首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
《Current biology : CB》2020,30(7):1269-1274.e2
  1. Download : Download high-res image (172KB)
  2. Download : Download full-size image
  相似文献   

2.
《Current biology : CB》2021,31(14):3040-3052.e9
  1. Download : Download high-res image (147KB)
  2. Download : Download full-size image
  相似文献   

3.
4.
《Current biology : CB》2020,30(12):2275-2288.e5
  1. Download : Download high-res image (247KB)
  2. Download : Download full-size image
  相似文献   

5.
《Current biology : CB》2020,30(19):3749-3760.e3
  1. Download : Download high-res image (104KB)
  2. Download : Download full-size image
  相似文献   

6.
The evolution of color vision is often studied through the lens of receptor gain relative to an ancestor with fewer spectral classes of photoreceptor. For instance, in Heliconius butterflies, a genus-specific UVRh opsin duplication led to the evolution of UV color discrimination in Heliconius erato females, a rare trait among butterflies. However, color vision evolution is not well understood in the context of loss. In Heliconius melpomene and Heliconius ismenius lineages, the UV2 receptor subtype has been lost, which limits female color vision in shorter wavelengths. Here, we compare the visual systems of butterflies that have either retained or lost the UV2 photoreceptor using intracellular recordings, ATAC-seq, and antibody staining. We identify several ways these butterflies modulate their color vision. In H. melpomene, chromatin reorganization has downregulated an otherwise intact UVRh2 gene, whereas in H. ismenius, pseudogenization has led to the truncation of UVRh2. In species that lack the UV2 receptor, the peak sensitivity of the remaining UV1 photoreceptor cell is shifted to longer wavelengths. Across Heliconius, we identify the widespread use of filtering pigments and co-expression of two opsins in the same photoreceptor cells. Multiple mechanisms of spectral tuning, including the molecular evolution of blue opsins, have led to the divergence of receptor sensitivities between species. The diversity of photoreceptor and ommatidial subtypes between species suggests that Heliconius visual systems are under varying selection pressures for color discrimination. Modulating the wavelengths of peak sensitivities of both the blue- and remaining UV-sensitive photoreceptor cells suggests that Heliconius species may have compensated for UV receptor loss.  相似文献   

7.
Nervous systems of higher organisms are comprised of a variety of cell types which are interconnected in a precise manner. The molecular mechanisms that lead to the specification of neuronal cell types are not well understood. The compound eye of the fruit fly Drosophila is an attractive experimental system to understand these mechanism. The compound eye is a reiterated neural pattern with several hundred unit structures and is amenable to both classical and molecular genetic methods. During the development of the compound eye cell–cell interactions and positional information play a critical role in the determination of cell fate. Recent genetic and molecular studies have provided important clues regarding the nature of the molecules involved in cellular signalling and neuronal differentiation. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
A half-center neural oscillator was coupled to a simple mechanical system to study the closed-loop interactions between a central pattern generator and its effector muscles. After a review of the open-loop mechanisms that were previously introduced by Skinner et al. (1994), we extend their geometric approach and introduce four additional closed-loop mechanisms by the inclusion of an antagonistic muscle pair acting on a mass and connected to the half-center neural oscillator ipsilaterally. Two of the closed-loop mechanisms, mechanical release mechanisms, have close resemblance to open-loop release mechanisms whereas the latter two, afferent mechanisms, have a strong dependence on the mechanical properties of the system. The results also show that stable oscillations can emerge in the presence of sensory feedback even if the neural system is not oscillatory. Finally, the feasibility of the closed-loop mechanisms was shown by weakening the idealized assumptions of the synaptic and the feedback connections as well as the rapidity of the oscillations.  相似文献   

9.
10.
11.
12.
Intracellular recording is a powerful technique used to determine how a single cell may respond to a given stimulus. In vision research, intracellular recording has historically been a common technique used to study sensitivities of individual photoreceptor cells to different light stimuli that is still being used today. However, there remains a dearth of detailed methodology in the literature for researchers wishing to replicate intracellular recording experiments in the eye. Here we present the insect as a model for examining eye physiology more generally. Insect photoreceptor cells are located near the surface of the eye and are therefore easy to reach, and many of the mechanisms involved in vision are conserved across animal phyla. We describe the basic procedure for in vivo intracellular recording of photoreceptor cells in the eye of a butterfly, with the goal of making this technique more accessible to researchers with little prior experience in electrophysiology. We introduce the basic equipment needed, how to prepare a live butterfly for recording, how to insert a glass microelectrode into a single cell, and finally the recording procedure itself. We also explain the basic analysis of raw response data for determining spectral sensitivity of individual cell types. Although our protocol focuses on determining spectral sensitivity, other stimuli (e.g., polarized light) and variations of the method are applicable to this setup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号