unrecognized inducible morphological defense in Daphnia, expressed by Daphnia barbata exposed to the predatory tadpole shrimp Triops cancriformis. This defense is realized by a twisted carapace with the helmet and the tail spine deviating from the body axis into opposing directions, resulting in a complete abolishment of bilateral symmetry. The twisted morphotype should considerably interfere with the feeding apparatus of the predator, contributing to the effectiveness of the array of defensive traits in D. barbata. As such this study does not only describe a completely novel inducible defense in the genus Daphnia but also presents the first report of a free living Bilateria to flexibly respond to predation risk by abandoning bilateral symmetry.  相似文献   

12.
Deep-sea Bathymodiolus mussels, depending on species and location, have the capacity to host sulfur-oxidizing (thiotrophic) and methanotrophic eubacteria in gill bacteriocytes, although little is known about the mussels' mode of symbiont acquisition. Previous studies of Bathymodiolus host and symbiont relationships have been based on collections of nonoverlapping species across wide-ranging geographic settings, creating an apparent model for vertical transmission. We present genetic and cytological evidence for the environmental acquisition of thiotrophic endosymbionts by vent mussels from the Mid-Atlantic Ridge. Open pit structures in cell membranes of the gill surface revealed likely sites for endocytosis of free-living bacteria. A population genetic analysis of the thiotrophic symbionts exploited a hybrid zone where two Bathymodiolus species intergrade. Northern Bathymodiolus azoricus and southern Bathymodiolus puteoserpentis possess species-specific DNA sequences that identify both their symbiont strains (internal transcribed spacer regions) and their mitochondria (ND4). However, the northern and southern symbiont-mitochondrial pairs were decoupled in the hybrid zone. Such decoupling of symbiont-mitochondrial pairs would not occur if the two elements were transmitted strictly vertically through the germ line. Taken together, these findings are consistent with an environmental source of thiotrophic symbionts in Bathymodiolus mussels, although an environmentally “leaky” system of vertical transmission could not be excluded.  相似文献   

13.
The flagellate Caduceia versatilis in the gut of the termite Cryptotermes cavifrons reportedly propels itself not by its own flagella but solely by the flagella of ectosymbiotic bacteria. Previous microscopic observations have revealed that the motility symbionts are flagellated rods partially embedded in the host cell surface and that, together with a fusiform type of ectosymbiotic bacteria without flagella, they cover almost the entire surface. To identify these ectosymbionts, we conducted 16S rRNA clone analyses of bacteria physically associated with the Caduceia cells. Two phylotypes were found to predominate in the clone library and were phylogenetically affiliated with the “Synergistes” phylum and the order Bacteroidales in the Bacteroidetes phylum. Probes specifically targeting 16S rRNAs of the respective phylotypes were designed, and fluorescence in situ hybridization (FISH) was performed. As a result, the “Synergistes” phylotype was identified as the motility symbiont; the Bacteroidales phylotype was the fusiform ectobiont. The “Synergistes” phylotype was a member of a cluster comprising exclusively uncultured clones from the guts of various termite species. Interestingly, four other phylotypes in this cluster, including the one sharing 95% sequence identity with the motility symbiont, were identified as nonectosymbiotic, or free-living, gut bacteria by FISH. We thus suggest that the motility ectosymbiont has evolved from a free-living gut bacterium within this termite-specific cluster. Based on these molecular and previous morphological data, we here propose a novel genus and species, “Candidatus Tammella caduceiae,” for this unique motility ectosymbiont of Caducaia versatilis.  相似文献   

14.
Symbiotic Bacteria Associated with Stomach Discs of Human Lice   总被引:2,自引:1,他引:1       下载免费PDF全文
The symbiotic bacteria associated with the stomach disc, a large aggregate of bacteriocytes on the ventral side of the midgut, of human body and head lice were characterized. Molecular phylogenetic analysis of 16S rRNA gene sequences showed that the symbionts formed a distinct and well-defined clade in the Gammaproteobacteria. The sequences exhibited AT-biased nucleotide composition and accelerated molecular evolution. In situ hybridization revealed that in nymphs and adult males, the symbiont was localized in the stomach disc, while in adult females, the symbiont was not in the stomach disc but in the lateral oviducts and the posterior pole of the oocytes due to female-specific symbiont migration. We propose the designation “Candidatus Riesia pediculicola” for the louse symbionts.  相似文献   

15.
Several insect groups have obligate, vertically transmitted bacterial symbionts that provision hosts with nutrients that are limiting in the diet. Some of these bacteria have been shown to descend from ancient infections. Here we show that the large group of related insects including cicadas, leafhoppers, treehoppers, spittlebugs, and planthoppers host a distinct clade of bacterial symbionts. This newly described symbiont lineage belongs to the phylum Bacteroidetes. Analyses of 16S rRNA genes indicate that the symbiont phylogeny is completely congruent with the phylogeny of insect hosts as currently known. These results support the ancient acquisition of a symbiont by a shared ancestor of these insects, dating the original infection to at least 260 million years ago. As visualized in a species of spittlebug (Cercopoidea) and in a species of sharpshooter (Cicadellinae), the symbionts have extraordinarily large cells with an elongate shape, often more than 30 μm in length; in situ hybridizations verify that these correspond to the phylum Bacteroidetes. “Candidatus Sulcia muelleri” is proposed as the name of the new symbiont.  相似文献   

16.
Choanoflagellates are unicellular and colonial aquatic microeukaryotes that capture bacteria using an apical flagellum surrounded by a feeding collar composed of actin-filled microvilli. Flow produced by the apical flagellum drives prey bacteria to the feeding collar for phagocytosis. We report here on the cell biology of prey capture in rosette-shaped colonies and unicellular “thecate” or substrate attached cells from the choanoflagellate S. rosetta. In thecate cells and rosette colonies, phagocytosis initially involves fusion of multiple microvilli, followed by remodeling of the collar membrane to engulf the prey, and transport of engulfed bacteria into the cell. Although both thecate cells and rosette colony cells produce ∼70 nm “collar links” that connect and potentially stabilize adjacent microvilli, only thecate cells were observed to produce a lamellipod-like “collar skirt” that encircles the base of the collar. This study offers insight into the process of prey ingestion by S. rosetta, and provides a context within which to consider potential ecological differences between solitary cells and colonies in choanoflagellates.  相似文献   

17.
Many aphids harbor a variety of endosymbiotic bacteria. The functions of these symbionts can range from an obligate nutritional role to a facultative role in protecting their hosts against environmental stresses. One such symbiont is “Candidatus Serratia symbiotica,” which is involved in defense against heat and potentially also in aphid nutrition. Lachnid aphids have been the focus of several recent studies investigating the transition of this symbiont from a facultative symbiont to an obligate symbiont. In a phylogenetic analysis of Serratia symbionts from 51 lachnid hosts, we found that diversity in symbiont morphology, distribution, and function is due to multiple independent origins of symbiosis from ancestors belonging to Serratia and possibly also to evolution within distinct symbiont clades. Our results do not support cocladogenesis of “Ca. Serratia symbiotica” with Cinara subgenus Cinara species and weigh against an obligate nutritional role. Finally, we show that species belonging to the subfamily Lachninae have a high incidence of facultative symbiont infection.Many insect species harbor heritable endosymbiotic bacteria. Among the best studied of these species are aphids. Almost all aphids are infected with the obligate nutritional symbiont Buchnera aphidicola, which is generally required for the survival of aphids and provides essential amino acids that are rare in their phloem sap diet (32). Many aphids also possess additional symbionts that may be facultative from the host''s perspective and that coexist with Buchnera (20).Three lineages of facultative symbionts that are prevalent in aphids belong to the Enterobacteriaceae. Two of these lineages (“Candidatus Hamiltonella defensa” and “Candidatus Regiella insecticola”) form well-defined clades distinct from free-living bacterial species (4, 20) and confer clear advantages to their hosts by protecting them against natural enemies. “Ca. Hamiltonella defensa” prevents wasp parasitism by arresting development of wasp larvae in pea aphids, and “Ca. Regiella insecticola” provides resistance against the fungal pathogen Pandora neoaphidis (24, 31). The third lineage, “Candidatus Serratia symbiotica,” is closely related to free-living members of the genus Serratia. This symbiont is distributed sporadically among aphid species and has been proposed to have a variety of effects on hosts. In pea aphids (Acyrthosiphon pisum; Macrosiphini), “Ca. Serratia symbiotica” ameliorates the deleterious fitness effects of heat shock by protecting symbiont-harboring bacteriocyte cells (2, 19, 29). Additionally, a strain of “Ca. Serratia symbiotica” provided some resistance to parasitoid wasp attack (24). “Ca. Serratia symbiotica” has been proposed to play a role in nutrition by producing amino acids for its aphid host and by decreasing its host''s reliance on Buchnera (10, 15, 16, 26). In contrast to most Buchnera strains, Buchnera strains from Cinara cedri (Lachnini) have lost the genes for biosynthesis of the essential amino acid tryptophan, while “Ca. Serratia symbiotica” in the same host possesses at least part of the pathway, suggesting that it has a mutualistic role in the nutrition of aphids (26).In A. pisum, “Ca. Serratia symbiotica” cells are rod-shaped bacteria that are present in the sheath cells, hemolymph, and bacteriocytes of some individuals. In contrast, in C. cedriCa. Serratia symbiotica” occurs in all individuals, and its cells are large, round, and pleomorphic, similar to the cells of many obligate bacterial aphid endosymbionts, including Buchnera (10, 26). Furthermore, “Ca. Serratia symbiotica” has consistently been present in other Cinara species sampled (28). Both the rod-shaped and pleomorphic forms are assigned to “Ca. Serratia symbiotica” based on phylogenetic analyses of several gene sequences, but they fall into two distinct sister clades of symbiont lineages that seem to coincide with bacterial morphology (17, 20).This diversity in “Ca. Serratia symbiotica” morphology, distribution, and functions may represent evolution of different features within lineages of a single symbiont clade. If “Ca. Serratia symbiotica” is an obligate nutritional symbiont in Cinara hosts, it is expected that Cinara-associated symbionts would form a clade in which the intraclade relationships mirror those of the hosts (cocladogenesis), as observed for Buchnera and other obligate nutritional symbionts of insects (13, 21, 38). Indeed, Lamelas et al. postulated that, based on their similar phylogenies, Serratia symbionts from aphids belonging to the subgenus Cinara have had a long-term relationship with their hosts (17).In addition to the three most common facultative symbiont types found in aphids described above, several other symbiont lineages with unknown functions have been identified by amplification of bacterial 16S rRNA gene sequences from various aphid species (10, 28, 39). Here we examine the diversity of Serratia and other facultative symbionts in aphids belonging to the subfamily Lachninae. We investigated the distribution of symbionts in aphid species and geographic locations and looked for coevolutionary patterns that may correspond to the functions of facultative symbionts within their hosts.  相似文献   

18.
Being partly or fully transparent as a defense from predation is mostly known in various groups of aquatic animals and various terrestrial arthropods. Plants, being photosynthetic and having cell walls made of various polymers, cannot be wholly transparent. In spite of these inherent limitations, some succulent plant species of arid zones have partially transparent “windows” in order to perform photosynthesis in their below-ground leaves, as defense from herbivores as well as for protection from harsh environmental conditions. Similarly, transparent “windows” or even wholly transparent leaves are found in certain thick or thin, above-ground organs irrespective of aridity. The young pods of various wild annual Mediterranean legume species belonging to the genera Lathyrus, Pisum and Vicia are partly transparent and may therefore look like caterpillars when viewed with back illumination. I propose that this character serves 2 functions: (1) being a type of defensive caterpillar mimicry that may reduce their consumption by various herbivores in that very sensitive stage, and (2) simultaneously allowing better photosynthesis in the rapidly growing seeds and pods. Unlike animals that are transparent for either defensive or aggressive crypsis, in the case of young legume pods it allows them to visually mimic caterpillars for defense.  相似文献   

19.
Molecular markers often offer the only means to discriminate between species and to elucidate the specificity of many community interactions, both of which are key to the understanding of ecological patterns. Western Atlantic populations of the bryozoan Bugula neritina vary in the palatability of their larvae to predators: individuals south of Cape Hatteras produce chemical deterrents to fish predators that are absent in more northern individuals. We use mitochondrial cytochrome oxidase c subunit I (COI) sequences to show that the differences in palatability between populations correlate with the geographical distributions of two cryptic species within B. neritina. Furthermore, these cryptic species differ in their associations with bacteria that may confer chemical resistance to predation. Small subunit rRNA primers specific to a subset of gamma-proteobacteria amplified only the bacterium Endobugula sertula from the southern cryptic species. Endobugula sertula produces a family of chemical compounds (bryostatins) that may deter predators of its animal host. In contrast, the same primers amplified an array of gamma-proteobacteria from the unprotected northern cryptic bryozoan species, but never E. sertula. In combination, these findings suggest that the geographical variation in palatability observed in the larvae of B. neritina is not the result of local adaptation of a single species to regions of differing predation pressure, but rather results from the comparison of cryptic species that differ in the presence or absence of a bacterium that may provide protection against predators. The ability to identify the cryptic Bugula species and their differing relationships with bacterial associates provides an example of the important role molecular techniques may play in addressing ecological questions.  相似文献   

20.
We characterized the intracellular symbiotic bacteria of the hematophagous glossiphoniid leeches Placobdelloides siamensis and a Parabdella sp. These leeches have a specialized structure called an “esophageal organ,” the cells of which harbor bacterial symbionts. From the esophageal organ of each species, a 1.5-kb eubacterial 16S rRNA gene segment was amplified by PCR, cloned, and sequenced. Diagnostic PCR detected the symbiont in the esophageal organ and intestine. Phylogenetic analysis of the 16S rRNA gene(s) demonstrated that the symbionts from the leeches formed a monophyletic group in a well-defined clade containing endosymbiotic bacteria of plant sap-feeding insects in the γ-subdivision of the Proteobacteria. The nucleotide compositions of the 16S rRNA gene from the leech symbionts were highly AT biased (53.7%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号