首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
PurposeTo calculate organ doses and estimate the effective dose for justification purposes in patients undergoing orthognathic treatment planning purposes and temporal bone imaging in dental cone beam CT (CBCT) and Multidetector CT (MDCT) scanners.MethodsThe radiation dose to the ICRP reference male voxel phantom was calculated for dedicated orthognathic treatment planning acquisitions via Monte Carlo simulations in two dental CBCT scanners, Promax 3D Max (Planmeca, FI) and NewTom VGi evo (QR s.r.l, IT) and in Somatom Definition Flash (Siemens, DE) MDCT scanner. For temporal bone imaging, radiation doses were calculated via MC simulations for a CBCT protocol in NewTom 5G (QR s.r.l, IT) and with the use of a software tool (CT-expo) for Somatom Force (Siemens, DE). All procedures had been optimized at the acceptance tests of the devices.ResultsFor orthognathic protocols, dental CBCT scanners deliver lower doses compared to MDCT scanners. The estimated effective dose (ED) was 0.32 mSv for a normal resolution operation mode in Promax 3D Max, 0.27 mSv in VGi-evo and 1.18 mSv in the Somatom Definition Flash. For temporal bone protocols, the Somatom Force resulted in an estimated ED of 0.28 mSv while for NewTom 5G the ED was 0.31 and 0.22 mSv for monolateral and bilateral imaging respectively.ConclusionsTwo clinical exams which are carried out with both a CBCT or a MDCT scanner were compared in terms of radiation dose. Dental CBCT scanners deliver lower doses for orthognathic patients whereas for temporal bone procedures the doses were similar.  相似文献   

2.
Intra-oral scanners will play a central role in digital dentistry in the near future. In this study the accuracy of three intra-oral scanners was compared. Materials and methods: A master model made of stone was fitted with three high precision manufactured PEEK cylinders and scanned with three intra-oral scanners: the CEREC (Sirona), the iTero (Cadent) and the Lava COS (3M). In software the digital files were imported and the distance between the centres of the cylinders and the angulation between the cylinders was assessed. These values were compared to the measurements made on a high accuracy 3D scan of the master model. Results: The distance errors were the smallest and most consistent for the Lava COS. The distance errors for the Cerec were the largest and least consistent. All the angulation errors were small. CONCLUSIONS: The Lava COS in combination with a high accuracy scanning protocol resulted in the smallest and most consistent errors of all three scanners tested when considering mean distance errors in full arch impressions both in absolute values and in consistency for both measured distances. For the mean angulation errors, the Lava COS had the smallest errors between cylinders 1-2 and the largest errors between cylinders 1-3, although the absolute difference with the smallest mean value (iTero) was very small (0,0529°). An expected increase in distance and/or angular errors over the length of the arch due to an accumulation of registration errors of the patched 3D surfaces could be observed in this study design, but the effects were statistically not significant. CLINICAL RELEVANCE: For making impressions of implant cases for digital workflows, the most accurate scanner with the scanning protocol that will ensure the most accurate digital impression should be used. In our study model that was the Lava COS with the high accuracy scanning protocol.  相似文献   

3.

Purpose

To determine the vertical and horizontal thickness profiles of the corneal epithelium in vivo using ultra-long scan depth and ultra-high resolution spectral domain optical coherence tomography (SD-OCT).

Methods

A SD-OCT was developed with an axial resolution of ∼3.3 µm in tissue and an extended scan depth. Forty-two eyes of 21 subjects were imaged twice. The entire horizontal and vertical corneal epithelial thickness profiles were evaluated. The coefficient of repeatability (CoR) and intraclass correlation (ICC) of the tests and interobserver variability were analyzed.

Results

The full width of the horizontal epithelium was detected, whereas part of the superior epithelium was not shown for the covered super eyelid. The mean central epithelial corneal thickness was 52.0±3.2 µm for the first measurement and 52.3±3.4 µm for the second measurement (P>.05). In the central zone (0–3.0 mm), the paracentral zones (3.0–6.0 mm) and the peripheral zones (6.0–10.0 mm), the mean epithelial thickness ranged from 51 to 53 µm, 52 to 57 µm, and 58 to 72 µm, respectively. There was no difference between the two tests at both meridians and in the right and left eyes (P>.05). The ICCs of the two tests ranged from 0.70 to 0.97 and the CoRs ranged from 2.5 µm to 7.8 µm from the center to the periphery, corresponding to 5.6% to 10.6% (CoR%). The ICCs of the two observers ranged from 0.72 to 0.93 and the CoRs ranged from 4.5 µm to 10.4 µm from the center to the periphery, corresponding to 8.7% to 15.2% (CoR%).

Conclusions

This study demonstrated good repeatability of ultra-high resolution and long scan depth SD-OCT to evaluate the entire thickness profiles of the corneal epithelium. The epithelial thickness increases from the center toward the limbus.  相似文献   

4.

Background

The causes of dental crowding are not fully understood, but it may result from an evolutionary trend towards reduced facial volume, without a proportional reduction in tooth sizes. Most previous studies conducted among modern humans have revealed a very low or non-existent correlation between tooth size and jaw size. Cross-comparison between dental age and facial skeletal age could help to provide better knowledge of the dynamic process of dental crowding. The primary objective of this research was to study the synchronism of dental maturation and skeletal facial growth in a sample of modern children living in France. The secondary objective was to assess the link between dentofacial asynchronism and dental crowding.

Results

The random sample comprised 28 subjects (16 girls, 12 boys). Mean chronological age was 13.5 years (±2.1; range 9.2–17.6). Mean dental age was 14.2 years (±2.8; range 7.5–17) and mean facial skeletal age was 12.8 years (±2.6, range 7–22). In the estimations of dental age and facial skeletal age, there was no evidence of systematic bias. There were 10 subjects (9 girls, 1 boy) with asynchronous dentofacial development. Finally, there were 13 subjects (8 girls, 5 boys) with dental crowding. A significant association was found between delayed facial skeletal growth/advanced dental maturation and dental crowding (P = 0.01).

Conclusions

Dental maturation and facial growth are not necessarily synchronous. Further understanding of the interactions between dental maturation and facial growth could have crucial implications in biological anthropology, as well as for the clinical practice of orthodontists. From an anthropological perspective, this study suggests that asynchronous dentofacial development could, at least partially, explain the frequency of dental crowding in modern populations.  相似文献   

5.
PurposeThere is an increasing need for small animal in vivo imaging in murine orthotopic glioma models. Because dedicated small animal scanners are not available ubiquitously, the applicability of a clinical CT scanner for visualization and measurement of intracerebrally growing glioma xenografts in living mice was validated.ResultsTumor volumes (mean±SD mm3) were similar between both CT-modalities (micro-CT: 19.8±19.0, clinical CT: 19.8±18.8; Wilcoxon signed-rank test p = 0.813). Moreover, between reader analyses for each modality showed excellent agreement as demonstrated by correlation analysis (Spearman-Rho >0.9; p<0.01 for all correlations). Histologically measured tumor volumes (11.0±11.2) were significantly smaller due to shrinkage artifacts (p<0.05). CNR and SNR were 2.1±1.0 and 1.1±0.04 for micro-CT and 23.1±24.0 and 1.9±0.7 for the clinical CTscanner, respectively.ConclusionClinical CT scanners may reliably be used for in vivo imaging and volumetric analysis of brain tumor growth in mice.  相似文献   

6.
Open-bore MRI scanners allow joint soft tissue to be imaged over a large, uninterrupted range of flexion. Using an open-bore scanner, 3D para-sagittal images of the posterior cruciate ligament (PCL) were collected from seven healthy subjects in unloaded, recumbent knee extension and flexion. PCL length was measured from one 2D MRI slice partition per flexion angle, per subject. The anterior surface of the PCL lengthened significantly between extension and flexion (p<0.001). Conversely, the posterior surface did not. Changes were not due to the PCL moving relative to the 2D slice partition; measurements made from 3D reconstructions, which compensated for PCL movement, did not differ significantly from measurements made from 2D slice partitions. In a second experiment, videos of knee flexion were made by imaging two subjects at several flexion angles. Videos allowed soft tissue tracking; examples are included. In a third experiment, unloaded knees of seven healthy, recumbent subjects were imaged at extension and at 40°, 70°, 90°, 100°, 110° and 120° flexion. The distance between PCL attachments increased between extension and 100°, and then decreased (p<0.001). The anterior surface of the PCL lengthened over the flexion angles measured (p<0.01). The posterior surface of the PCL lengthened between extension and 40° and then shortened (p<0.001). Both attachment separation and anterior surface length increased dramatically between extension and 40°, but varied less afterwards. Results indicate that PCL dynamics differ between terminal extension and active function sub-arcs. Also, attachment separation cannot predict the lengthening of all parts of the PCL, nor can lengthening of one part of the PCL predict the lengthening of another part. A potential connection between lengthening and loading is discussed. We conclude that low-field MRI can assess ligament lengthening during flexion, and that the dynamics of the PCL for any given region and sub-arc should be measured directly.  相似文献   

7.
PurposeThe image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT) scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT) scanners.ResultsThe image noise for U-HRCT (100.87 ± 0.51 Hounsfield units [HU]) was greater than that for C-HRCT (40.41 ± 0.52 HU; P < .0001). The image quality of U-HRCT was graded as superior to that of C-HRCT (P < .0001) for all of the following parameters that were examined: margins of subsolid and solid nodules, edges of solid components and pulmonary vessels in subsolid nodules, air bronchograms, pleural indentations, margins of pulmonary vessels, edges of bronchi, and interlobar fissures.ConclusionDespite a larger image noise, the prototype U-HRCT scanner had a significantly better image quality than the C-HRCT scanners.  相似文献   

8.
Objectives68Ga-PSMA11 PET/CT is excellent for evaluating biochemically recurrent prostate cancer (BCR PC). Here, we compared the positivity rates of dual-time point imaging using a PET/CT scanner (DMI) with silicon photomultiplier (SiPM) detectors and a PET/CT scanner (D690) with photomultiplier tubes (PMT), in patients with BCR PC.MethodsFifty-eight patients were prospectively recruited and randomized to receive scans on DMI followed by D690 or vice-versa. Images from DMI were reconstructed using the block sequential regularized expectation maximization (BSREM) algorithm and images from D690 were reconstructed using ordered subset expectation maximization (OSEM), according to the vendor''s recommendations. Two readers independently reviewed all images in randomized order, recorded the number and location of lesions, as well as standardized uptake value (SUV) measurements.ResultsTwenty-eight patients (group A) had DMI as first scanner followed by D690, while 30 patients (group B) underwent scans in reversed order. Mean PSA was 30±112.9 (range 0.3–600.66) ng/mL for group A and 41.5 ± 213.2 (range 0.21–1170) ng/mL for group B (P = 0.796). The positivity rate in group A was 78.6% (22/28 patients) vs. 73.3% (22/30 patients) in group B. Although the performance of the two scanners was equivalent on a per-patient basis, DMI identified 5 additional sites of suspected recurrent disease when used as first scanner. The second scan time point did not reveal additional abnormal uptake.ConclusionsThe delayed time point in 68Ga-PSMA11 PET/CT did not show a higher positivity rate. SiPM-based PET/CT identified additional lesions. Further studies with larger cohorts are needed to confirm these results.  相似文献   

9.
Erosion of dentin results in a complex multi-layered lesion. Several methods have been used to measure erosive substance loss of dentin, but were found to have only limited agreement, in parts because they assess different structural parameters. The present study compared the agreement of four different methods (transversal microradiography [TMR], Confocal Laser Scanning Microscopy [CLSM], Laser Profilometry [LPM] and modified Knoop Hardness measurement [KHM]) to measure erosive substance loss in vitro. Ninety-six dentin specimens were prepared from bovine roots, embedded, ground, polished and covered with nail-varnish except for an experimental window. Erosion was performed for 1 h using citric acid concentrations of 0.00% (control), 0.07%, 0.25% and 1.00% (n = 24/group). Adjacent surfaces served as sound reference. Two examiners independently determined the substance loss. After 1 h erosion with 1% citric acid solution, substance losses (mean±SD) of 12.0±1.3 µm (TMR), 2.9±1.3 µm (LPM), 3.9±1.3 µm (KHM) and 17.0±2.6 µm (CLSM) were detected. ROC curve analysis found all methods to have high accuracy for discriminating different degrees of erosive substance loss (AUC 0.83–1.00). Stepwise discriminatory analysis found TMR and CLSM to have the highest discriminatory power. All methods showed significant relative and proportional bias (p<0.001). The smallest albeit significant disagreement was found between LPM and KHM. No significant inter-rater bias was detected except for KHM. LPM is prone to underestimate erosive loss, possibly due to detection of the organic surface layer. KHM was not found suitable to measure erosive loss in dentin. TMR and CLSM detected the loss of mineralised tissue, showed high reliability, and had the highest discriminatory power. Different methods might be suitable to measure different structural parameters.  相似文献   

10.

Objectives

Typical streak artifacts known as metal artifacts occur in the presence of strongly attenuating materials in computed tomography (CT). Recently, vendors have started offering metal artifact reduction (MAR) techniques. In addition, a MAR technique called the metal deletion technique (MDT) is freely available and able to reduce metal artifacts using reconstructed images. Although a comparison of the MDT to other MAR techniques exists, a comparison of commercially available MAR techniques is lacking. The aim of this study was therefore to quantify the difference in effectiveness of the currently available MAR techniques of different scanners and the MDT technique.

Materials and Methods

Three vendors were asked to use their preferential CT scanner for applying their MAR techniques. The scans were performed on a Philips Brilliance ICT 256 (S1), a GE Discovery CT 750 HD (S2) and a Siemens Somatom Definition AS Open (S3). The scans were made using an anthropomorphic head and neck phantom (Kyoto Kagaku, Japan). Three amalgam dental implants were constructed and inserted between the phantom’s teeth. The average absolute error (AAE) was calculated for all reconstructions in the proximity of the amalgam implants.

Results

The commercial techniques reduced the AAE by 22.0±1.6%, 16.2±2.6% and 3.3±0.7% for S1 to S3 respectively. After applying the MDT to uncorrected scans of each scanner the AAE was reduced by 26.1±2.3%, 27.9±1.0% and 28.8±0.5% respectively. The difference in efficiency between the commercial techniques and the MDT was statistically significant for S2 (p=0.004) and S3 (p<0.001), but not for S1 (p=0.63).

Conclusions

The effectiveness of MAR differs between vendors. S1 performed slightly better than S2 and both performed better than S3. Furthermore, for our phantom and outcome measure the MDT was more effective than the commercial MAR technique on all scanners.  相似文献   

11.
Riboflavin/UVA-induced corneal collagen cross-linking has become an effective clinical application to treat keratoconus and other ectatic disorders of the cornea. Its beneficial effects are attributed to a marked stiffening of the unphysiologically weak stroma. Previous studies located the stiffening effect predominantly within the anterior cornea. In this study, we present an atomic force microscopy-derived analysis of the depth-dependent distribution of the Young''s modulus with a depth resolution of 5 µm in 8 cross-linked porcine corneas and 8 contralateral controls. Sagittal cryosections were fabricated from every specimen and subjected to force mapping. The mean stromal depth of the zone with effective cross-linking was found to be 219±67 µm. Within this cross-linked zone, the mean Young''s modulus declined from 49±18 kPa at the corneal surface to 46±17 kPa, 33±11 kPa, 17±5 kPa, 10±4 kPa and 10±4 kPa at stromal depth intervals of 0–50 µm, 50–100 µm, 100–150 µm, 150–200 µm and 200–250 µm, respectively. This corresponded to a stiffening by a factor of 8.1 (corneal surface), 7.6 (0–50 µm), 5.4 (50–100 µm), 3.0 (100–150 µm), 1.6 (150–200 µm), and 1.5 (200–250 µm), when compared to the Young''s modulus of the posterior 100 µm. The mean Young''s modulus within the cross-linked zone was 20±8 kPa (2.9-fold stiffening), while it was 11±4 kPa (1.7-fold stiffening) for the entire stroma. Both values were significantly distinct from the mean Young''s modulus obtained from the posterior 100 µm of the cross-linked corneas and from the contralateral controls. In conclusion, we were able to specify the depth-dependent distribution of the stiffening effect elicited by standard collagen cross-linking in porcine corneas. Apart from determining the depth of the zone with effective corneal cross-linking, we also developed a method that allows for atomic force microscopy-based measurements of gradients of Young''s modulus in soft tissues in general.  相似文献   

12.
To relate exposure to adverse health effects, it is necessary to know where particles in the submicron range deposit in the respiratory tract. The possibly higher vulnerability of children requires specific inhalation studies. However, radio-aerosol deposition experiments involving children are rare because of ethical restrictions related to radiation exposure. Thus, an in vivo study was conducted using three baboons as a child respiratory tract model to assess regional deposition patterns (thoracic region vs. extrathoracic region) of radioactive polydisperse aerosols ([d16–d84], equal to [0.15 µm–0.5 µm], [0.25 µm–1 µm], or [1 µm–9 µm]). Results clearly demonstrated that aerosol deposition within the thoracic region and the extrathoraic region varied substantially according to particle size. High deposition in the extrathoracic region was observed for the [1 µm–9 µm] aerosol (72%±17%). The [0.15 µm–0.5 µm] aerosol was associated almost exclusively with thoracic region deposition (84%±4%). Airborne particles in the range of [0.25 µm–1 µm] showed an intermediate deposition pattern, with 49%±8% in the extrathoracic region and 51%±8% in the thoracic region. Finally, comparison of baboon and human inhalation experiments for the [1 µm–9 µm] aerosol showed similar regional deposition, leading to the conclusion that regional deposition is species-independent for this airborne particle sizes.  相似文献   

13.

Purpose

To further elucidate retinal findings and retinal vessel changes in Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) patients by means of high resolution retinal imaging.

Methods

28 eyes of fourteen CADASIL patients and an equal number of control subjects underwent confocal scanning laser ophthalmoscopy (cSLO), spectral-domain optical coherence tomography (SD-OCT), retinal nerve fibre layer (RNFL) measurements, fluorescein and indocyanine angiography. Three vessel measurement techniques were applied: RNFL thickness, a semiautomatic software tool based on cSLO images and manual vessel outlining based on SD-OCT.

Results

Mean age of patients was 56.2±11.6 years. Arteriovenous nicking was present in 22 (78.6%) eyes and venous dilation in 24 (85.7%) eyes. Retinal volume and choroidal volume were 8.77±0.46 mm3 and 8.83±2.24 mm3. RNFL measurements showed a global increase of 105.2 µm (Control group: 98.4 µm; p = 0.015). Based on semi-automatic cSLO measurements, maximum diameters of arteries and veins were 102.5 µm (106.0 µm; p = 0.21) and 128.6 µm (124.4 µm; p = 0.27) respectively. Manual SD-OCT measurements revealed significantly increased mean arterial 138.7 µm (125.4 µm; p<0.001) and venous 160.0 µm (146.9; p = 0.003) outer diameters as well as mean arterial 27.4 µm (19.2 µm; p<0.001) and venous 18.3 µm (15.7 µm; p<0.001) wall thicknesses in CADASIL patients.

Conclusions

The findings reflect current knowledge on pathophysiologic changes in vessel morphology in CADASIL patients. SD-OCT may serve as a complementary tool to diagnose and follow-up patients suffering from cerebral small-vessel diseases.  相似文献   

14.
Transmission-mode scanning electron microscopy (tSEM) on a field emission SEM platform was developed for efficient and cost-effective imaging of circuit-scale volumes from brain at nanoscale resolution. Image area was maximized while optimizing the resolution and dynamic range necessary for discriminating key subcellular structures, such as small axonal, dendritic and glial processes, synapses, smooth endoplasmic reticulum, vesicles, microtubules, polyribosomes, and endosomes which are critical for neuronal function. Individual image fields from the tSEM system were up to 4,295 µm2 (65.54 µm per side) at 2 nm pixel size, contrasting with image fields from a modern transmission electron microscope (TEM) system, which were only 66.59 µm2 (8.160 µm per side) at the same pixel size. The tSEM produced outstanding images and had reduced distortion and drift relative to TEM. Automated stage and scan control in tSEM easily provided unattended serial section imaging and montaging. Lens and scan properties on both TEM and SEM platforms revealed no significant nonlinear distortions within a central field of ∼100 µm2 and produced near-perfect image registration across serial sections using the computational elastic alignment tool in Fiji/TrakEM2 software, and reliable geometric measurements from RECONSTRUCT™ or Fiji/TrakEM2 software. Axial resolution limits the analysis of small structures contained within a section (∼45 nm). Since this new tSEM is non-destructive, objects within a section can be explored at finer axial resolution in TEM tomography with current methods. Future development of tSEM tomography promises thinner axial resolution producing nearly isotropic voxels and should provide within-section analyses of structures without changing platforms. Brain was the test system given our interest in synaptic connectivity and plasticity; however, the new tSEM system is readily applicable to other biological systems.  相似文献   

15.
Meloidogyne haplanaria n. sp. is described and illustrated from specimens parasitizing peanut in Texas. The perineal pattern of the female is rounded to oval with a dorsal arch that is high and rounded except for striae near the vulva, which are low with rounded shoulders. The striae are distinctly forked in the lateral field, and punctations often occur as a small group near the tail tip and singly within the whole perineal pattern. The female stylet is 13-16 µm long and has broad, distinctly set-off knobs. The excretory pore opens 40-118 µm from the head, approximately halfway between the anterior end and the metacorpus. Males are 1.2-2.4 µm in length and have a high, wide head cap that slopes posteriorly. The labial disc and medial lips are partially fused to form an elongated lip structure. In some specimens the labial disk is distinctly separated from the lips by a groove. The stylet is 17-22 µm long and has wide knobs that are rounded and distinctly set off from the shaft. Mean second-stage juvenile length is 419 µm. The head region is not annulated, and the large labial disc and crescent-shaped medial lips are fused to form a dumbbell-shaped head cap. The stylet is 9-12 µm long and has rounded, posteriorly sloping knobs. The slender tail, 58-74 µm long, has a distinct, inflated rectum and a slightly rounded tip. The hyaline tail terminus is 11-16 µm long. The isozyme phenotypes for esterase and malic dehydrogenase do not correspond to any other recognized Meloidogyne species. Tomato and peanut are good hosts; corn and wheat are very poor hosts; and cotton, tobacco, pepper, and watermelon are nonhosts.  相似文献   

16.

Background

To date, no experimental or clinical study provides detailed analysis of vascular impedance changes after total aortic arch replacement. This study investigated ventriculoarterial coupling and vascular impedance after replacement of the aortic arch with conventional prostheses vs. decellularized allografts.

Methods

After preparing decellularized aortic arch allografts, their mechanical, histological and biochemical properties were evaluated and compared to native aortic arches and conventional prostheses in vitro. In open-chest dogs, total aortic arch replacement was performed with conventional prostheses and compared to decellularized allografts (n = 5/group). Aortic flow and pressure were recorded continuously, left ventricular pressure-volume relations were measured by using a pressure-conductance catheter. From the hemodynamic variables end-systolic elastance (Ees), arterial elastance (Ea) and ventriculoarterial coupling were calculated. Characteristic impedance (Z) was assessed by Fourier analysis.

Results

While Ees did not differ between the groups and over time (4.1±1.19 vs. 4.58±1.39 mmHg/mL and 3.21±0.97 vs. 3.96±1.16 mmHg/mL), Ea showed a higher increase in the prosthesis group (4.01±0.67 vs. 6.18±0.20 mmHg/mL, P<0.05) in comparison to decellularized allografts (5.03±0.35 vs. 5.99±1.09 mmHg/mL). This led to impaired ventriculoarterial coupling in the prosthesis group, while it remained unchanged in the allograft group (62.5±50.9 vs. 3.9±23.4%). Z showed a strong increasing tendency in the prosthesis group and it was markedly higher after replacement when compared to decellularized allografts (44.6±8.3dyn·sec·cm−5 vs. 32.4±2.0dyn·sec·cm−5, P<0.05).

Conclusions

Total aortic arch replacement leads to contractility-afterload mismatch by means of increased impedance and invert ventriculoarterial coupling ratio after implantation of conventional prostheses. Implantation of decellularized allografts preserves vascular impedance thereby improving ventriculoarterial mechanoenergetics after aortic arch replacement.  相似文献   

17.

Background

Understanding the three-dimensional (3-D) micro-architecture of lung tissue can provide insights into the pathology of lung disease. Micro computed tomography (µCT) has previously been used to elucidate lung 3D histology and morphometry in fixed samples that have been stained with contrast agents or air inflated and dried. However, non-destructive microstructural 3D imaging of formalin-fixed paraffin embedded (FFPE) tissues would facilitate retrospective analysis of extensive tissue archives of lung FFPE lung samples with linked clinical data.

Methods

FFPE human lung tissue samples (n = 4) were scanned using a Nikon metrology µCT scanner. Semi-automatic techniques were used to segment the 3D structure of airways and blood vessels. Airspace size (mean linear intercept, Lm) was measured on µCT images and on matched histological sections from the same FFPE samples imaged by light microscopy to validate µCT imaging.

Results

The µCT imaging protocol provided contrast between tissue and paraffin in FFPE samples (15mm x 7mm). Resolution (voxel size 6.7 µm) in the reconstructed images was sufficient for semi-automatic image segmentation of airways and blood vessels as well as quantitative airspace analysis. The scans were also used to scout for regions of interest, enabling time-efficient preparation of conventional histological sections. The Lm measurements from µCT images were not significantly different to those from matched histological sections.

Conclusion

We demonstrated how non-destructive imaging of routinely prepared FFPE samples by laboratory µCT can be used to visualize and assess the 3D morphology of the lung including by morphometric analysis.  相似文献   

18.

Aim

To investigate colonic mucus thickness in vivo in health and during experimental inflammatory bowel disease.

Methods

Colitis was induced with 5% DSS in drinking water for 8 days prior to experiment, when the descending colonic mucosa of anesthetized rats was studied using intravital microscopy. Mucus thickness was measured with micropipettes attached to a micromanipulator. To assess the contributions of NOS and prostaglandins in the regulation of colonic mucus thickness, the non-selective NOS-inhibitor L-NNA (10 mg/kg bolus followed by 3 mg/kg/h), the selective iNOS-inhibitor L-NIL (10 mg/kg bolus followed by 3 mg/kg/h) and the non-selective COX-inhibitor diclofenac (5 mg/kg) were administered intravenously prior to experiment. To further investigate the role of iNOS in the regulation of colonic mucus thickness, iNOS −/− mice were used.

Results

Colitic rats had a thicker firmly adherent mucus layer following 8 days of DSS treatment than untreated rats (88±2 µm vs 76±1 µm). During induction of colitis, the thickness of the colonic mucus layer initially decreased but was from day 3 significantly thicker than in untreated rats. Diclofenac reduced the mucus thickness similarly in colitic and untreated rats (−16±5 µm vs −14±2 µm). While L-NNA had no effect on colonic mucus thickness in DSS or untreated controls (+3±2 µm vs +3±1 µm), L-NIL reduced the mucus thickness significantly more in colitic rats than in controls (−33±4 µm vs −10±3 µm). The importance of iNOS in regulating the colonic mucus thickness was confirmed in iNOS−/− mice, which had thinner colonic mucus than wild-type mice (35±3 µm vs 50±2 µm, respectively). Furthermore, immunohistochemistry revealed increased levels of iNOS in the colonic surface epithelium following DSS treatment.

Conclusion

Both prostaglandins and nitric oxide regulate basal colonic mucus thickness. During onset of colitis, the thickness of the mucus layer is initially reduced followed by an iNOS mediated increase.  相似文献   

19.

Objective

To report normative data for retinal thickness in wild-type C57BL/6 mouse utilizing a miniature SD-OCT system.

Methods

Thirty adult mice (range: 3–5 months) were anesthetized and secured into the Bioptigen Spectral Domain Ophthalmic Imaging System. Right eye SD-OCT images were standardized by centralizing the optic nerve head (ONH) prior to image acquisition. Global and quadrant total retinal thickness (TRT) values were measured from retinal nerve fiber layer to retinal pigment epithelial layer. Posterior segment analyses also included the outer retinal layer (ORL) and inner retinal layer (IRL). Further sublayer analyses of four layers from the ORL and three layers comprising the IRL were also performed.

Results

The overall mean±SD global TRT in a C57BL/6 mouse model was 204.41±5.19 µm. Quadrant mean TRT values were 204.85±5.81 µm inferiorly, 204.97±6.71 µm nasally, 205.08±5.44 µm temporally, and 202.74±4.85 µm superiorly. Mean±SD thickness for ORL, and IRL were 126.37±10.01 µm, and 107.03±10.98 µm respectively. The mean±SD estimates for the four layers of the ORL were 18.23±2.73 µm, 26.04±4.21 µm, 63.8±6.23 µm, and 19.22±4.34 µm. Mean±SD values for the three IRL sublayers were 27.82±4.04 µm, 59.62±6.66 µm and 19.12±3.71 µm.

Conclusion

This study established normative values for the total retinal thickness and sublayer thickness for the wild-type C57BL/6 mice. Moreover, it provides a standard of retinal morphology, in a commonly used animal model, for evaluating therapeutic interventions and retinal disease pathophysiology.  相似文献   

20.
The thyroid uptake at 20 minutes of intravenously administered Technetium-99m (99mTc) was measured in 117 patients with a standard scintillation counter. Patients were divided into three groups on the basis of clinical assessment, four-hour 131I uptake, triiodothyronine (T-3) resin uptake, and protein-bound iodine measurements.In 31 patients with no evidence of thyroid disease the mean 99m Tc uptake was 1·8% ±S.D. 1·1%. In 32 patients with thyroid enlargement who were euthyroid the mean uptake was 2·5% ±S.D. 2·2%. In 54 thyrotoxic patients the mean uptake was 17·7% with a range of 4·1 to 44%, all cases having an uptake above the upper limit of normal (4·0%). These results agree closely with reported uptake studies using scanning techniques. In seven patients the extrathyroidal neck activity was measured by using a scanner, and the mean was 6·3% of the extrathyroidal total body radioactivity comparing favourably with an assumed 6% used in our calculations.We have shown that the measurement of the thyroid uptake of 99mTc with a scintillation counter is of value, and that it is not necessary to use scanning techniques in the diagnosis of thyrotoxicosis. Advantages of 99m Tc are minimal radiation, reduction in patient and laboratory time, and low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号