首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

To evaluate the ability of normative database classification (color-coded maps) of spectral domain optical coherence tomograph (SDOCT) in detecting wedge shaped retinal nerve fiber layer (RNFL) defects identified on photographs and the factors affecting the ability of SDOCT in detecting these RNFL defects.

Methods

In a cross-sectional study, 238 eyes (476 RNFL quadrants) of 172 normal subjects and 85 eyes (103 RNFL quadrants with wedge shaped RNFL defects) of 66 glaucoma patients underwent RNFL imaging with SDOCT. Logistic regression models were used to evaluate the factors associated with false positive and false negative RNFL classifications of the color-coded maps of SDOCT.

Results

False positive classification at a p value of <5% was seen in 108 of 476 quadrants (22.8%). False negative classification at a p value of <5% was seen in 16 of 103 quadrants (15.5%). Of the 103 quadrants with RNFL defects, 64 showed a corresponding VF defect in the opposite hemisphere and 39 were preperimetric. Higher signal strength index (SSI) of the scan was less likely to have a false positive classification (odds ratio: 0.97, p = 0.01). Presence of an associated visual field defect (odds ratio: 0.17, p = 0.01) and inferior quadrant RNFL defects as compared to superior (odds ratio: 0.24, p = 0.04) were less likely to show false negative classifications.

Conclusions

Scans with lower signal strengths were more likely to show false positive RNFL classifications, and preperimetric and superior quadrant RNFL defects were more likely to show false negative classifications on color-coded maps of SDOCT.  相似文献   

2.

Objective

To assess the prevalence of localized retinal nerve fiber layer defects (LRNFLD) and associated factors in adult Chinese.

Methods

The population-based Beijing Eye Study 2011 included 3468 individuals (mean age: 64.6±9.8 years (range: 50–93 years)). The study participants underwent a detailed ophthalmological examination including spectral-domain optical coherence tomography (SpectralisR-OCT) assisted measurement of the RNFL. A LRNFLD was defined as a sector in which the RNFL contour line dipped into the red zone for a length of <180°.

Results

Readable OCT images were available for 3242 (93.5%) subjects. LRNFLDs were detected in 640 eyes (9.9±0.4%) of 479 subjects (14.8±0.6%). In the age groups of 50–59 years, 60–69 years, 70–79 years, and 80+ years, the prevalence of LRNFLD per person increased from 9.9±0.9%, 11.6±1.0% and 20.6±1.4% to 33.0±3.2%, respectively. In multivariate analysis, prevalence of LRNFLDs was significantly associated with older age (P = 0.001; Odds Ratio (OR): 1.03; 95% Confidence Interval (CI): 1.01,1.05), myopic refractive error (P<0.001;OR:0.79;95%CI:0.74,0.85), larger beta zone of parapapillary atrophy (P<0.001; OR:1.34;95%CI:1.20,1.50), presence of glaucomatous optic neuropathy (P<0.001;OR:7.02;95%CI:3.87,12.7), presence of non-glaucomatous optic nerve damage (P = 0.001;OR:43.3;95%CI:8.24,227.1), and presence of diabetic retinopathy (P = 0.003;OR:2.79;95%CI:1.43,5.44).

Conclusions

OCT-defined LRNFLDs were present in a prevalence of 14.8±0.6% in a population-based study sample of subjects aged 50+ years. Prevalence of LRNFLDs increased with higher age, myopic refractive error, and larger parapapillary beta zone. Major ocular diseases associated with LRNFLs were glaucoma, non-glaucomatous optic nerve damage and diabetic retinopathy. These data may be helpful for a semiautomatic assessment of the RNFL.  相似文献   

3.

Purpose

To investigate the profile and determinants of retinal optical intensity in normal subjects using 3D spectral domain optical coherence tomography (SD OCT).

Methods

A total of 231 eyes from 231 healthy subjects ranging in age from 18 to 80 years were included and underwent a 3D OCT scan. Forty-four eyes were randomly chosen to be scanned by two operators for reproducibility analysis. Distribution of optical intensity of each layer and regions specified by the Early Treatment of Diabetic Retinopathy Study (ETDRS) were investigated by analyzing the OCT raw data with our automatic graph-based algorithm. Univariate and multivariate analyses were performed between retinal optical intensity and sex, age, height, weight, spherical equivalent (SE), axial length, image quality, disc area and rim/disc area ratio (R/D area ratio).

Results

For optical intensity measurements, the intraclass correlation coefficient of each layer ranged from 0.815 to 0.941, indicating good reproducibility. Optical intensity was lowest in the central area of retinal nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer plexiform layer and photoreceptor layer, except for the retinal pigment epithelium (RPE). Optical intensity was positively correlated with image quality in all retinal layers (0.553<β<0.851, p<0.01), and negatively correlated with age in most retinal layers (-0.362<β<-0.179, p<0.01), except for the RPE (β = 0.456, p<0.01), outer nuclear layer and photoreceptor layer (p>0.05). There was no relationship between retinal optical intensity and sex, height, weight, SE, axial length, disc area and R/D area ratio.

Conclusions

There was a specific pattern of distribution of retinal optical intensity in different regions. The optical intensity was affected by image quality and age. Image quality can be used as a reference for normalization. The effect of age needs to be taken into consideration when using OCT for diagnosis.  相似文献   

4.
目的:研究光学相干断层成像术(OCT)在近视眼视网膜神经纤维层(RNFL)厚度测量中的应用价值。方法:选择2016年1月到2016年5月在医院就诊的近视患者73例(138眼)纳入此次研究,根据近视情况将患者分为低度近视组(-0.30D~-3.00D)共26例(48眼)、中度近视组(-3.01~-6.00D)共24例(47眼)及高度近视组(-6.00D)共23例(43眼)。另选同期在医院体检(视力正常)的健康志愿者25例(45眼)作为对照组,对比各组不同象限的RNFL厚度,屈光度及眼轴长度,分析近视眼各象限的RNFL厚度与患者屈光度和眼轴长度的相关性。结果:高度近视组的上方象限、下方象限以及鼻侧象限的RNFL厚度均明显低于对照组及中度近视组,中度近视组的下方象限及鼻侧象限的RNFL厚度均明显低于对照组,低度近视组鼻侧象限的RNFL厚度明显低于对照组,差异均有统计学意义(均P0.05)。近视组的屈光度及眼轴长度均明显大于对照组,且高度近视组均明显大于中度近视组与低度近视组,中度近视组均明显大于低度近视组,差异均有统计学意义(均P0.05)。根据Pearson法分析相关性可知,近视眼患者上象限、下象限、鼻侧象限的RNFL厚度与其屈光度及眼轴长度均呈负相关。结论:利用OCT技术检测近视眼RNFL厚度时,应考虑屈光度及眼轴长度可能造成的影响,综合进行分析判断,以获得最佳检测数值。  相似文献   

5.
PurposeTo evaluate the diagnostic ability of macular ganglion cell and inner plexiform layer measurements in glaucoma, obtained using swept source (SS) and spectral domain (SD) optical coherence tomography (OCT) and to compare to circumpapillary retinal nerve fiber layer (cpRNFL) thickness measurements.MethodsThe study included 106 glaucomatous eyes of 80 subjects and 41 eyes of 22 healthy subjects from the Diagnostic Innovations in Glaucoma Study. Macular ganglion cell and inner plexiform layer (mGCIPL), macular ganglion cell complex (mGCC) and cpRNFL thickness were assessed using SS-OCT and SD-OCT, and area under the receiver operating characteristic curves (AUCs) were calculated to determine ability to differentiate glaucomatous and healthy eyes and between early glaucomatous and healthy eyes.ResultsMean (± standard deviation) mGCIPL and mGCC thickness were thinner in both healthy and glaucomatous eyes using SS-OCT compared to using SD-OCT. Fixed and proportional biases were detected between SS-OCT and SD-OCT measures. Diagnostic accuracy (AUCs) for differentiating between healthy and glaucomatous eyes for average and sectoral mGCIPL was similar in SS-OCT (0.65 to 0.81) and SD-OCT (0.63 to 0.83). AUCs for average cpRNFL acquired using SS-OCT and SD-OCT tended to be higher (0.83 and 0.85, respectively) than for average mGCC (0.82 and 0.78, respectively), and mGCIPL (0.73 and 0.75, respectively) but these differences did not consistently reach statistical significance. Minimum SD-OCT mGCIPL and mGCC thickness (unavailable in SS-OCT) had the highest AUC (0.86) among macular measurements.ConclusionAssessment of mGCIPL thickness using SS-OCT or SD-OCT is useful for detecting glaucomatous damage, but measurements are not interchangeable for patient management decisions. Diagnostic accuracies of mGCIPL and mGCC from both SS-OCT and SD-OCT were similar to that of cpRNFL for glaucoma detection.  相似文献   

6.

Background

This study determines ‘correlation constants’ between the gold standard histological measurement of retinal thickness and the newer spectral-domain optical coherence tomography (SD-OCT) technology in adult C57BL/6 mice.

Methods

Forty-eight eyes from adult mice underwent SD-OCT imaging and then were histologically prepared for frozen sectioning with H&E staining. Retinal thickness was measured via 10x light microscopy. SD-OCT images and histological sections were standardized to three anatomical sites relative to the optic nerve head (ONH) location. The ratios between SD-OCT to histological thickness for total retinal thickness (TRT) and six sublayers were defined as ‘correlation constants’.

Results

Mean (± SE) TRT for SD-OCT and histological sections was 210.95 µm (±1.09) and 219.58 µm (±2.67), respectively. The mean ‘correlation constant’ for TRT between the SD-OCT and histological sections was 0.96. The retinal thickness for all sublayers measured by SD-OCT vs. histology were also similar, the ‘correlation constant’ values ranged from 0.70 to 1.17. All SD-OCT and histological measurements demonstrated highly significant (p<0.01) strong positive correlations.

Conclusion

This study establishes conversion factors for the translation of ex vivo data into in vivo information; thus enhancing the applicability of SD-OCT in translational research.  相似文献   

7.
Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001) compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001). Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions.  相似文献   

8.

Objective

To examine microcystic inner nuclear layer (INL) changes in glaucomatous eyes and to determine associated factors.

Design

Retrospective, cross-sectional, observational study.

Methods

Two hundred seventeen eyes of 133 patients with primary open angle glaucoma (POAG), 41 eyes of 32 patients with preperimetric glaucoma and 181 normal eyes of 117 subjects were ultimately included. Microcystic INL lesions were examined with infrared fundus images and with 19 vertical spectral domain optical coherence tomography (SD-OCT) images in the macular area.

Results

Microcystic INL changes were observed in 6.0% of eyes with POAG, but none of the normal eyes or eyes with preperimetric glaucoma showed microcystic INL changes. The proportion of eyes with advanced glaucoma was significantly larger (P = 0.013) in eyes with microcystic lesions than without. The visual field mean deviation (MD) slope was also significantly worse (P = 0.027) in eyes with microcystic lesions. No significant differences were observed in age, sex, refraction, axial length, intraocular pressure, or MD value between eyes with and without microcystic INL lesions. In several cases, microcystic INL lesions occurred along with glaucomatous visual field progression. The retinal nerve fiber layer (RNFL) thickness (P = 0.013) and ganglion cell layer (GCL) + inner plexiform layer thickness (P = 0.023) were significantly lower in areas with microcystic lesions than without. The INL was also significantly thicker (P = 0.002) in areas with microcystic lesions.

Conclusions

Microcystic INL lesions in glaucomatous eyes are closely associated with RNFL and GCL thinning and correlated with worse MD slope. These INL lesions may indicate focal and progressive damage in glaucoma.  相似文献   

9.
Myopia is a common ophthalmic deficiency. The structure and function of choroid layer is assumed to be associated with myopia. In this study, a laboratory developed spectral domain optical coherence tomography scanning system is used to image human eyes. The axial resolution of the system is about 7 μm, and the acquisition rate is 100 kHz. Firstly, a cross-sectional image was acquired by averaging 100 images from imaging posterior segment of each eye. The choroid thickness was measured by 11 discrete points. The average thickness of normal human eyes was (0.296 ± 0.126) mm, whereas the average choroid thickness of myopic eyes was (0.220 ± 0.095) mm. Afterwards, the T test is used to calculate the data statistically. The analysis of the final result is based on the average thickness measured and the thickness of each measuring point. There was a significant difference in choroid thickness between myopia and normal eyes (P value < 0.01), which indicates that the choroid thickness of myopia was significantly thinner than that of normal eyes. Besides, there are findings that the choroidal thickness in nasal side is thinner than that in the fovea and temporal side in each eye. The choroidal thickness on temporal side in myopia eye has the most significant difference comparing with that in normal eye. The comprehensive evaluation of myopia and normal choroidal thickness using spectral domain optical coherence tomography may provide an important reference for the development of medical methods for diagnosis and treatment of myopia.  相似文献   

10.

Background

Optical coherence tomography (OCT) is a novel method of retinal in vivo imaging. In this study, we assessed the potential of OCT to yield histology-analogue sections in mouse models of retinal degeneration.

Methodology/Principal Findings

We achieved to adapt a commercial 3rd generation OCT system to obtain and quantify high-resolution morphological sections of the mouse retina which so far required in vitro histology. OCT and histology were compared in models with developmental defects, light damage, and inherited retinal degenerations. In conditional knockout mice deficient in retinal retinoblastoma protein Rb, the gradient of Cre expression from center to periphery, leading to a gradual reduction of retinal thickness, was clearly visible and well topographically quantifiable. In Nrl knockout mice, the layer involvement in the formation of rosette-like structures was similarly clear as in histology. OCT examination of focal light damage, well demarcated by the autofluorescence pattern, revealed a practically complete loss of photoreceptors with preservation of inner retinal layers, but also more subtle changes like edema formation. In Crb1 knockout mice (a model for Leber''s congenital amaurosis), retinal vessels slipping through the outer nuclear layer towards the retinal pigment epithelium (RPE) due to the lack of adhesion in the subapical region of the photoreceptor inner segments could be well identified.

Conclusions/Significance

We found that with the OCT we were able to detect and analyze a wide range of mouse retinal pathology, and the results compared well to histological sections. In addition, the technique allows to follow individual animals over time, thereby reducing the numbers of study animals needed, and to assess dynamic processes like edema formation. The results clearly indicate that OCT has the potential to revolutionize the future design of respective short- and long-term studies, as well as the preclinical assessment of therapeutic strategies.  相似文献   

11.

Purpose

To evaluate the intrasession reproducibility of various thickness parameters used to diagnose and follow-up glaucoma, in particular circumpapillary total retinal thickness (cpTR) provided by the RS-3000 optical coherence tomograph (OCT).

Methods

Fifty-three healthy eyes of 28 subjects underwent three consecutive imaging with the RS-3000 Advance OCT (NIDEK, Aichi,Japan) to evaluate the intrasession reproducibility of circumpapillary total retinal thickness (cpTR), circumpapillary retinal nerve fiber layer thickness (cpRNFL), macular ganglion cell complex thickness (mGCC) and macular total retina thickness (mTR) measurements. Intraclass correlation (ICC), coefficient of variation (CV) and reproducibility coefficient (RC) were calculated for each parameter.

Results

The ICC and CV values for mean cpTR and cpRNFL were 0.987 and 0.897, and 0.60% and 2.81%, respectively. The RC values for the mean cpTR and cpRNFL were 5.95 μm and 9.04 μm, respectively. For all cpTR parameters the ICC values were higher and both the CV and RC values were lower than those for the corresponding cpRNFL parameters. The ICC and CV values for superior mGCC, inferior mGCC, superior mTR and inferior mTR were 0.983, 0.980, 0.983 and 0.988, and 0.84%, 0.98%, 0.48% and 0.43%, respectively. The RC values for superior mGCC, inferior mGCC, superior mTR and inferior mTR were 2.86 μm, 3.12 μm, 4.41μm and 4.43 μm, respectively.

Conclusions

Intrasession reproducibility of cpTR, mGCC and mTR measurements made on healthy eyes was high. Repeatability of cpTR measurements was better than that of the corresponding cpRNFL measurements. These results suggest that future clinical investigations addressing detection of glaucoma and glaucomatous progression with the RS-3000 OCT may benefit from focusing on the cpTR parameters.  相似文献   

12.

Purpose

To examine the retinal nerve fiber layer (RNFL) ophthalmoscopically, to search for localized RNFL defects, and to assess factors associated with RNFL visibility in a population-based setting.

Methods

The population-based cross-sectional Beijing Eye Study 2006 included 3251 subjects. Using color fundus photographs, RNFL visibility was assessed in grades from 0 to 8 in 8 fundus sectors. Localized RNFL defects were defined as wedge-shaped defects running towards the optic disc.

Results

After exclusion of subjects with optic media opacities, 2602 subjects (mean age:58.1±9.0 years) were included. RNFL visibility score was highest (P<0.001) in the temporal inferior region, followed by the temporal superior region, nasal superior region, and nasal inferior region. In multivariate analysis, higher RNFL visibility score was associated with younger age (P<0.001;standardized coefficient beta:−0.44;regression coefficient B: −0.22; 95%CI: −0.24, −0.20), female gender (P<0.001;beta:0.11;B:1.00;95%CI:0.67,1.32), higher blood concentration of low-density lipoproteins (P = 0.002;beta:0.07;B:0.34;95%CI:0.13,0.56), absence of dyslipidemia (P = 0.001;beta: −0.07;B: −0.58;95%CI: −0.93, −0.24), lower blood glucose concentration (P = 0.006;beta: −0.05;B: −0.14;95%CI: −0.24, −0.04), hyperopic refractive error (P<0.001;beta:0.15;B:0.45;95%CI:0.34,0.56), smaller optic disc size (P<0.001;beta: −0.08; B:−0.72;95% CI:−1.04, −0.40), absence of glaucomatous optic neuropathy (P<0.001;beta: −0.06;B: −2.69;95%CI:–4.18, −1.21) and absence of non-glaucomatous optic nerve damage (P = 0.001;beta: −0.06;B: −4.80;95%CI:0. −7.64, −1.96). Localized RNFL defects were detected in 96 subjects (prevalence:3.7±0.45% (95% confidence interval(CI):3.0,4.4). In multivariate analysis, prevalence of localized RNFL defects was associated with higher blood pressure (P<0.001; odds ratio (OR):1.07;95%CI:1.03,1.10), higher concentration of low-density lipoproteins (P = 0.01;OR:1.42;95%CI:1.08,1.85), higher prevalence of glaucomatous optic neuropathy (P<0.001;OR:46.8;95%CI:19.4,113) and diabetic retinopathy (P = 0.002;OR:3.20;95%CI:1.53,6.67), and lower total RNFL visibility (P<0.001;OR:0.92;95%CI:0.88,0.96).

Conclusions

In Chinese aged 45+ years, a decreased RNFL visibility was associated with older age, male gender, dyslipidemia, hyperglycemia, myopia, larger optic disc, and glaucomatous or non-glaucomatous optic neuropathy. Localized RNFL defects (prevalence:3.7±0.45%) were correlated mainly with higher blood pressure, higher concentration of low-density lipoproteins, glaucomatous optic neuropathy and diabetic retinopathy. These data are helpful for the routine ophthalmoscopic examination of the RNFL.  相似文献   

13.

Purpose

To study the relationship between amplitude of spontaneous retinal venous pulsatility (SRVP) and retinal nerve fibre layer (RNFL) thickness in glaucomatous eyes, and to determine if this parameter may be a potential marker for glaucoma severity.

Method

85 subjects including 50 glaucoma (21 males, 67±10 yrs) and 35 normals (16 males, 62±11 yrs) were studied. SRVP amplitude was measured using the Dynamic Vessel Analyser (DVA, Imedos, Germany) at four regions of the retina simultaneously within one disc diameter from the optic disc—temporal-superior (TS), nasal-superior (NS), temporal-inferior (TI) and nasal-inferior (NI)). This was followed by RNFL thickness measurement using spectral domain optical coherence tomography (Spectralis OCT). The correlation between SRVP amplitude and corresponding sectoral RNFL thickness was assessed by means of non-linear regression (i.e. logarithmic). Linear regression was also applied and slopes were compared using analysis of covariance (ANCOVA).

Results

Greater SRVP amplitude was associated with thicker RNFL. Global SRVP amplitude was significantly lower in glaucoma eyes compared with normals (p<0.0001). The correlation coefficient of the linear regression between RNFL and SRVP at TS, NS, TI and NI quadrants in the glaucoma group were r = 0.5, 0.5, 0.48, 0.62. Mean SRVP amplitude and RNFL thickness for TS, NS, TI and NI quadrants were 4.3±1.5, 3.5±1.3, 4.7±1.6, 3.1±1 μm and 96±30, 75±22, 89±35 and 88±30 μm, respectively. The ANCOVA test showed that the slope of linear regression between the four quadrants was not significant (p>0.05). Since the slopes are not significantly different, it is possible to calculate one slope for all the data. The pooled slope equals 10.8 (i.e. RNFL = 10.8SRVP+41).

Conclusion

While SRVP was present and measurable in all individuals, the amplitude of SRVP is reduced in glaucoma with increasing RNFL loss. Our findings suggest the degree of SRVP may be an additional marker for glaucoma severity. Further studies are needed to determine the mechanism of reduction in SRVP, and whether changes can predict increased risk of progression.  相似文献   

14.

Introduction

The diagnostic potential of optical coherence tomography (OCT) in neurological diseases is intensively discussed. Besides the sectional view of the retina, modern OCT scanners produce a simultaneous top-view confocal scanning laser ophthalmoscopy (cSLO) image including the option to evaluate retinal vessels. A correct discrimination between arteries and veins (labeling) is vital for detecting vascular differences between healthy subjects and patients. Up to now, criteria for labeling (cSLO) images generated by OCT scanners do not exist.

Objective

This study reviewed labeling criteria originally developed for color fundus photography (CFP) images.

Methods

The criteria were modified to reflect the cSLO technique, followed by development of a protocol for labeling blood vessels. These criteria were based on main aspects such as central light reflex, brightness, and vessel thickness, as well as on some additional criteria such as vascular crossing patterns and the context of the vessel tree.

Results and Conclusion

They demonstrated excellent inter-rater agreement and validity, which seems to indicate that labeling of images might no longer require more than one rater. This algorithm extends the diagnostic possibilities offered by OCT investigations.  相似文献   

15.

Purpose

To test the hypothesis that optic nerve head (ONH) deformation manifesting as changes in its mean surface height precedes thinning of the peripapillary retinal nerve fiber layer (RNFL) in experimental glaucoma (EG).

Methods

68 rhesus macaque monkeys each had three or more baseline imaging sessions under manometric intraocular pressure (IOP) control to obtain average RNFL thickness (RNFLT) and the ONH surface topography parameter mean position of the disc (MPD). Laser photocoagulation was then applied to the trabecular meshwork of one eye to induce chronic, mild-to-moderate IOP elevation and bi-weekly imaging continued. Event analysis was applied to determine for each parameter when an ‘endpoint’ occurred (signficant change from baseline) for eight different endpoint criteria. Specificity was assessed in the group of 68 fellow control eyes. Classical signal detection theory and survival analysis were used to compare MPD with RNFLT.

Results

Regardless of the endpoint criterion, endpoints were always more frequent for MPD than for RNFLT. The discriminability index (d’) was 2.7 ± 0.2 for MPD and 1.9 ± 0.2 for RNFLT (p<0.0001). Endpoints were reached by MPD an average of 1-2 months earlier than by RNFLT (p<0.01). At the onset of the first specific, detectable MPD change in EG eyes, there was still no significant change in RNFLT on average (p=0.29) and only 25% of individual eyes exhibited signficant reduction. In contrast, at onset of signficant RNFLT change, MPD had already changed an average of 101 µm from baseline (p<0.0001) and 71% of the individual eyes had exhibited significant change. The magnitude of MPD change was more than could be explained on the basis of axon loss alone.

Conclusions

This study demonstrates that the average surface height of the ONH changes prior to any detectable loss of average peripapillary RNFL thickness in non-human primate eyes with experimental glaucoma.  相似文献   

16.

Background

Neuromyelitis optica (NMO) and relapsing-remitting multiple sclerosis (RRMS) are difficult to differentiate solely on clinical grounds. Optical coherence tomography (OCT) studies investigating retinal changes in both diseases focused primarily on the retinal nerve fiber layer (RNFL) while rare data are available on deeper intra-retinal layers.

Objective

To detect different patterns of intra-retinal layer alterations in patients with NMO spectrum disorders (NMOSD) and RRMS with focus on the influence of a previous optic neuritis (ON).

Methods

We applied spectral-domain OCT in eyes of NMOSD patients and compared them to matched RRMS patients and healthy controls (HC). Semi-automatic intra-retinal layer segmentation was used to quantify intra-retinal layer thicknesses. In a subgroup low contrast visual acuity (LCVA) was assessed.

Results

NMOSD-, MS- and HC-groups, each comprising 17 subjects, were included in analysis. RNFL thickness was more severely reduced in NMOSD compared to MS following ON. In MS-ON eyes, RNFL thinning showed a clear temporal preponderance, whereas in NMOSD-ON eyes RNFL was more evenly reduced, resulting in a significantly lower ratio of the nasal versus temporal RNFL thickness. In comparison to HC, ganglion cell layer thickness was stronger reduced in NMOSD-ON than in MS-ON, accompanied by a more severe impairment of LCVA. The inner nuclear layer and the outer retinal layers were thicker in NMOSD-ON patients compared to NMOSD without ON and HC eyes while these differences were primarily driven by microcystic macular edema.

Conclusion

Our study supports previous findings that ON in NMOSD leads to more pronounced retinal thinning and visual function impairment than in RRMS. The different retinal damage patterns in NMOSD versus RRMS support the current notion of distinct pathomechanisms of both conditions. However, OCT is still insufficient to help with the clinically relevant differentiation of both conditions in an individual patient.  相似文献   

17.

Purpose

There is a long-standing interest in the study of retinal blood flow in humans. In the recent years techniques have been established to measure retinal perfusion based on optical coherence tomography (OCT). In the present study we used a technique called dual-beam bidirectional Doppler Fourier-domain optical coherence tomography (FD-OCT) to characterize the effects of 100% oxygen breathing on retinal blood flow. These data were compared to data obtained with a laser Doppler velocimeter (LDV).

Methods

10 healthy subjects were studied on 2 study days. On one study day the effect of 100% oxygen breathing on retinal blood velocities was studied using dual-beam bidirectional Doppler FD-OCT. On the second study day the effect of 100% oxygen breathing on retinal blood velocities was assessed by laser Doppler velocimetry (LDV). Retinal vessel diameters were measured on both study days using a commercially available Dynamic Vessel Analyzer. Retinal blood flow was calculated based on retinal vessel diameters and red blood cell velocity.

Results

As expected, breathing of pure oxygen induced a pronounced reduction in retinal vessel diameters, retinal blood velocities and retinal blood flow on both study days (p<0.001). Blood velocity data correlated well between the two methods applied under both baseline as well as under hyperoxic conditions (r = 0.98 and r = 0.75, respectively). Data as obtained with OCT were, however, slightly higher.

Conclusion

A good correlation was found between red blood cell velocity as measured with dual-beam bidirectional Doppler FD-OCT and red blood cell velocity assessed by the laser Doppler method. Dual-beam bidirectional Doppler FD-OCT is a promising approach for studying retinal blood velocities in vivo.  相似文献   

18.

Purpose

To determine the relationship between longitudinal in vivo measurements of retinal nerve fiber layer thickness (RNFLT) and retinal ganglion cell (RGC) density after unilateral optic nerve transection (ONT).

Methods

Nineteen adult Brown-Norway rats were studied; N = 10 ONT plus RGC label, N = 3 ONT plus vehicle only (sans label), N = 6 sham ONT plus RGC label. RNFLT was measured by spectral domain optical coherence tomography (SD-OCT) at baseline then weekly for 1 month. RGCs were labeled by retrograde transport of fluorescently conjugated cholera toxin B (CTB) from the superior colliculus 48 hours prior to ONT or sham surgery. RGC density measurements were obtained by confocal scanning laser ophthalmoscopy (CSLO) at baseline and weekly for 1 month. RGC density and reactivity of microglia (anti-Iba1) and astrocytes (anti-GFAP) were determined from post mortem fluorescence microscopy of whole-mount retinae.

Results

RNFLT decreased after ONT by 17% (p<0.05), 30% (p<0.0001) and 36% (p<0.0001) at weeks 2, 3 and 4. RGC density decreased after ONT by 18%, 69%, 85% and 92% at weeks 1, 2, 3 and 4 (p<0.0001 each). RGC density measured in vivo at week 4 and post mortem by microscopy were strongly correlated (R = 0.91, p<0.0001). In vivo measures of RNFLT and RGC density were strongly correlated (R = 0.81, p<0.0001). In ONT- CTB labeled fellow eyes, RNFLT increased by 18%, 52% and 36% at weeks 2, 3 and 4 (p<0.0001), but did not change in fellow ONT-eyes sans CTB. Microgliosis was evident in the RNFL of the ONT-CTB fellow eyes, exceeding that observed in other fellow eyes.

Conclusions

In vivo measurements of RNFLT and RGC density are strongly correlated and can be used to monitor longitudinal changes after optic nerve injury. The strong fellow eye effect observed in eyes contralateral to ONT, only in the presence of CTB label, consisted of a dramatic increase in RNFLT associated with retinal microgliosis.  相似文献   

19.

Purpose

To evaluate choroidal thickness (CT) in healthy and glaucomatous eyes using Swept Source Optical Coherence Tomography (SS-OCT).

Methods

A cross-sectional observational study of 216 eyes of 140 subjects with glaucoma and 106 eyes of 67 healthy subjects enrolled in the Diagnostic Innovations in Glaucoma Study. CT was assessed from wide-field (12×9 mm) SS-OCT scans. The association between CT and potential confounding variables including age, gender, axial length, intraocular pressure, central corneal thickness and ocular perfusion pressure was examined using univariable and multivariable regression analyses.

Results

Overall CT was thinner in glaucomatous eyes with a mean (± standard deviation) of 157.7±48.5 µm in glaucoma compared to 179.9±36.1 µm in healthy eyes (P<0.001). The choroid was thinner in both the peripapillary and macular regions in glaucoma compared to controls. Mean peripapillary CT was 154.1±44.1 µm and 134.0±56.9 µm (P<0.001) and macular CT 199.3±46.1 µm and 176.2±57.5 µm (P<0.001) for healthy and glaucomatous eyes respectively. However, older age (P<0.001) and longer axial length (P<0.001) were also associated with thinner choroid and when differences in age and axial length between glaucomatous and healthy subjects were accounted for, glaucoma was not significantly associated with CT. There was also no association between glaucoma severity and CT.

Conclusions

Glaucoma was not associated with CT measured using SS-OCT; however, older age and longer axial length were associated with thinner choroid so should be considered when interpreting CT measurements.  相似文献   

20.
For the first time, we present co-registered autofluorescence imaging and optical coherence tomography (AF/OCT) of excised human palatine tonsils to evaluate the capabilities of OCT to visualize tonsil tissue components. Despite limited penetration depth, OCT can provide detailed structural information about tonsil tissue with much higher resolution than that of computed tomography, magnetic resonance imaging, and Ultrasound. Different tonsil tissue components such as epithelium, dense connective tissue, lymphoid nodules, and crypts can be visualized by OCT. The co-registered AF imaging can provide matching biochemical information. AF/OCT scans may provide a non-invasive tool for detecting tonsillar cancers and for studying the natural history of their development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号