首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The inhibition by several phenothiazine drugs and pimozide of the uptake of 45Ca2+ and secretion of catecholamines by cultured adrenal medulla cells stimulated with nicotine, veratridine, 50 mM K+, ionomycin and Ba2+ was studied. The inhibition of 45Ca2+ uptake, except for ionomycin, closely parallelled the inhibition of catecholamine secretion. The nicotine-and veratridine-stimulated effects were several fold more sensitive to inhibition by the drugs than were those stimulated by 50mM K+, ionomycin and Ba2+; the ionomycin-stimulated effects were least sensitive to inhibition. These studies indicate that the drugs have multiple effects on stimulus-secretion coupling in adrenal medulla cells. It is suggested that inhibition of the veratridine- and nicotine-stimulated events is due to membrane perturbations caused by the drugs, that inhibition of the 50mM K+- and Ba2+-stimulated events is due to alterations in the voltage sensitive membrane Ca2+ channel, and that inhibition of secretion elicited by ionomycin may be due to inhibition of Ca2+-calmodulin reactions or to more profound non specific membrane effects.  相似文献   

2.
Cultured bovine adrenal medulla cells have been shown to contain several different ion channels (Na+, Ca2+, acetylcholine receptor regulated) whose activation leads to the secretion of catecholamines. The pharmacology of these ion channels and their interactions during secretion have been examined. The mechanisms of agonist-induced calcium influx are of particular interest since this is an early obligatory event during secretion from the adrenal medulla. Data obtained on catecholamine release and 45Ca2+ uptake indicate that both voltage-dependent and voltage-independent calcium influx mechanisms operate in cultured bovine adrenal medulla cells. The significance of these results in understanding the mechanism of action of the physiological stimulus acetylcholine (Ach) will be discussed. The alkaloid channel neurotoxins D-600, batrachotoxin, veratridine, and aconitine were shown to exert a noncompetitive inhibitory effect on Ach-induced ion flux in adrenal medulla cells, presumably through an interaction with the nicotinic receptor regulated channel. Lipid-soluble neurotoxins may interact with multiple ion channels in nerve and muscle membrane.  相似文献   

3.
Abstract: The effects of several neurotoxins and cholinergic antagonists on the nicotine-induced secretion of catecholamines by adrenal medulla cells in culture were investigated. Aconitine, veratridine, and batrachotoxin, in the presence of 1 μ m -tetrodotoxin inhibited the nicotine-stimulated secretion of catecholamines in a dose-dependent manner in Locke's solution. In Na+-free sucrose medium, tetrodotoxin was not required to inhibit the stimulatory effects of aconitine, veratridine, and batrachotoxin, and these agents by themselves inhibited the nicotine-stimulated secretion of catecholamines. Scorpion venom, which also increases the flux of Na+ through tetrodotoxin-sensitive channels, was not an effective inhibitor of nicotine-stimulated secretion. Histrionicotoxin, atropine, hexamethonium, and decamethoniun–as well as the Na+-channel activators–noncompetitively inhibit nicotine-stimulated secretion. The effects of these agents on nicotine-stimulated secretion appear similar to their effects on the inhibition of depolarization at the neuromuscular junction. Reversibility studies suggest that the stimulatory and inhibitory sites of the neurotoxins are different, while studies in Na+-free media suggest that tetrodotoxin-insensitive sodium channels are not involved in the inhibitory effect of the neurotoxins. A possible site of action for the inhibitory effects of the neurotoxins. A possible site of action for the inhibitory effects of the neurotoxins is the nicotinic-receptor-associated ion channel.  相似文献   

4.
Although cytosolic Ca2+ transients are known to influence the magnitude and duration of hormone and neurotransmitter release, the processes regulating the decay of such transients after cell stimulation are not well understood. Na(+)-dependent Ca2+ efflux across the secretory vesicle membrane, following its incorporation into the plasma membrane, may play a significant role in Ca2+ efflux after stimulation of secretion. We have measured an enhanced 45Ca2+ efflux from cultured bovine adrenal chromaffin cells following cell stimulation with depolarizing medium (75 mM K+) or nicotine (10 microM). Such stimulation also causes Ca2+ uptake via voltage-gated Ca2+ channels and secretion of catecholamines. Na+ replacement with any of several substitutes (N-methyl-glucamine, Li+, choline, or sucrose) during cell stimulation inhibited the enhanced 45Ca2+ efflux, indicating and Na(+)-dependent Ca2+ efflux process. Na+ deprivation did not inhibit 45Ca2+ uptake or catecholamine secretion evoked by elevated K+. Suppression of exocytotic incorporation of secretory vesicle membranes into the plasma membrane with hypertonic medium (620 mOsm) or by lowering temperature to 12 degrees C inhibited K(+)-stimulated 45Ca2+ efflux in Na(+)-containing medium but did not inhibit the stimulated 45Ca2+ uptake. Enhancement of exocytotic secretion with pertussis toxin resulted in an enhanced 45Ca2+ efflux without affecting calcium uptake. The combined results suggest that Na(+)-dependent Ca2+ efflux across secretory vesicle membranes, following their incorporation into the plasma membrane during exocytosis, plays a significant role in regulating calcium efflux and the decay of cytosolic Ca2+ in adrenal chromaffin cells and possibly in related secretory cells.  相似文献   

5.
We recently reported that prostaglandin E2 (PGE2) stimulated phosphoinositide metabolism in cultured bovine adrenal chromaffin cells and that PGE2 and ouabain, an inhibitor of Na+,K+-ATPase, synergistically induced a gradual secretion of catecholamines from the cells. The effect on catecholamine release was specific for prostaglandin E1 (PGE1) and PGE2 among prostaglandins tested (E1 = E2 greater than F2 alpha greater than D2). The release evoked by PGE2 plus ouabain was greatly reduced in Na+-depleted medium and not observed in Ca2+-free medium. Here we examined the synergistic effect of PGE2 and ouabain on the release with specific reference to ion fluxes. Regardless of the presence of PGE2, ouabain stimulated the release in a dose-dependent manner with half-maximal stimulation at 1 microM, and omission of K+ from the medium, a condition which suppresses the Na+,K+-ATPase activity, also enhanced the release from chromaffin cells exposed to PGE2. Ouabain induced a continuous accumulation of 22Na+ and 45Ca2+, as well as secretion of catecholamines. Although PGE2 itself showed hardly any effects on these cellular responses, PGE2 potentiated all of them induced by ouabain. The time course of catecholamine release was correlated with that of accumulation of 45Ca2+ rather than with that of 22Na+. The release evoked by PGE2 and ouabain was inhibited in a dose-dependent manner by amiloride and the analogue ethylisopropylamiloride, inhibitors of the Na+,H+-antiport, but not by the Na+-channel inhibitor tetrodotoxin nor by the nicotinic receptor antagonist hexamethonium. Ethylisopropylamiloride at 1 microM inhibited PGE2-enhanced accumulation of 22Na+ and 45Ca2+ and release of catecholamine by 40, 83, and 71%, respectively. Activation of the Na+,H+-antiport by elevation of the extracellular pH from 6.6 to 8.0 increased the release of catecholamines linearly. Furthermore, PGE2 induced a sustained increase in intracellular pH by about 0.1 pH unit above the resting value, which was abolished by amiloride or in Na+-free medium. These results taken together indicate that PGE2 activates the Na+,H+-antiport by stimulating phosphoinositide metabolism and that the increase in intracellular Na+ by both inhibition of Na+,K+-ATPase and activation of Na+,H+-antiport may lead to the redistribution of Ca2+, which is the initial trigger of catecholamine release.  相似文献   

6.
The calcium-entry antagonist D600 (methoxyverapamil) inhibited nicotine- and veratridine-induced 45Ca2+ uptake, 22Na+ uptake, and catecholamine secretion in primary cultures of bovine adrenal medulla cells. Inhibition of nicotine-induced effects occurred at D600 concentrations approximately 3-10-fold lower than those needed to produce similar inhibition of veratridine-induced effects. Inhibition of the veratridine-induced effects was competitive, but inhibition of the nicotine-induced effects was not competitive. These results suggest that D600, in addition to blocking "slow" Ca2+ channels and tetrodotoxin-sensitive Na+ channels also blocks nicotine transmission, possibly either by noncompetitively inhibiting the interaction of nicotine with the receptor binding site or by blockade of the receptor-associated ion conductance channel.  相似文献   

7.
Substance P is known to modulate acetylcholine-induced catecholamine release from adrenal chromaffin cells. To investigate the mechanisms involved in this modulation, the present study examined the effects of substance P on net 45Ca2+ fluxes in cultures of bovine adrenal chromaffin cells. Two effects of substance P were observed: (1) Substance P inhibited carbachol-induced 45Ca2+ uptake and 45Ca2+ efflux and (2) substance P protected against desensitization of carbachol-induced 45Ca2+ uptake and 45Ca2+ efflux. Thus substance P modulates two other cholinergic responses, 45Ca2+ uptake and 45Ca2+ efflux, in a manner similar to its modulation of catecholamine release. The results also indicate that substance P's inhibition of net carbachol-induced 45Ca2+ uptake is due to inhibition of 45Ca2+ uptake rather than enhancement of 45Ca2+ efflux. Substance P almost completely inhibited carbachol-induced 45Ca2+ uptake in both Na+-containing and Na+-free media, suggesting that substance P can inhibit the uptake of 45Ca2+ induced by carbachol regardless of whether 45Ca2+ is taken up through voltage-sensitive or acetylcholine receptor-linked channels. However, substance P produced only a small inhibition of K+-induced 45Ca2+ uptake, indicating that substance P does not interact directly with voltage-sensitive Ca2+ channels. In addition, substance P's inhibition of carbachol-induced 45Ca2+ uptake was noncompetitive with respect to Ca2+, were unable to overcome substance P's inhibition of [3H]-norepinephrine ( [3H]NE) release. It is concluded that substance P does not interact directly with Ca2+ channels in bovine adrenal chromaffin cells.  相似文献   

8.
Abstract: The role of Na+ channels and membrane potential in stimulus secretion coupling in adrenal medulla cell cultures was investigated. Veratridine, aconitine, batrachotoxin (BTX), and scorpion venom, which increase the flux of ions through tetrodotoxin(TTX)-sensitive Na+ channels, all evoke secretion of catecholamines that is blocked by TTX. TTX partially inhibits secretion induced by low concentrations of nicotine in Locke's solution but has no effect on high concentrations of nicotine (20 μM). In Ca2+-sucrose media TTX has no effect on secretion at either high or low concentrations of nicotine. Replacement of Na+ with Li+ in Locke's solution reduces the response to nicotine and to veratridine. Complete replacement of Na+ with hydrazine, diethanolamine, TRIS, and choline completely inhibits the response to nicotine and almost completely inhibits the response to veratridine. Following exposure of cells to 50 mM-100 mM-K+, nicotine does not stimulate catecholamine secretion unless the cells are resuspended in media containing less than 50 mM-K+. Neither dibutyryl-cyclic AMP nor dibutyryl-cyclic GMP evokes secretion. α-Bungarotoxin (1 μM) did not inhibit nicotine-induced secretion. These studies indicate that Na+ channels and acetylcholine (ACh) receptor ion channels are independently coupled to the influx of Ca2+. The membrane potential appears to affect nicotine- and veratridine-evoked secretion.  相似文献   

9.
Incubation of cultured bovine adrenal medullary cells with p-chloromercuribenzoate (50-500 microM), a sulfhydryl-reacting agent, caused an increase in the secretion of catecholamines, p-Chloromercuriphenyl sulfonate, a p-chloromercuribenzoate analogue that poorly penetrates the cell membrane, caused a similar increase in catecholamine secretion. In both cases, catecholamine secretion was dependent on extracellular Ca2+. Furthermore, p-chloromercuribenzoate caused both 45Ca2+ influx into the cells and an increase in the intracellular free Ca2+ concentration. The increases in catecholamine secretion and 45Ca2+ influx behaved similarly in relation to p-chloromercuribenzoate concentration. The time courses of the increased secretion, 45Ca2+ influx, and intracellular free Ca2+ concentration by p-chloromercuribenzoate were also quite similar. The stimulation of catecholamine secretion by p-chloromercuribenzoate was reversed by washing the cells with dithiothreitol-containing medium, but not by dithiothreitol-free medium. When the cells were treated with p-chloromercuribenzoate, dopamine-beta-hydroxylase, an enzyme present in the chromaffin granules along with catecholamines, was also released. However, p-chloromercuribenzoate did not cause release of phenylethanolamine-N-methyltransferase, an enzyme present in the cytoplasm. These results indicate that catecholamine secretion due to p-chloromercuribenzoate occurs by Ca2+-dependent exocytosis.  相似文献   

10.
We have incorporated the myosin fragment heavy meromyosin (HMM), which is known to interact mechanochemically and enzymatically with actin filaments, into intact chromaffin cells of the bovine adrenal medulla, in order to study the possible involvement of actin and myosin in stimulus-secretion coupling. HMM was found to stimulate secretion of catecholamines, to cause depolarization of the plasma membrane, and to enhance 22Na+ uptake. HMM-stimulated catecholamine secretion was dependent on the presence of extracellular Na+. The Na+ uptake caused by HMM was inhibited by 10 microM amiloride. Acetylcholine-stimulated catecholamine secretion and 22Na+ uptake were both enhanced by HMM incorporation. A Na+/H+ antiporter, activated by the interaction of HMM with the cells' microfilaments, seems to be involved in HMM action and could possibly also be a component of stimulus-secretion coupling in chromaffin cells, induced by regular agonists.  相似文献   

11.
Isolated adrenal cells were prepared by collagenase digestion of guinea pig adrenal glands. Acetylcholine stimulates the secretion of catecholamines by these isolated adrenal cells. Acetylcholine-stimulated catecholamine secretion is inhibited by cholinergic blocking agents (atropine and hexamethonium) and by local anaesthetics (tetracaine), and is dependent upon the concentration of Ca2+ in the incubation medium. In the presence of Ca2+, catecholamine secretion is also stimulated by two divalent cation ionophores, A23187 and X-537A. Cyclic nucleotides and 5'-nucleotides cause a small, non-specific stimulation of catecholamine secretion. These results indicate that isolated adrenal cells are a useful system in which to study catecholamine secretion, and support the hypothesis that increased Ca2+ entry into chromaffin cells is a sufficient stimulus for catecholamine secretion.  相似文献   

12.
1. Calcium-dependent exocytosis of catecholamines from intact and digitonin-permeabilized bovine adrenal chromaffin cells was investigated. 2. 45Ca2+ uptake and secretion induced by nicotinic stimulation or depolarization in intact cells were closely correlated. The results provide strong support for Ca2+ entry being the trigger for exocytosis. 3. Experiments in which the H+ electrochemical gradient across the intracellular secretory granule (chromaffin granule) membrane was altered indicated that the gradient does not play an important role in exocytosis. 4. Ca2+ entry into the cells is associated with activation of phospholiphase C and a rapid translocation of protein kinase C to membranes. 5. The plasma membrane of chromaffin cells was rendered permeable to Ca2+, ATP, and proteins by the detergent digitonin without disruption of the intracellular secretory granules. In this system in which the intracellular milieu can be controlled, micromolar Ca2+ directly stimulated catecholamine secretion. 6. Treatment of the cells with phorbol esters and diglyceride, which activate protein kinase C, enhanced phosphorylation and subsequent Ca2+-dependent secretion in digitonin-treated cells. 7. Phorbol ester-induced secretion could be specifically inhibited by trypsin. The experiments indicate that protein kinase C modulates but is not necessary for Ca2+-dependent secretion.  相似文献   

13.
We reported earlier that adenine nucleotides and adenosine inhibit acetylcholine-induced catecholamine secretion from bovine adrenal medulla chromaffin cells. In this article, we used an adenosine analogue, N6-L-phenylisopropyladenosine (PIA), to study the mechanism underlying inhibition of catecholamine secretion by adenosine. PIA inhibits secretion induced by a nicotinic agonist, 1,1-dimethyl-4-phenylpiperazinium, or by elevated external K+. The half-maximal effect on 1,1-dimethyl-4-phenylpiperazinium-induced secretion occurred at approximately 5 x 10(-5) M. The inhibition is immediate and reversible. Fura-2 measurements of cytosolic free Ca2+ indicate that PIA inhibits Ca2+ elevation caused by stimulation; measurements of 45Ca2+ influx show that PIA inhibits uptake of Ca2+. PIA does not inhibit calcium-evoked secretion from digitonin-permeabilized cells, nor does PIA cause any significant change in the dependence of catecholamine secretion on calcium concentration. These data suggest that inhibition by PIA occurs at the level of the voltage-sensitive calcium channel.  相似文献   

14.
We have studied the mechanism of Na+ deprivation-induced catecholamine secretion from freshly isolated bovine adrenal chromaffin cells. Na+ deprivation-induced catecholamine secretion depended on free extracellular Ca2+ concentrations and was almost parallel to 45Ca2+ influx into the cells under various experimental conditions. Furthermore, Na+ deprivation-induced 45Ca2+ influx and catecholamine secretion were actually induced by a relative Na+ concentration gradient across the plasma membrane, but not by simple omission of Na+ from the medium. These results indicate that the deprivation of Na+ from the medium changes the relative Na+ gradient across the plasma membrane and results in Ca2+ influx via a reverse mode of Na(+)-Ca(2+) exchange rather than by inducing Ca2+ entry through Ca2+ channels by eliminating the competition between extracellular Na+ and Ca2+.  相似文献   

15.
Cultures of bovine adrenomedullary chromaffin cells accumulated 1-[methyl-3H]methyl-4-phenylpyridinium ([3H]MPP+) in a time- and concentration-dependent manner with an apparent Km of 0.7 microM and a Vmax of 3 pmol/min/10(6) cells. The uptake was sodium dependent and sensitive to inhibitors of the cell-surface catecholamine transporter. At low concentrations of MPP+, the subcellular distribution was identical to that of endogenous catecholamines in the catecholamine-containing chromaffin vesicles. However, at a higher concentration of MPP+, a larger proportion of the toxicant was recovered in the cytosolic fraction, with less in the chromaffin vesicle fractions. When cells were prelabeled with [3H]MPP+, at 1 and 300 microM, and then permeabilized with digitonin in the absence of Ca2+, there was a proportionally greater release of MPP+ from the cells labeled at the higher concentration of the toxicant. In the presence of Ca2+, cell permeabilization induced a time-dependent secretion of catecholamines and a parallel secretion of MPP+. Under these conditions, the secretion of endogenous catecholamines was unaffected by the presence of MPP+. When the permeabilization studies were carried out in the presence of tetrabenazine, a massive release of MPP+ was observed in the absence of Ca2+ and was not further increased by Ca2+. In intact cells prelabeled with 300 microM [3H]MPP+, the secretagogues nicotine and veratridine elicited a Ca2+ -dependent secretion of catecholamines and MPP+ from the cells in similar proportions to their cellular contents. Barium-induced release of both species was independent of external Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Calcium transport and catecholamine secretion was measured in cultured bovine chromaffin cells. Calcium ions which entered the cells following stimulation with either nicotine or 50 mM KCl (high potassium) triggered catecholamine release, but then inactivated the secretory process. The nicotine and the high potassium-induced calcium transport mechanisms were mechanistically distinct, but functionally dependent on each other. The specific evidence is that whereas the high potassium-induced Ca2+ influx was found to be inhibited by hyperosmotic medium, the nicotine-stimulated calcium influx was unaffected under these conditions. High potassium and nicotine-stimulated catecholamine release were also differently affected by hyperosmotic medium. While potassium-stimulated catecholamine release was profoundly inhibited by hyperosmolarity, nicotine-stimulated release was only moderately inhibited. Sequential treatments of cells with nicotine and high potassium, under isotonic physiological conditions, indicate that there is a functional, biochemical communication between the otherwise mechanistically distinct calcium channels. Calcium ions which were found to inactivate these channels may be the basis for such communication.  相似文献   

17.
The significance of intracellular Na+ concentration in catecholamine secretion of cultured bovine adrenal chromaffin cells was investigated using the monovalent carboxylic ionophore monensin. This ionophore, which is known to mediate a one-for-one exchange of intracellular K+ for extracellular Na+, induces a slow, prolonged release of catecholamines which, at 6 h, amounts of 75-90% of the total catecholamines; carbachol induces a rapid pulse of catecholamine secretion of 25-35%. Although secretory granule numbers appear to be qualitatively reduced after carbachol, multiple carbachol, or Ba2+ stimulation, overall granule distribution remains similar to that in untreated cells. Monensin-stimulated catecholamine release requires extracellular Na+ but not Ca2+ whereas carbachol-stimulated catecholamine release requires extracellular Ca2+ and is partially dependent on extracellular Na+. Despite its high selectivity for monovalent ions, monensin is considerably more effective in promoting catecholamine secretion than the divalent ionophores, A23187 and ionomycin, which mediate a more direct entry of extracellular Ca2+ into the cell. We propose that the monensin-stimulated increase in intracellular Na+ levels causes an increase in the availability of intracellular Ca2+ which, in turn, stimulates exocytosis. This hypothesis is supported by the comparable stimulation of catecholamine release by ouabain which inhibits the outwardly directed Na+ pump and thus permits intracellular Na+ to accumulate. The relative magnitudes of the secretion elicited by monensin, carbachol, and the calcium ionophores, are most consistent with the hypothesis that, under normal physiological conditions, Na+ acts by decreasing the propensity of Ca2+- sequestering sites to bind the Ca2+ that enters the cell as a result of acetylcholine stimulation.  相似文献   

18.
Abstract: In isolated adrenal medullary cells, carbamyl-choline and high K+ cause the calcium-dependent secretion of catecholamines with a simultaneous increase in the synthesis of 14C-catecholamines from [14C]tyrosine. In these cells, trifluoperazine, a selective antagonist of calmodulin, inhibited both the secretion and synthesis of catecholamines. The stimulatory effect of carbamyl-choline was inhibited to a greater extent than that of high K+. The inhibitory effect of trifluoperazine on carbamylcholine-evoked secretion of catecholamines was not overcome by an increase in either carbamylcholine or calcium concentration, showing that inhibition by trifluoperazine occurs by a mechanism distinct from competitive antagonism at the cholinergic receptor and from direct inactivation of calcium channels. Doses of trifluoperazine that inhibited catecholamine secretion and synthesis also inhibited the uptake of radioactive calcium by the cells. These results suggest that trifluoperazine inhibits the secretion and synthesis of catecholamines mainly due to its inhibition of calcium uptake. Trifluoperazine seems to inhibit calcium uptake by uncoupling the linkage between cholinergic receptor stimulation and calcium channel activation.  相似文献   

19.
The effects of ryanodine, a selective inhibitor of the Ca(2+)-induced Ca2+ release mechanism, on caffeine-evoked changes in cytosolic Ca2+ concentration ([Ca2+]i) and catecholamine secretion were investigated using cultured bovine adrenal chromaffin cells. Caffeine (5-40 mM) caused a concentration-dependent transient rise in [Ca2+]i and catecholamine secretion in Ca2+/Mg(2+)-free medium containing 0.2 mM EGTA. Ryanodine (5 x 10(-5) M) alone had no effect on either [Ca2+]i or catecholamine secretion. Although the application of ryanodine plus caffeine caused the same increase in both [Ca2+]i and catecholamine secretion as those induced by caffeine alone, ryanodine (4 x 10(-7) - 5 x 10(-5) M) irreversibly prevented the increase in both [Ca2+]i and catecholamine secretion resulting from subsequent caffeine application over a range of concentrations. The secretory response to caffeine was markedly enhanced by replacement of Na+ with sucrose in Ca2+/Mg(2+)-free medium, and this enhanced response was also blocked by ryanodine. Caffeine was found to decrease the susceptibility of the secretory apparatus to Ca2+ in digitonin-permeabilized cells. These results indicate that caffeine mobilizes Ca2+ from intracellular stores, the function of which is irreversibly blocked by ryanodine, resulting in the increase in catecholamine secretion in the bovine adrenal chromaffin cell.  相似文献   

20.
Lead buffers (citrate and Tiron) were used to investigate the effects of low concentrations (0.1-6 microM) of Pb2+ on stimulus-secretion coupling in isolated bovine chromaffin cells. Nicotinic agonists and high K elicit secretion by enhancing Ca2+ influx into chromaffin cells. Pb2+ inhibited the catecholamine secretion in response to 500 microM carbachol and 77 mM K+ depolarization but was without significant effect on basal secretion. Pb2+ also inhibited the influx of 45Ca occurring in response to these agents. The K0.5 values for inhibition suggest that the carbachol-evoked flux is more sensitive to Pb2+ than influx in response to a direct depolarization. When extracellular calcium was lowered in the absence of Pb2+, both secretion and 45Ca entry were reduced. The effects of Pb2+ were comparable to those of lowered Ca2+. 22Na influx through nicotinic receptor-mediated channels, measured in the presence of tetrodotoxin (2 microM) and ouabain (50 microM), was inhibited by Pb2+. The results suggest that Pb2+ inhibits exocytotic catecholamine secretion by inhibiting Ca2+ influx. The differential sensitivity to Pb2+ of K- and carbachol-evoked 45Ca flux, coupled with the 22Na measurements, indicates that Pb2+ inhibits the movement of ions through acetylcholine-induced channels as well as through voltage-sensitive calcium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号