首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bouron A 《FEBS letters》2000,470(3):269-272
Intracellular Ca(2+) ([Ca(2+)](i)) changes were measured in cell bodies of cultured rat hippocampal neurones with the fluorescent indicator Fluo-3. In the absence of external Ca(2+), the cholinergic agonist carbachol (200 microM) and the sarcoendoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (0.4 microM) both transiently elevated [Ca(2+)](i). A subsequent addition of Ca(2+) into the bathing medium caused a second [Ca(2+)](i) change which was blocked by lanthanum (50 microM). Taken together, these experiments indicate that stores depletion can activate a capacitative Ca(2+) entry pathway in cultured hippocampal neurones and further demonstrate the existence of such a Ca(2+) entry in excitable cells.  相似文献   

2.
Recently, a new system of astrocyte-neurone glutamatergic signalling has been identified. It is started in astrocytes by ectocellular, CD38-catalysed conversion of NAD(+) to the calcium mobilizer cyclic ADP-ribose (cADPR). This is then pumped by CD38 itself into the cytosol where the resulting free intracellular Ca(2+) concentration [Ca(2+)](i) transients elicit an increased release of glutamate, which can induce an enhanced Ca(2+) response in neighbouring neurones. Here, we demonstrate that co-culture of either cortical or hippocampal astrocytes with neurones results in a significant overexpression of astrocyte CD38 both on the plasma membrane and intracellularly. The causal role of neurone-released glutamate in inducing overexpression of astrocyte CD38 is demonstrated by two observations: first, in the absence of neurones, induction of CD38 in pure astrocyte cultures can be obtained with glutamate and second, it can be prevented in co-cultures by glutamate receptor antagonists. The neuronal glutamate-mediated effect of neurones on astrocyte CD38 expression is paralleled by increased intracellular cADPR and [Ca(2+)](i) levels, both findings indicating functionality of overexpressed CD38. These results reveal a new neurone-to-astrocyte glutamatergic signalling based on the CD38/cADPR system, which affects the [Ca(2+)](i) in both cell types, adding further complexity to the bi-directional patterns of communication between astrocytes and neurones.  相似文献   

3.
In transversely sectioned rat hippocampal slices, population spikes and population "EPSPs" were recorded from CA1 neurones in response to the stimulation of Schaffer collateral and commissural inputs. High frequency tetanic stimulation (400 Hz, 200 pulses) of an input induced LLP of the homosynaptic response without significantly changing the heterosynaptic response. This LLP was not interrupted by either a 400 Hz tetanus given to the heterosynaptic input or by verapamil (0.33 microM) which blocks Ca++ channels, but not transmitter release. A low frequency tetanus (20 Hz, 200 pulses) given to an input induces co-occurring homosynaptic and heterosynaptic depressions of about 20 min duration. This tetanus could also mask an established LLP in homosynaptic or heterosynaptic pathway. Verapamil counteracts homo- and heterosynaptic depressions. The population spike as well as the population "EPSP" were depressed following iontophoretic application of Ca++ (2-100 nA) at the CA1 cell body area. These results indicate that homosynaptic and heterosynaptic depressions are at least partly due to an accumulation of Ca++ into CA1 neurones. An established LLP is not interrupted by LLP of another input. Homo- and heterosynaptic depressions mask, but not reverse, LLP.  相似文献   

4.
Reports on non-neural cells have shown that enhanced activity of the Ca(2+)-dependent/ATP-independent phospholipid scramblase (PLSCR1) is, at least in part, responsible for surface exposure of phosphatidylserine and the collapse of plasma membrane asymmetry in injured or apoptotic cells. To shed some light on mechanisms with a potential to lead to apoptotic death of human neurones following ischemic/hypoxic injury, we examined the immunoreactivity of hippocampal neurones for PLSCR1, caspase-3, cytochrome c and DNA-fragmentation in 22 individuals with clinically symptomatic cerebral ischemia after cardiac arrest or severe hypotension.WE FOUND: (1) significant differences in the percentage of PLSCR1-immunoreactive neurones between controls and short survivors; statistically strong differences between the frequency of immunoreactive neurones among the subfields studied with lowest levels in the CA3; preferential distribution of immunoreactive neurones in controls within the regio entorhinalis, subfield CA1, and hilum. Additionally, these areas exhibited staining of fibre bundles which probably correspond to perforant path, alvear path and collateral's of Schaffer, (2) caspase-3 was upregulated in a region-specific manner with marked activation in the selectively vulnerable hippocampal areas, (3) cytochrome c was redistributed, (4) DNA-fragmentation represented by scattered TUNEL-positive cells increased predominantly during the first 3 days after ischemia, and particularly in the regions of greatest susceptibility to hypoxic injury.This study presents the first evidence that PLSCR1, and probably remodelling of plasma membrane phospholipids (PL), plays a role in ischemic injury in the human hippocampus.  相似文献   

5.
Reliability of the existing functional criteria for differentiation of pyramidal ("complex spike neurones") and inhibitory ("theta neurones") cells in the hippocampus of waking rabbit is evaluated on the basis of statistical analysis of neuronal spontaneous and evoked activity. The analysis shows, that the criteria of mean frequency, presence of theta modulation, neuronal behaviour in situations provoking EEG theta rhythm (e.g., excitation or inhibition during presentation of sensory stimuli), effects of medial septum and intrahippocampal stimulation do not permit reliable identification of the hippocampal neuronal types in the waking rabbit. The data on functional classification of the hippocampal neurones are discussed in connection with existing suggestions about their state in situations inducing theta rhythm generation.  相似文献   

6.
The effect of microiontophoretically administered beta-endorphin on the activity of 62 cortical and hippocampal neurones was studied in acute experiments on 14 rats. The effectiveness of beta-endorphin was first of all verified in the isolated guinea pig ileum, the mouse was deferens and in a study if its analgetic and catatonic effect in rats. Beta-endorphin only mildly depressed the spontaneous activity of cortical neurones, but markedly inhibited the activity stimulated by the microiontophoretic administration of glutamate. In the hippocampus, beta-endorphin stimulated the activity of all the studied neurones when only low ejection currents were used and activation persisted for 1-4 min after terminating administration. With higher ejection currents, the discharge frequency rose enormously and not even GABA blocked this effect. The excitatory effect of beta-endorphin on the hippocampal neurones may possibly be the basis of the epileptogenic action of this substance.  相似文献   

7.
Proline-rich tyrosine kinase 2 (Pyk2) is activated in neurones following NMDA receptor stimulation via PKC. Pyk2 is involved in hippocampal LTP and acts to potentiate NMDA receptor function. Elevations of intracellular Ca2+ and cAMP levels are key NMDA receptor-dependent triggering events leading to induction of hippocampal LTP. In this study, we compared the ability of A23187 (Ca2+ ionophore) or forskolin (adenylate cyclase activator) to modulate the phosphorylation of Pyk2 in rat hippocampal slices. Using an immunoprecipitation assay, phosphorylated Pyk2 levels were increased following treatment with A23187, levels peaking at around 10 min. Staurosporine, at concentrations inhibiting conventional and novel isoforms of PKC, and chelerythrine, at concentrations inhibiting the atypical PKC isoform PKMxi, were compared for their ability to attenuate the effect of A23187. Exposure of acute hippocampal slices to either chelerythrine or staurosporine completely blocked enhanced phosphorylation of Pyk2 by A23187, suggesting a possible involvement of PKMxi and typical PKCs in Pyk2 activation by Ca2+. In contrast, application of forskolin reduced phosphorylated Pyk2 below basal levels, suggesting that cAMP inhibits Pyk2. These results implicate Ca2+ and multiple forms of PKC in the activation of Pyk2 downstream of NMDA receptors and suggest that cAMP-dependent processes exert a suppressive action on Pyk2.  相似文献   

8.
Transient changes in the intracellular concentration of Ca2+ provide a major signal for the regulation of many ion channels and enzymes in central neurones. In contrast, changes in extracellular Ca2+ are thought to play little or no signaling role. However, concentrations of extracellular calcium in the central nervous system do change dramatically during intense physiological and pathological stimulation, and recent studies have identified a number of membrane proteins that can sense and respond to changes in extracellular Ca2+. These include the recently cloned Ca(2+)-sensing receptor, hemi-gap-junction channels, and a potential Ca(2+)-sensing cation channel. Lowering extracellular Ca2+ strongly depolarizes and excites cultured hippocampal neurones. The excitation can be detected with decreases from physiological concentrations of as little as 100 microM. The depolarization results from activation of a nonselective cation current, which is sensitive to block by divalent and polyvalent cations. In outside-out patches, lowering Ca2+ induces a single-channel current with a conductance of 36 pS. Activation of this cation channel, in response to decreases in extracellular Ca2+, likely plays a key role in a positive feedback system of excessive neuronal depolarization, which accompanies intense excitatory activity in the hippocampus.  相似文献   

9.
Murzina GB  Frolov AA 《Biofizika》2002,47(1):100-106
The conditions on the occurrence of hysteresis of the amount of phosphorylated receptors were determined depending on the rhythmic frequency of presynaptic neuronal activity using the full and simplified models of synaptic plasticity for pyramidal hippocampal neurones. It is assumed that this phenomenon lies at the basis of the conservation of long-term potentiation.  相似文献   

10.
The actions of crude venom from Anemesia species of spider were investigated in cultured dorsal root ganglion neurones from neonatal rats and hippocampal slices. Using mass spectrometry (MALDI-TOF MS), 10-12 distinct peptides with masses between about 3 and 10kDa were identified in the crude spider venom. At a concentration of 5 microg/ml crude Anemesia venom transiently enhanced the mean peak whole cell voltage-activated Ca(2+) current in a voltage-dependent manner and potentiated transient increases in intracellular Ca(2+) triggered by 30mM KCI as measured using Fura-2 fluorescence imaging. Additionally, 5-8 microg/ml Anemesia venom increased the amplitude of glutamatergic excitatory postsynaptic currents evoked in hippocampal slices. Omega-Conotoxin GVIA (1 microM) prevented the increase in voltage-activated Ca(2+) currents produced by Anemesia venom. This attenuation occurred when the cone shell toxin was applied before or after the spider venom. Anemesia venom (5 microg/ml) created no significant change in evoked action potentials but produced modest but significant inhibition of voltage-activated K(+) currents. At a concentration of 50 microg/ml Anemesia venom only produced reversible inhibitory effects, decreasing voltage-activated Ca(2+) currents. However, no significant effects on Ca(2+) currents were observed with a concentration of 0.5 microg/ml. The toxin(s) in the venom that enhanced Ca(2+) influx into sensory neurones was heat-sensitive and was made inactive by boiling or repetitive freeze-thawing. Boiled venom (5 microg/ml) produced significant inhibition of voltage-activated Ca(2+) currents and freeze-thawed venom inhibited Ca(2+) transients measured using Fura-2 fluorescence. Our data suggest that crude Anemesia venom contains components, which increased neuronal excitability and neurotransmission, at least in part this was mediated by enhancing Ca(2+) influx through N-type voltage-activated Ca(2+) channels.  相似文献   

11.
1. This work deals with the effects of external divalent ions on the values of the mean open time, tau, and of the elementary current, iel, of channels activated by acetylcholine in Aplysia neurones. The action of Ca is mainly considered. 2. Ca ions were found to prolong tau and decrease iel under various experimental conditions. In isotonic Ca solution, tau is 12 times larger than in isotonic Na solution (divalent free sea water). On the other hand, iel is about 8 times smaller in the first solution than in the second. 3. A quantitative analysis of these effects is presented.  相似文献   

12.
A dependence of the inward current across the cell membrane giant neurones at garden snail was investigated under voltage champ. It has been concluded that there are two components of the inward current: a calcium-dependent and I0. The latter current probably was carried by sodium ions. The inward Ca current (ICa) is then given as a function [Ca]2+ by: formula (see text) : KCa is a dissociation constant of the sites in outer part channel independent of membrane voltage. The experimental data are interpreted by two barrier membrane model bases of absolute reaction rate Eyring's theory.  相似文献   

13.
It is well established that astrocytes release gliotransmitters and moderate neuronal activity in the central nervous system via intracellular Ca(2+) dynamics. Astrocytic Ca(2+) oscillations are one type of spontaneous Ca(2+) mobilization that occurs in astrocytes. However, the modulation of spontaneous astrocytic Ca(2+) oscillations, especially in pathophysiological conditions, is not yet fully understood. Here, we demonstrate that activation of adenosine receptors induces a long-lasting increase in the frequency of astrocytic Ca(2+) oscillations in rat hippocampal slice cultures. The long-term facilitation of the frequency of Ca(2+) oscillations was mediated by endogenous adenosine generated via breakdown of extracellular ATP by ecto-ATPase. We also demonstrate that local tissue injury with ultraviolet irradiation can cause this long-term facilitation of Ca(2+) oscillations via endogenous adenosine. Our data suggest that endogenous adenosine is one of the modulators of spontaneous astrocytic Ca(2+) oscillations in the rat hippocampus, and may play a significant role in altered Ca(2+) dynamics in astrocytes observed during pathophysiological conditions.  相似文献   

14.
Single-channel currents through chloride channels were recorded in cultured hippocampal neurones from rats using the patch-clamp method. The channel is active at voltages between -80 and +80 mV, and the time spent in the open state increases with depolarization (almost fourfold for 120 mV). The channel conductance is 62 pS in symmetrical 150 mM NaCl saline. In salt gradient conditions the channel was measurably permeable to Na+. Substitution of NO3- and Br- for Cl- gave higher single-channel currents, meaning a higher permeability of the channel toward the two anions than to Cl-. SO4(2-) ions were poorer charge carriers, yet contributed measurable inward current at negative voltages. Channel activity appeared independent of intracellular Ca2+ concentration. Taken together, these features would suggest for this channel a role in stabilizing resting membrane potential and in maintaining normal cell excitability.  相似文献   

15.
16.
Calcium ions represent universal second messengers within neuronal cells integrating multiple cellular functions, such as release of neurotransmitters, gene expression, proliferation, excitability, and regulation of cell death or apoptotic pathways. The magnitude, duration and shape of stimulation-evoked intracellular calcium ([Ca2+]i) transients are determined by a complex interplay of mechanisms that modulate stimulation-evoked rises in [Ca2+]i that occur with normal neuronal function. Disruption of any of these mechanisms may have implications for the function and health of peripheral neurones during the aging process. This review focuses on the impact of advancing age on the overall function of peripheral adrenergic neurones and how these changes in function may be linked to age-related changes in modulation of [Ca2+]i regulation. The data in this review suggest that normal aging in peripheral autonomic neurones is a subtle process and does not always result in dramatic deterioration in their function. We present studies that support the idea that in order to maintain cell viability peripheral neurones are able to compensate for an age-related decline in the function of at least one of the neuronal calcium-buffering systems, smooth endoplasmic reticulum calcium ATPases, by increased function of other calcium-buffering systems, namely, the mitochondria and plasmalemma calcium extrusion. Increased mitochondrial calcium uptake may represent a 'weak point' in cellular compensation as this over time may contribute to cell death. In addition, we present more recent studies on [Ca2+]i regulation in the form of the modulation of release of calcium from smooth endoplasmic reticulum calcium stores. These studies suggest that the contribution of the release of calcium from smooth endoplasmic reticulum calcium stores is altered with age through a combination of altered ryanodine receptor levels and modulation of these receptors by neuronal nitric oxide containing neurones.  相似文献   

17.
Pyramidal neurons in the rat CA1 hippocampal area contain both mineralocorticoid (MR) and glucocorticoid receptors (GR) which bind the endogenous adrenal steroid corticosterone with differential affinity. With intracellular electrophysiological recording techniques we have investigated how corticosterone affects the membrane properties of these cells. We observed that low doses (1 nM) of corticosterone or aldosterone can, through MR, reduce the spike frequency accommodation and afterhyperpolarization (AHP) evoked by a short depolarizing current in pyramidal neurons. As the accommodation/AHP can be considered as an intrinsic mechanism of CA1 neurons to attenuate transmission of excitatory input, the MR-mediated action might potentially enhance cellular excitability in the CA1 area. Higher doses of corticosterone or selective glucocorticoids were able to reverse the MR-mediated effect on accommodation/AHP, eventually increasing particularly the amplitude of the AHP. GR-mediated events may thus potentially suppress excitability in the hippocampal CA1 area. Not only current- but also transmitter-induced membrane effects were affected by the steroids. Firstly, GR-ligands were able to suppress a temporary noradrenaline-evoked decrease in accommodation/AHP. Secondly, membrane hyperpolarizations induced by serotonin were reduced by MR-agonists. We propose that cellular excitability in the hippocampus is at least partly under control of coordinative, antagonistic MR- and GR-mediated effects on electrical activity.  相似文献   

18.
An increase of intracellular calcium ion concentration and of the 45Ca2+ entry, a decrease in Na+,K(+)-ATPase activity, and activation of Na+/Ca2+ exchange were shown to be initiated by glutamate in the rat brain cortex synaptosomes. These effects could be prevented with antagonists and blocking agents of the NMDA receptors. Pre-incubation of the synaptosomes with alpha-tocopherol, superoxide dismutase, and ganglioside GM1 was shown to normalise [45Ca2+], the rate of 45Ca2+ entry, and the activity of Na+,K(+)-ATPase in the synaptosomes. The data obtained suggest that calcium ions entering the brain cortex neurones via the NMDA receptors in presence of excessive glutamate, trigger activation of free radical reactions damaging the neurones in ischemia, cerebral lesions, and other pathological conditions.  相似文献   

19.
The ionic nature and pharmacological properties of the outward current activated by membrane depolarization were studied on isolated neurones of the snail Helix pomatia, placed in Na+- and Ca2+-free extracellular solutions and intracellularly perfused with K+-free solution ("nonspecific outward current"). It was shown that the amplitude and reversal potential of this current (estimated from instantaneous current-voltage characteristics) are determined mainly by the transmembrane gradient for H+ ions. Lowering of pHi induced an increase in the current amplitude and a shift of the reversal potential to more negative values; the shift magnitude was comparable with that predicted for the hydrogen electrode. Raising pHi, as well as lowering pHo, induced a decrease in the current amplitude and a displacement of the current activation curve to more positive potentials. Addition of EGTA (8 mmol/l) to the intracellular perfusate did not affect the current amplitude. Extracellular 4-aminopyridine (10 mmol/l), verapamil (0.25 mmol/l) or Cd2+ (0.5 mmol/l) blocked the current. It is concluded that the current studied is carried mainly by H+ ions. In the same neurones the nature of the fast decay of the calcium inward current was also studied (in the presence of extracellular Ca2+ ions). This decay considerably slowed when pHi was raised or pHo was lowered, and it became less pronounced upon extracellular application of 4-aminopyridine or upon intracellular introduction of phenobarbital (4 mmol/l) and tolbutamide (3 mmol/l). It is suggested that the fast decay of the calcium inward current is due to activation of a Ca-sensitive component of the hydrogen current which depends on accumulation of Ca2+ ions. The possible physiological role of the transmembrane hydrogen currents is discussed.  相似文献   

20.
In the present work, we investigated the role of pre- and post-synaptic neuropeptide Y1 (NPY1) and Y2 receptors on the calcium responses and on glutamate release in the rat hippocampus. In cultured hippocampal neurones, we observed that only NPY1 receptors are involved in the modulation of intracellular free calcium concentration ([Ca(2+)](i)). In 88% of the neurones analysed, the increase in the [Ca(2+)](i), in response to depolarization with 50 mM KCl, was inhibited by 1 microM [Leu31,Pro34]NPY, whereas 300 nM NPY13-36 was without effect. However, studies with hippocampal synaptosomes showed that both NPY1 and Y2 receptors can modulate the [Ca(2+)](i) and glutamate release. The pharmacological characterization of the NPY-induced inhibition of glutamate release indicated that Y2 receptors play a predominant role, both in the modulation of Ca(2+)-dependent and -independent glutamate release. However, we could distinguish between Y1 and Y2 receptors by using [Leu31,Pro34]NPY and NPY13-36. Active pre-synaptic Y1 receptors are present in the dentate gyrus (DG) as well as in the CA3 subregion, but its activity was not revealed by using the endogenous agonist, NPY. Concerning the Y2 receptors, they are present in the three subregions (CA1, CA3 and DG) and were activated by either NPY13-36 or NPY. The present data support a predominant role for NPY2 receptors in mediating NPY-induced inhibition of glutamate release in the hippocampus, but the physiological relevance of the presently described DG and CA3 pre-synaptic NPY1 receptors remains to be clarified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号