首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
无脊椎动物内分泌与激素综览   总被引:2,自引:0,他引:2  
本文简要介绍了近年对非昆虫无脊椎动物内分泌与激素研究动态和各大门类内分泌与激素较成熟的认识。现已明确相似于脊椎动物的内分泌也存在于许多无脊椎动物且有不同功能的多种激素。神经内分泌细胞及其分泌的神经激素、蜕皮激素等激素了解更为系统、深入,研究最多的动物是节肢动物(特别是甲壳类)。  相似文献   

2.
在脊椎动物中,甲状腺激素信号通路是调控生长、发育和机体能量代谢必不可少的信号通路之一,并且参与了两栖类和鱼类的变态反应。近来,越来越多的证据表明,在海洋无脊椎动物中存在内源性的甲状腺激素、甲状腺激素受体等信号通路的成员分子,而且这些分子参与了海洋无脊椎动物的发育和变态过程。这表明在海洋无脊椎动物中存在与脊椎动物类似的甲状腺激素信号通路。综述了海洋无脊椎动物中甲状腺激素信号通路的相关研究进展,旨在为研究甲状腺激素在海洋无脊椎动物的生物学功能及其作用机制提供基础资料。  相似文献   

3.
无脊椎动物金属硫蛋白(MTs)多样性及其生态服务功能   总被引:14,自引:0,他引:14  
金属硫蛋白(MTs)是一类低分子量、半胱氨酸含量异常丰富的金属结合多肽,自从20世纪70年代中期发现海洋无脊椎动物MTs以来,MTs已被证明广泛存在于无脊椎动物的各个类群之中。无脊椎动物物种间的金属硫蛋白存在着显著差异,研究无脊椎动物MTs多样性并揭示其生态服务功能,在理论与实践上都至关重要。本文分析了无脊椎动物MTs的多样性:结合金属元素多样性、同形体及其变体的蛋白质遗传多样性和生态服务功能多样性,并讨论了 MTs的三个生态服务功能:MTs对重金属解毒和调节作用、MTs作为环境监测的生物标志物、MTs的环境重金属污染净化功能及其在环境污染治理中的作用。  相似文献   

4.
适应性免疫一直被认为是脊椎动物特有的免疫机制,然而近年来许多研究表明 ,无脊椎动物体内也存在许多在结构或功能上与脊椎动物适应性免疫分子类似的免 疫成分. 免疫球蛋白超家族是适应性免疫的重要组成部分,本文主要综述近年来关 于水生无脊椎动物中肌联蛋白、唐氏综合症细胞黏着分子、特异性凝集素、几丁质 结合蛋白和185/133基因家族以及含有V和C结构域的蛋白等免疫球蛋白超家族成员研 究进展,这有助于深入理解无脊椎动物的免疫系统并揭示脊椎动物适应性免疫起源 与进化.  相似文献   

5.
Dmrt基因在水生生物中的研究进展   总被引:1,自引:0,他引:1  
  相似文献   

6.
河岸是河流与陆地之间重要的生态界面,生物多样性丰富,但受到人为活动的严重威胁。无脊椎动物在河岸生物多样性中占有重要地位,发挥着非常重要的生态功能,也是水生生态系统和陆地生态系统之间物质和能量联系的重要纽带。尽管已有很多学者对河岸无脊椎动物群落进行了研究,但缺乏对河岸无脊椎动物多样性维持机制的总结。本文结合洪水和干旱、营养物质、微生境多样性、河岸植被、微气候梯度、食物资源以及河流空间梯度等影响因素,初步讨论和归纳了河岸无脊椎动物多样性的维持机制。周期性洪水和干旱引发了无脊椎动物的繁殖和迁移等行为,增加了河岸无脊椎动物群落周转率,为无脊椎动物创造了理想的条件。充足的营养物质使河岸具有较高的初级生产力,支撑了较高的无脊椎动物多样性。较高的微生境多样性为无脊椎动物提供了多样的生态位空间,孕育了特殊的河岸无脊椎动物种类。复杂的河岸植物群落不但是河岸无脊椎动物的食物来源之一,也为河岸无脊椎动物提供了多样的生态位空间和重要的避难场所。微气候环境的空间分异提供了复杂多样的生境条件,为水生无脊椎动物和陆生无脊椎动物种类在河岸共存创造了条件。跨越界面的资源补给增加了河岸无脊椎动物的食物可利用率,为河岸无脊椎动物提供了特殊的食物来源。这些因素在空间上呈现出明显的纵向梯度和侧向梯度,从更大尺度上为河岸无脊椎动物的多样化提供了条件。因此,探讨河岸无脊椎动物多样性的维持机制对于河岸生物多样性保护以及河流生态系统综合管理具有重要的指导意义。  相似文献   

7.
脊椎动物的T淋巴细胞已知为细胞免疫的主要介导者,而无脊椎动物介导细胞免疫的细胞身份,至今尚未完全确定。近年的研究表明,许多无脊椎动物的白细胞有相似于脊椎动物T淋巴细胞的某些生物学特征。这些特征至少可以追溯到环节动物。据Cooper(1969)  相似文献   

8.
湿地是介于陆地和水体系统之间的具有多种功能的特殊地理综合体和生态系统。水生无脊椎动物是湿地生态系统的一个重要类群,是湿地物质循环和能量流动的重要参与者,其群落特征及空间分布能够反映出湿地的许多特征。本文总结了湿地水生无脊椎动物组成特征,系统介绍了不同类型湿地中水生无脊椎动物群落结构,讨论了非生物因子(底质、温度、水文、溶解氧、pH、氮、磷等)、生物因子(植被、竞争和捕食)及人类活动干扰(电站建设、城镇化等)对湿地水生无脊椎动物群落结构的影响,提出了目前湿地水生无脊椎动物研究存在的问题,并对未来研究方向和重点提出了展望。  相似文献   

9.
棘皮动物免疫学研究进展   总被引:11,自引:0,他引:11  
棘皮动物属原始后口动物、无脊椎动物的最高等类群,它处于由无脊椎动物向脊椎动物开始分支进化的阶段.研究棘皮动物的免疫功能和作用机理,对从比较免疫学角度探讨动物免疫系统进化过程有承前启后的重要意义.因此,有必要对棘皮动物的免疫学研究进展作一个较全面的综述,并理清未来的研究热点和方向.棘皮动物与其他无脊椎动物一样具有先天性免疫系统,但未发现脊椎动物所具有的获得性免疫.其免疫应答是由参与免疫反应的效应细胞——体腔细胞和多种体液免疫因子共同介导的.比较免疫学分析表明,棘皮动物存在脊椎动物补体系统的替代途径和凝集素途径,但未发现经典途径和明确的终端途径.棘皮动物先天性免疫系统存在数量庞大的基因家族.今后应加强对未知免疫相关基因、蛋白质、信号传导途径及效应分子的研究,回答免疫系统的起源、功能和进化等问题.  相似文献   

10.
水生无脊椎动物细胞培养   总被引:4,自引:0,他引:4  
目前水生无脊椎动物的细胞培养研究远远落后于哺乳动物和昆虫的培养研究,其培养方法基本仍是套用哺乳动物或昆虫的细胞培养模式。尽管在几十年中进行了一些探索,而且原代培养也取得了一些进展,但到目前为止除了淡水蜗牛胚胎BGE细胞系外,其他动物都还没有成功的建立长时间持续传代的细胞系。现对水生无脊椎动物细胞培养的研究进行综述,并对所面临的主要困难进行了总结,对水生无脊椎动物细胞培养的前景提出了一些看法。  相似文献   

11.
Organic pollutants exhibiting endocrine disrupting activity (Endocrine Disruptors--EDs) are prevalent over a wide range in the aquatic ecosystems; most EDs are resistant to environmental degradation and are considered ubiquitous contaminants. The actual potency of EDs is low compared to that of natural hormones, but environmental concentrations may still be sufficiently high to produce detrimental biological effects. Most information on the biological effects and mechanisms of action of EDs has been focused on vertebrates. Here we summarize recent progress in studies on selected aspects of endocrine disruption in marine organisms that are still poorly understood and that certainly deserve further research in the near future. This review, divided in four sections, focuses mainly on invertebrates (effects of EDs and mechanisms of action) and presents data on top predators (large pelagic fish and cetaceans), a group of vertebrates that are particularly at risk due to their position in the food chain. The first section deals with basic pathways of steroid biosynthesis and metabolism as a target for endocrine disruption in invertebrates. In the second section, data on the effects and alternative mechanisms of action of estrogenic compounds in mussel immunocytes are presented, addressing to the importance of investigating full range responses to estrogenic chemicals in ecologically relevant invertebrate species. In the third section we review the potential use of vitellogenin (Vtg)-like proteins as a biomarker of endocrine disruption in marine bivalve molluscs, used worldwide as sentinels in marine biomonitoring programmes. Finally, we summarize the results of a recent survey on ED accumulation and effects on marine fish and mammals, utilizing both classical biomarkers of endocrine disruption in vertebrates and non-lethal techniques, such as non-destructive biomarkers, indicating the toxicological risk for top predator species in the Mediterranean. Overall, the reviewed data underline the potential to identify specific types of responses to specific groups of chemicals such as EDs in order to develop suitable biomarkers that could be useful as diagnostic tools for endocrine disruption in marine invertebrates and vertebrates.  相似文献   

12.
Historically, invertebrates have been excellent models for studying endocrine systems and for testing toxic chemicals. Some invertebrate endocrine systems are well suited for testing chemicals and environmental media because of the ease of using certain species, their sensitivity to toxic chemicals, and the broad choice of models from which to choose. Such assays will be useful in identifying endocrine disruptors to protect invertebrate populations and as screening systems for vertebrates. Hormone systems are found in all animal phyla, although the most simple animals may have only rudimentary endocrine systems. Invertebrate endocrine systems use a variety of types of hormones, including steroids, peptides, simple amides, and terpenes. The most well-studied hormone systems are the molting and juvenile hormones in insects, the molting hormones in crustaceans, and several of the neurohormones in molluscs and arthropods. These groups offer several options for assays that may be useful for predicting endocrine disruption in invertebrates. A few invertebrate phyla offer predictive capabilities for understanding vertebrate endocrine-disrupting chemicals. The echinoderms, and to a lesser extent molluscs, have closer evolutionary relationships with the vertebrates than the arthropods and these phyla. The recently identified estrogen receptor structure within the genome of the marine gastropod, Aplysia, indicates that the estrogens, and probably the basic steroid receptor, are quite old evolutionarily. This review of the recent literature confirms the effects of some endocrine-disrupting chemicals on invertebrates--tributyltin on snails, pesticides on insects and crustaceans, and industrial compounds on marine animals.  相似文献   

13.
Research on endocrine disruption has been a major topic of the past decade. Although most studies concentrated on vertebrate species, invertebrates are now gaining more attention. In particular, data on molluscs is increasing. One of the best-documented and more relevant examples of endocrine disruption is the imposex phenomenon affecting some gastropod species. But the increasing interest is also due to the fact that molluscs, especially bivalves, are good bioindicators used for decades in environmental studies and that progress have been made in the understanding of the physiology and endocrinology of some mollusc species. Recent results suggest that molluscs can be adversely affected by compounds that alter their reproduction and that vertebrate-type sex-steroids metabolism or mechanism of action could be involved in these effects. Nevertheless, the endocrine system of molluscs appears to be dissimilar in many aspects to those of vertebrates and sex-steroids might not have the same importance in all mollusc species. This diversity constitutes an important opportunity to examine and understand new and alternative mechanisms for endocrine disruption.  相似文献   

14.
Plastic pollution is a global environmental concern. In particular, the endocrine‐disrupting chemical bisphenol A (BPA) is nearly ubiquitous in aquatic environments globally, and it continues to be produced and released into the environment in large quantities. BPA disrupts hormone signalling and can thereby have far‐reaching physiological and ecological consequences. However, it is not clear whether BPA has consistent effects across biological traits and phylogenetic groups. Hence, the aim of this study was to establish the current state of knowledge of the effect of BPA in aquatic organisms. We show that overall BPA exposure affected aquatic organisms negatively. It increased abnormalities, altered behaviour and had negative effects on the cardiovascular system, development, growth and survival. Early life stages were the most sensitive to BPA exposure in invertebrates and vertebrates, and invertebrates and amphibians seem to be particularly affected. These data provide a context for management efforts in the face of increasing plastic pollution. However, data availability is highly biased with respect to taxonomic groups and traits studies, and in the geographical distribution of sample collection. The latter is the case for both measurements of the biological responses and assessing pollution levels in water ways. Future research effort should be directed towards biological systems, such as studying endocrine disruption directly, and geographical areas (particularly in Africa and Asia) which we identify to be currently undersampled.  相似文献   

15.
Endocrine Disrupting Chemicals (EDCs) are molecules able to interfere with the vertebrate hormonal system in different ways, a major one being the modification of the activity of nuclear receptors (NRs). Several NRs are expressed in the vertebrate brain during embryonic development and these NRs are suspected to be responsible for the neurodevelopmental defects induced by exposure to EDCs in fishes or amphibians and to participate in several neurodevelopmental disorders observed in humans. Known EDCs exert toxicity not only on vertebrate forms of marine life but also on marine invertebrates. However, because hormonal systems of invertebrates are poorly understood, it is not clear whether the teratogenic effects of known EDCs are because of endocrine disruption. The most conserved actors of endocrine systems are the NRs which are present in all metazoan genomes but their functions in invertebrate organisms are still insufficiently characterized. EDCs like bisphenol A have recently been shown to affect neurodevelopment in marine invertebrate chordates called ascidians. Because such phenotypes can be mediated by NRs expressed in the ascidian embryo, we review all the information available about NRs expression during ascidian embryogenesis and discuss their possible involvement in the neurodevelopmental phenotypes induced by EDCs.  相似文献   

16.
Pollutants that are present in the aquatic environment and cause abnormal endocrine function in wildlife populations have been termed endocrine disrupting chemicals (EDCs). The impacts of these chemicals on the reproduction and development of vertebrates has been shown to be significant in both field studies and laboratory experiments. Over the past decade the number of investigations into the impacts of EDCs that affect reproductive and sexual characteristics (reproductive EDCs) has increased and evidence of their potency is evident in numerous wildlife species and through data from in vitro tests. However, little information is available on whether chemicals which act as EDCs in vertebrate species affect aquatic invertebrates. The case of imposex in archeogastropods following exposure to tributyltin (TBT) is a notable exception. Moreover, a number of studies have shown that development, fecundity and reproductive output of some aquatic invertebrates are affected significantly by exposure to pollutants. In order to determine whether external signs of exposure to vertebrate EDCs can be observed and monitored in invertebrate species, we exposed larvae of the barnacle Elminius modestus to environmentally realistic concentrations of the xeno-oestrogen, 4-n-nonylphenol (NP), and the natural oestrogen, 17beta-oestradiol (E(2)). Early life stages (nauplii and cyprids) were also exposed in the laboratory to determine whether there were effects on the timing of larval development and settlement. Ovary development and size of juveniles was measured following chronic exposure. Exposure to NP in the concentration range 0.01-10 μg l(-1) resulted in disruption of the timing of larval development. Similar results were obtained with E(2). Pulse exposures showed that the timing of exposure is critical and exposures for a period of 12 months caused long-term effects. A linear, concentration-dependent response was not evident.  相似文献   

17.
Invertebrates account for roughly 95% of all animals, yet surprisingly, little effort has been invested to understand their value in signaling potential environmental endocrine disruption. There has been, however, much recent attention on vitellogenin induction in egg-laying invertebrates and vertebrates as indicators of exposure to estrogenic xenobiotics. Mysid shrimp (Crustacea: Mysidacea) have been put forward by several researchers and regulatory bodies (e.g., US-EPA) as suitable test organisms for the evaluation of environmental endocrine disruption. In view of developing sensitive assays to study endocrine disruption in the estuarine mysid Neomysis integer, we isolated and characterized vitellin, the major yolk protein in eggs. Vitellin was purified using gel filtration and characterized by electrophoresis using different staining procedures. Specific (as shown by Western blotting) polyclonal antibodies were produced in rabbit against the purified vitellin of N. integer. These antisera will be used to develop immunoassays to study vitellogenesis in mysids and to detect potential stimulatory or inhibitory effects of endocrine disruptors on the production of vitellin.  相似文献   

18.
Anthropogenic endocrine disruptors now contaminate all environments globally, with concomitant deleterious effects across diverse taxa. While most studies on endocrine disruption (ED) have focused on vertebrates, the superimposition of male sexual characteristics in the female dogwhelk, Nucella lapillus (imposex), caused by organotins, provides one of the most clearcut ecological examples of anthropogenically induced ED in aquatic ecosystems. To identify the underpinning mechanisms of imposex for this ‘nonmodel’ species, we combined Roche 454 pyrosequencing with custom oligoarray fabrication inexpensively to both generate gene models and identify those responding to chronic tributyltin (TBT) treatment. The results supported the involvement of steroid, neuroendocrine peptide hormone dysfunction and retinoid mechanisms, but suggested additionally the involvement of putative peroxisome proliferator–activated receptor (PPAR) pathways. Application of rosiglitazone, a well‐known vertebrate PPARγ ligand, to dogwhelks induced imposex in the absence of TBT. Thus, while TBT‐induced imposex is linked to the induction of many genes and has a complex phenotype, it is likely also to be driven by PPAR‐responsive pathways, hitherto not described in invertebrates. Our findings provide further evidence for a common signalling pathway between invertebrate and vertebrate species that has previously been overlooked in the study of endocrine disruption.  相似文献   

19.
The topic of endocrine disruption and the broad range of physiologicaleffects caused by endocrine disrupting chemicals (EDCs) canonly be meaningfully framed within an ecological and evolutionarycontext. Environmental pollutants and EDCs operate by disruptingthe "chemical communication" that coordinates signaling withinan organism. Here we discuss how EDCs are also able to disruptthe chemical communication between plants and soil bacterianecessary for initiating nitrogen-fixing symbiosis. We alsoexamine, through examples of pollutant-related impacts on awide range of invertebrates, the need for identifying emergingtargets of EDCs. We suggest broadening the defined field ofendocrine disruption to encompass the effects of synthetic chemicalsthat interfere with signaling and communication, not only withinan organism, but also between organisms and linking ecosystems.The ecological consequences of failing to recognize novel targetsof chemical pollutants and EDCs may be a net loss of biologicaldiversity and a further imbalance of the global nitrogen cycle.  相似文献   

20.
Invertebrate trypsins: a review   总被引:3,自引:0,他引:3  
Food protein hydrolysis, a crucial step in digestion, is catalyzed by trypsin enzymes from the digestive apparatus of invertebrates. Trypsin appeared early in evolution and occurs in all phyla and, in the digestive systems of invertebrates, it became the most abundant proteinase. As in vertebrates, invertebrate trypsin is also present in several forms (isoenzymes). Its physiological importance in food protein digestion in several invertebrate species has emerged with compelling evidence; and several other physiological functions, such as regulation of digestive functions, are now settled. Recent advances in the knowledge of invertebrate trypsin synthesis, regulation, genetics, catalytic characteristics; structure, evolution, as well as inhibition, especially in non-Drosophilidae insects and in some crustaceans are reviewed. Most of the existing information is largely based on the use of several tools, including molecular techniques, to answer many still open questions and solve medical, agricultural, and food quality problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号