首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In response to nutrient stress, cells start an autophagy program that can lead to adaptation or death. The mechanisms underlying the signaling from starvation to the initiation of autophagy are not fully understood. In the current study we show that the absence or inactivation of PARP-1 strongly delays starvation-induced autophagy. We have found that DNA damage is an early event of starvation-induced autophagy as measured by γ-H2AX accumulation and comet assay, with PARP-1 knockout cells displaying a reduction in both parameters. During starvation, ROS-induced DNA damage activates PARP-1, leading to ATP depletion (an early event after nutrient deprivation). The absence of PARP-1 blunted AMPK activation and prevented the complete loss of mTOR activity, leading to a delay in autophagy. PARP-1 depletion favors apoptosis in starved cells, suggesting a pro-survival role of autophagy and PARP-1 activation after nutrient deprivation. In vivo results show that neonates of PARP-1 mutant mice subjected to acute starvation, also display deficient liver autophagy, implying a physiological role for PARP-1 in starvation-induced autophagy. Thus, the PARP signaling pathway is a key regulator of the initial steps of autophagy commitment following starvation.  相似文献   

2.
《Autophagy》2013,9(3):244-246
It has been generally accepted that autophagy contributes to the degradation of cellular components under nutrient starvation conditions. In a previous study, however, we showed that the degradation of membrane phospholipids occurs mainly by mechanisms distinct from autophagy in suspension-cultured tobacco (Nicotiana tabacum) BY-2 cells. In response to deprivation of sucrose, the amounts of total phospholipids and a major phospholipid, phosphatidylcholine (PC), decreased. 3-Methyladenine, which inhibits autophagy, did not affect the degradation of total phospholipids or PC. On the other hand, glycerol inhibited PC degradation although it did not block autophagy. In the present study, we labeled intracellular phospholipidsby loading cells with a fluorochrome-labeled fatty acid and observed cellular morphology by fluorescence microscopy. Most cellular membrane structures were stained at the start of starvation; but 12 h after starvation treatment, concomitant with PC degradation, fluorescence on membranes disappeared and instead the centralvacuole became fluorescent. 3-Methyladenine did not inhibit this process, whereas glycerol did. These results suggest that the degradation of membrane phospholipids can be traced by light microscopy and support the notion that autophagy is not a main contributor to the degradation of membrane phospholipids in tobacco cells cultured in sucrose-free medium.  相似文献   

3.
Inoue Y  Moriyasu Y 《Autophagy》2006,2(3):244-246
It has been generally accepted that autophagy contributes to the degradation of cellular components under nutrient starvation conditions. In a previous study, however, we showed that the degradation of membrane phospholipids occurs mainly by mechanisms distinct from autophagy in suspension-cultured tobacco (Nicotiana tabacum) BY-2 cells. In response to deprivation of sucrose, the amounts of total phospholipids and a major phospholipid, phosphatidylcholine (PC), decreased. 3-Methyladenine, which inhibits autophagy, did not affect the degradation of total phospholipids or PC. On the other hand, glycerol inhibited PC degradation although it did not block autophagy. In the present study, we labeled intracellular phospholipids by loading cells with a fluorochrome-labeled fatty acid and observed cellular morphology by fluorescence microscopy. Most cellular membrane structures were stained at the start of starvation; but 12 h after starvation treatment, concomitant with PC degradation, fluorescence on membranes disappeared and instead the central vacuole became fluorescent. 3-Methyladenine did not inhibit this process, whereas glycerol did. These results suggest that the degradation of membrane phospholipids can be traced by light microscopy and support the notion that autophagy is not a main contributor to the degradation of membrane phospholipids in tobacco cells cultured in sucrose-free medium.  相似文献   

4.
Autophagy is activated to maintain cellular energy homeostasis in response to nutrient starvation. However, autophagy is not persistently activated, which is poorly understood at a mechanistic level. Here, we report that turnover of FoxO1 is involved in the dynamic autophagic process caused by glutamine starvation. X-box-binding protein-1u (XBP-1u) has a critical role in FoxO1 degradation by recruiting FoxO1 to the 20S proteasome. In addition, the phosphorylation of XBP-1u by extracellular regulated protein kinases1/2 (ERK1/2) on Ser61 and Ser176 was found to be critical for the increased interaction between XBP-1u and FoxO1 upon glutamine starvation. Furthermore, knockdown of XBP-1u caused the sustained level of FoxO1 and the persistent activation of autophagy, leading to a significant decrease in cell viability. Finally, the inverse correlation between XBP-1u and FoxO1 expression agrees well with the expression profiles observed in many human cancer tissues. Thus, our findings link the dynamic process of autophagy to XBP-1u-induced FoxO1 degradation.  相似文献   

5.
Under oxidative stress, poly(ADP-ribose) polymerase-1 (PARP-1) is activated and contributes to necrotic cell death through ATP depletion. On the other hand, oxidative stress is known to stimulate autophagy, and autophagy may act as either a cell death or cell survival mechanism. This study aims to explore the regulatory role of PARP-1 in oxidative stress-mediated autophagy and necrotic cell death. Here, we first show that hydrogen peroxide (H(2)O(2)) induces necrotic cell death in Bax-/- Bak-/- mouse embryonic fibroblasts through a mechanism involving PARP-1 activation and ATP depletion. Next, we provide evidence that autophagy is activated in cells exposed to H(2)O(2). More importantly, we identify a novel autophagy signaling mechanism linking PARP-1 to the serine/threonine protein kinase LKB1-AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway, leading to stimulation of autophagy. Finally, we demonstrate that autophagy plays a cytoprotective role in H(2)O(2)-induced necrotic cell death, as suppression of autophagy by knockdown of autophagy-related gene ATG5 or ATG7 greatly sensitizes H(2)O(2)-induced cell death. Taken together, these findings demonstrate a novel function of PARP-1: promotion of autophagy through the LKB1-AMPK-mTOR pathway to enhance cell survival in cells under oxidative stress.  相似文献   

6.
Net degradation of cellular components occurs in plant cells cultured under starvation conditions, and autophagy contributes to the degradation of intracellular proteins. In this study, we investigated the degradation of membrane phospholipids by autophagy in cultured tobacco (Nicotiana tabacum) cells. The amounts of total phospholipids and a major phospholipid, phosphatidylcholine (PC), decreased, whereas phosphorylcholine, a degradation product of PC, increased in response to deprivation of sucrose. The addition of glycerol to the culture medium inhibited both the degradation of phospholipids and the concomitant increase of phosphorylcholine. Glycerol, however, did not block autophagy, which was assessed by the accumulation of autolysosomes in the presence of a cysteine protease inhibitor. On the other hand, 3-methyladenine, an inhibitor of autophagy, did not affect the net degradation of PC. We labeled intracellular phospholipids by loading cells with a fluorochrome-labeled fatty acid and chased it under sucrose-free conditions. Glycerol slowed down the decrease in the amount of fluorochrome-labeled PC, suggesting that it inhibits the degradation process of PC. These results show that phospholipids are degraded by mechanisms different from autophagy in tobacco cells cultured under sucrose-free conditions.  相似文献   

7.
During apoptosis, the nuclear enzyme Poly(ADP-Ribose) Polymerase-1 (PARP-1) catalyzes the rapid and transient synthesis of poly(ADP-ribose) from NAD+ and becomes inactive when cleaved by caspases. The regulation of these two opposite roles of PARP-1 is still unknown. We have recently investigated PARP-1 activation/degradation in Hep-2 cells driven to apoptosis by actinomycin D. In the present work, we have extended our analysis to the effect of the DNA damaging agent etoposide, and paid attention to the relationship between PARP-1 cleavage and DNA fragmentation. An original fluorescent procedure was developed to simultaneously identify in situ the p89 proteolytic fragment of PARP-1 (by immunolabeling) and DNA degradation (by the TUNEL assay). The presence of p89 was observed both in cells with advanced signs of apoptosis (where the PARP-1 fragment is extruded from the nucleus into the cytoplasm) and in TUNEL-negative cells, with only incipient signs of chromatin condensation; this evidence indicates that PARP-1 degradation in etoposide-treated apoptotic cells may precede DNA cleavage.  相似文献   

8.
Autophagy is a conserved process of protein and organelle degradation that serves to maintain cell viability. Autophagy is frequently induced in response to stress or to exposure to DNA-damaging agents or retinoids, as well as to starvation and deficiency of growth factors. In this work, autophagy induced in E1A+cHA-RAS transformed cells in response to X-ray radiation was studied, with a focus on the role of the MEK/ERK signaling pathway in the regulation of radiation-induced autophagy. It was found that inhibition of the MEK/ERK pathway diminished cell viability and altered the sequence of events in radiation-induced autophagy. In particular, it caused aberrations in its final stages, leading to cytoplasmic accumulation of the p62/SQSTM1 adaptor protein in autophagic cavities of unclear origin. Thus, the MEK/ERK pathway activity is essential for the induction and maintenance of autophagy, increasing the viability of exposed cells in response to radiation.  相似文献   

9.
《Autophagy》2013,9(2):273-276
Poly(ADP-ribose) polymerase-1 (PARP-1), activated by DNA strand breaks, participates in the DNA repair process physiologically. Excessive activation of PARP-1 mediates necrotic cell death under the status of oxidative stress and DNA damage. However, it remains elusive whether and how PARP-1 activation is involved in autophagy and what is the function of PARP-1-mediated autophagy under oxidative stress and DNA damage. We recently demonstrate that hydrogen peroxide (H2O2) induces autophagy through a novel autophagy signalling mechanism linking PARP-1 activation to the LKB1-AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway. Furthermore, PARP-1-mediated autophagy plays a cytoprotective role in H2O2-induced necrotic cell death as suppression of autophagy greatly sensitizes H2O2-induced cell death. Our study thus identifies a novel function of PARP-1 in mediating autophagy and it appears that PAPR-1 possesses a dual role in modulating necrosis and autophagy under oxidative stress and DNA damage: on the one hand, overactivation of PARP-1 leads to ATP depletion and necrotic cell death; on the other hand, PARP-1 activation promotes autophagy via the LKB1-AMPK-mTOR pathway to enhance cell survival. The cellular decision of life or death depends on the balance between autophagy and necrosis mediated by these two distinct pathways.  相似文献   

10.
Human 8-oxoguanine-DNA glycosylase (OGG1) plays a major role in the base excision repair pathway by removing 8-oxoguanine base lesions generated by reactive oxygen species. Here we report a novel interaction between OGG1 and Poly(ADP-ribose) polymerase 1 (PARP-1), a DNA-damage sensor protein involved in DNA repair and many other cellular processes. We found that OGG1 binds directly to PARP-1 through the N-terminal region of OGG1, and this interaction is enhanced by oxidative stress. Furthermore, OGG1 binds to PARP-1 through its BRCA1 C-terminal (BRCT) domain. OGG1 stimulated the poly(ADP-ribosyl)ation activity of PARP-1, whereas decreased poly(ADP-ribose) levels were observed in OGG1(-/-) cells compared with wild-type cells in response to DNA damage. Importantly, activated PARP-1 inhibits OGG1. Although the OGG1 polymorphic variant proteins R229Q and S326C bind to PARP-1, these proteins were defective in activating PARP-1. Furthermore, OGG1(-/-) cells were more sensitive to PARP inhibitors alone or in combination with a DNA-damaging agent. These findings indicate that OGG1 binding to PARP-1 plays a functional role in the repair of oxidative DNA damage.  相似文献   

11.
A mammalian cell renovates itself by autophagy, a process through which cellular components are recycled to produce energy and maintain homeostasis. Recently, the abundance of gap junction proteins was shown to be regulated by autophagy during starvation conditions, suggesting that transmembrane proteins are also regulated by autophagy. Transient receptor potential vanilloid type 1 (TRPV1), an ion channel localized to the plasma membrane and endoplasmic reticulum (ER), is a sensory transducer that is activated by a wide variety of exogenous and endogenous physical and chemical stimuli. Intriguingly, the abundance of cellular TRPV1 can change dynamically under pathological conditions. However, the mechanisms by which the protein levels of TRPV1 are regulated have not yet been explored. Therefore, we investigated the mechanisms of TRPV1 recycling using HeLa cells constitutively expressing TRPV1. Endogenous TRPV1 was degraded in starvation conditions; this degradation was blocked by chloroquine (CLQ), 3MA, or downregulation of Atg7. Interestingly, a glucocorticoid (cortisol) was capable of inducing autophagy in HeLa cells. Cortisol increased cellular conversion of LC3-I to LC-3II, leading autophagy and resulting in TRPV1 degradation, which was similarly inhibited by treatment with CLQ, 3MA, or downregulation of Atg7. Furthermore, cortisol treatment induced the colocalization of GFP-LC3 with endogenous TRPV1. Cumulatively, these observations provide evidence that degradation of TRPV1 is mediated by autophagy, and that this pathway can be enhanced by cortisol.  相似文献   

12.
Autophagy is a fundamental cellular process that eliminates long-lived proteins and damaged organelles through lysosomal degradation pathway. Cigarette smoke (CS)-mediated oxidative stress induces cytotoxic responses in lung cells. However, the role of autophagy and its mechanism in CS-mediated cytotoxic responses is not known. We hypothesized that NAD+-dependent deacetylase, sirtuin 1 (SIRT1) plays an important role in regulating autophagy in response to CS. CS exposure resulted in induction of autophagy in lung epithelial cells, fibroblasts and macrophages. Pretreatment of cells with SIRT1 activator resveratrol attenuated CS-induced autophagy whereas SIRT1 inhibitor, sirtinol, augmented CS-induced autophagy. Elevated levels of autophagy were induced by CS in the lungs of SIRT1 deficient mice. Inhibition of poly(ADP-ribose)-polymerase-1 (PARP-1) attenuated CS-induced autophagy via SIRT1 activation. These data suggest that the SIRT1-PARP-1 axis plays a critical role in the regulation of CS-induced autophagy and have important implications in understanding the mechanisms of CS-induced cell death and senescence.  相似文献   

13.
Single-strand breaks are the commonest lesions arising in cells, and defects in their repair are implicated in neurodegenerative disease. One of the earliest events during single-strand break repair (SSBR) is the rapid synthesis of poly(ADP-ribose) (PAR) by poly(ADP-ribose) polymerase (PARP), followed by its rapid degradation by poly(ADP-ribose) glycohydrolase (PARG). While the synthesis of poly(ADP-ribose) is important for rapid rates of chromosomal SSBR, the relative importance of poly(ADP-ribose) polymerase 1 (PARP-1) and PARP-2 and of the subsequent degradation of PAR by PARG is unclear. Here we have quantified SSBR rates in human A549 cells depleted of PARP-1, PARP-2, and PARG, both separately and in combination. We report that whereas PARP-1 is critical for rapid global rates of SSBR in human A549 cells, depletion of PARP-2 has only a minor impact, even in the presence of depleted levels of PARP-1. Moreover, we identify PARG as a novel and critical component of SSBR that accelerates this process in concert with PARP-1.  相似文献   

14.
Currently, the most effective agent against pancreatic cancer is gemcitabine (GEM), which inhibits tumor growth by interfering with DNA replication and blocking DNA synthesis. However, GEM-induced drug resistance in pancreatic cancer compromises the therapeutic efficacy of GEM. To investigate the molecular mechanisms associated with GEM-induced resistance, 2D-DIGE and MALDI-TOF mass spectrometry were performed to compare the proteomic alterations of a panel of differential GEM-resistant PANC-1 cells with GEM-sensitive pancreatic cells. The proteomic results demonstrated that 33 proteins were differentially expressed between GEM-sensitive and GEM-resistant pancreatic cells. Of these, 22 proteins were shown to be resistance-specific and dose-dependent in the regulation of GEM. Proteomic analysis also revealed that proteins involved in biosynthesis and detoxification are significantly over-expressed in GEM-resistant PANC-1 cells. In contrast, proteins involved in vascular transport, bimolecular decomposition, and calcium-dependent signal regulation are significantly over-expressed in GEM-sensitive PANC-1 cells. Notably, both protein-protein interaction of the identified proteins with bioinformatic analysis and immunoblotting results showed that the GEM-induced pancreatic cell resistance might interplay with tumor suppressor protein p53. Our approach has been shown here to be useful for confidently detecting pancreatic proteins with differential resistance to GEM. Such proteins may be functionally involved in the mechanism of chemotherapy-induced resistance.  相似文献   

15.
16.
17.
Cells with non-functional poly(ADP-ribose) polymerase (PARP-1) show increased levels of sister chromatid exchange, suggesting a hyper recombination phenotype in these cells. To further investigate the involvement of PARP-1 in homologous recombination (HR) we investigated how PARP-1 affects nuclear HR sites (Rad51 foci) and HR repair of an endonuclease-induced DNA double-strand break (DSB). Several proteins involved in HR localise to Rad51 foci and HR-deficient cells fail to form Rad51 foci in response to DNA damage. Here, we show that PARP-1 mainly does not localise to Rad51 foci and that Rad51 foci form in PARP-1–/– cells, also in response to hydroxyurea. Furthermore, we show that homology directed repair following induction of a site-specific DSB is normal in PARP-1-inhibited cells. In contrast, inhibition or loss of PARP-1 increases spontaneous Rad51 foci formation, confirming a hyper recombination phenotype in these cells. Our data suggest that PARP-1 controls DNA damage recognised by HR and that it is not involved in executing HR as such.  相似文献   

18.
《Cytokine》2015,71(2):87-96
Autophagy and apoptosis are important in maintaining the metabolic homeostasis of intervertebral disc cells, and transforming growth factor-β1 (TGF-β1) is able to delay intervertebral disc degeneration. This study determined the effect of TGF-β1 on the crosstalk between autophagy and apoptosis in the disc cells, with the aim to provide molecular mechanism support for the prevention and treatment of disc degeneration. Annulus fibrosus (AF) cells were isolated and cultured under serum starvation. 10 ng/mL TGF-β1 reduced the apoptosis incidence in the cells under serum starvation for 48 h, down-regulated the autophagy incidence in the cells pretreated with 3-methyladenine (3-MA) or Bafilomycin A (Baf A), partly rescued the increased apoptosis incidence in the cells pretreated with 3-MA, while further reduced the decreased apoptosis incidence in the cells pretreated with Baf A. Meanwhile, TGF-β1 down-regulated the expressions of autophagic and apoptotic markers in the cells under starvation, partly down-regulated the expressions of Beclin-1, LC3 II/I and cleaved caspase-3 in the cells pretreated with 3-MA or Baf A, while significantly decreased the expression of Bax/Bcl-2 in the cells pretreated with Baf A. 3-MA blocked the phosphorylation of both AKT and mTOR and partly reduced the inhibitory effect of TGF-β1 on the expression of LC3 II/I and cleaved caspase-3. TGF-β1 enhanced the expression of p-ERK1/2 and down-regulated the expressions of LC3 II/I and cleaved caspase-3. U0126 partly reversed this inhibitory effect of TGF-β1. In conclusion, TGF-β1 protected against apoptosis of AF cells under starvation through down-regulating excessive autophagy. PI3K–AKT–mTOR and MAPK–ERK1/2 were the possible signaling pathways involved in this process.  相似文献   

19.
20.
Poly(ADP-ribose) polymerase-1 (PARP-1) and the p53 tumor suppressor protein are both involved in the cellular response to genotoxic stress. Upon binding to the site of DNA strand breakage, PARP-1 is activated, leading to rapid and transient poly(ADP-ribosyl)ation of nuclear proteins using NAD+ as substrate. To investigate the role of PARP-1 in the p53 response to ionizing radiation in human cells, PARP-1 function was disrupted in wild-type p53 expressing MCF-7 and BJ/TERT cells using two strategies: chemical inhibition with 1,5-dihydroxyisoquinoline, and trans-dominant inhibition by overexpression of the PARP-1 DNA-binding domain. Although a number of proteins can catalyze poly(ADP-ribosyl)ation in addition to PARP-1, we show that PARP-1 is the only detectable active species in BJ/TERT and MCF-7 cells. 1,5-Dihydroxyisoquinoline treatment prior to ionizing radiation delayed and attenuated the induction of two p53-responsive genes, p21 and mdm-2, and led to suppression of the p53-mediated G1-arrest response in MCF-7 and BJ/TERT cells. Trans-dominant inhibition of PARP-1 by overexpression of the PARP-1 DNA-binding domain in MCF-7 cells also led to a delay and attenuation in p21 induction and suppression of the p53-mediated G1 arrest response to ionizing radiation. Hence, inhibition of endogenous PARP-1 function suppresses the transactivation function of p53 in response to ionizing radiation. This study establishes PARP-1 as a critical regulator of the p53 response to DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号