首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DNA of growing cells of Escherichia coli occurs in one or a few lobular bodies known as nucleoids. Upon exposure to chloramphenicol, the nucleoids assume compact, rounded forms ("cm-nucleoids") that have been described as ring- or sphere-shaped. Multiple views of single cells or spheroplasts, however, support a different, curved toroid shape for cm-nucleoids. The multiple views were obtained either by DNA fluorescence imaging as the cells or spheroplasts reoriented in liquid medium or by optical sectioning using phase-contrast or fluorescence imaging of immobilized cells. The curved toroid shape is consistent with electron microscope images of thin sections of chloramphenicol-treated cells. The relationship of this structure to active and inactive nucleoids and to the smaller toroidal forms made by in vitro DNA condensation is discussed.  相似文献   

2.
The genomic DNA of bacteria is contained in one or a few compact bodies known as nucleoids. We describe a simple procedure that retains the general shape and compaction of nucleoids from Escherichia coli upon cell lysis and nucleoid release from the cell envelope. The procedure is a modification of that used for the preparation of spermidine nucleoids (nucleoids released in the presence of spermidine) (T. Kornberg, A. Lockwood, and A. Worcel, Proc. Natl. Acad. Sci. USA 71:3189--3193, 1974). Polylysine is added to prevent the normal decompaction of nucleoids which occurs upon cell lysis. Nucleoids retained their characteristic shapes in lysates of exponential-phase cells or in lysates of cells treated with chloramphenicol or nalidixate to alter nucleoid morphology. The notably unstable nucleoids of rifampin-treated cells were obtained in compact, stable form in such lysates. Nucleoids released in the presence of polylysine were easily processed and provided well-defined DNA fluorescence and phase-contrast images. Uniform populations of nucleoids retaining characteristic shapes could be isolated after formaldehyde fixation and heating with sodium dodecyl sulfate.  相似文献   

3.
T R Steck  K Drlica 《Cell》1984,36(4):1081-1088
Nucleoids isolated from a temperature-sensitive gyrB mutant of E. coli, incubated at restrictive temperatures, exhibit increased sedimentation rates and an abnormal doublet or dumbbell-shaped morphology. Shifting cells from restrictive to permissive temperature prior to nucleoid isolation leads to decreases in the percentage of doublet nucleoids and in nucleoid sedimentation rates. When nucleoids isolated from mutant cells exposed to restrictive temperature are incubated with purified gyrase, the percentage of doublet nucleoids decreases as the total number of nucleoids increases. These results, together with the demonstrated ability of gyrase to decatenate small circular DNA molecules in vitro, suggest that gyrase participates in bacterial chromosome segregation through its decatenating activity.  相似文献   

4.
Bacterial DNA is largely localized in compact bodies known as nucleoids. The structure of the bacterial nucleoid and the forces that maintain its DNA in a highly compact yet accessible form are largely unknown. In the present study, we used urea to cause controlled unfolding of spermidine nucleoids isolated from Escherichia coli to determine factors that are involved in nucleoid compaction. Isolated nucleoids unfolded at approximately 3.2 M urea. Addition of pancreatic RNase reduced the urea concentration for unfolding to approximately 1.8 M urea, indicating a role of RNA in nucleoid compaction. The transitions at approximately 3.2 and approximately 1.8 M urea reflected a RNase-sensitive and a RNase-resistant restraint to unfolding, respectively. Removal of the RNase-sensitive restraint allowed us to test for roles of proteins and supercoiling in nucleoid compaction and structure. The remaining (RNase-resistant) restraints were removed by low NaCl concentrations as well as by urea. To determine if stability would be altered by treatments that caused morphological changes in the nucleoids, transitions were also measured on nucleoids from cells exposed to chloramphenicol; the RNase-sensitive restraint in such nucleoids was stabilized to much higher urea concentrations than that in nucleoids from untreated cells, whereas the RNase-resistant transition appeared unchanged.  相似文献   

5.
After a few minutes of germination, nucleoids in the great majority of spores of Bacillus subtilis and Bacillus megaterium were ring shaped. The major spore DNA binding proteins, the alpha/beta-type small, acid-soluble proteins (SASP), colocalized to these nucleoid rings early in spore germination, as did the B. megaterium homolog of the major B. subtilis chromosomal protein HBsu. The percentage of ring-shaped nucleoids was decreased in germinated spores with lower levels of alpha/beta-type SASP. As spore outgrowth proceeded, the ring-shaped nucleoids disappeared and the nucleoid became more compact. This change took place after degradation of most of the spores' pool of major alpha/beta-type SASP and was delayed when alpha/beta-type SASP degradation was delayed. Later in spore outgrowth, the shape of the nucleoid reverted to the diffuse lobular shape seen in growing cells.  相似文献   

6.
Electron microscopic images of mitochondrial nucleoids isolated from mung bean seedlings revealed a relatively homogeneous population of particles, each consisting of a chromatin-like structure associated with a membrane component. Association of F-actin with mitochondrial nucleoids was also observed. The mitochondrial nucleoid structure identified in situ showed heterogeneous genomic organization. After pulsed-field gel electrophoresis (PFGE), a large proportion of the mitochondrial nucleoid DNA remained in the well, whereas the rest migrated as a 50–200 kb smear zone. This PFGE migration pattern was not affected by high salt, topoisomerase I or latrunculin B treatments; however, the mobility of a fraction of the fastmoving DNA decreased conspicuously following an in-gel ethidium-enhanced UV-irradiation treatment, suggesting that molecules with intricately compact structures were present in the 50-200 kb region. Approximately 70% of the mitochondrial nucleoid DNA molecules examined via electron microscopy were open circles, supercoils, complex forms, and linear molecules with interspersed sigma-shaped structures and/or loops. Increased sensitivity of mtDNA to DNase I was found after mitochondrial nucleoids were pretreated with high salt. This result indicates that some loosely bound or peripheral DNA binding proteins protected the mtDNA from DNase I degradation.  相似文献   

7.
Nucleoids were isolated by osmotic shock from Escherichia coli spheroplasts at relatively low salt concentrations and in the absence of detergents. Sucrose-protected cells, made osmotically sensitive by growth in the presence of ampicillin or by digestion with low lysozyme concentrations (50-5 μg/ml), were shocked by 100-fold dilution of the sucrose buffer. Liberated nucleoids stained with 4',6-diamidino-2-phenylindole dihydrochloride hydrate (DAPI), the dimeric cyanine dye TOTO-1, or fluorescent DNA-binding protein appeared as cloud-like structures, in the absence of phase contrast. Because UV-irradiation disrupted the DAPI-stained nucleoids within 5-10 s, they were imaged by time-lapse microscopy with exposure times less than 2 s. The volume of nucleoids isolated from ampicillin- or low-lysozyme spheroplasts and minimally exposed to UV (<2 s) was on average ~42 μm(3). Lysozyme at concentrations above 1 μg/ml in the lysate compacted the nucleoids. Treatment with protease E or K (20-200 μg/ml) and sodium dodecyl sulfate (SDS; 0.001-0.01%) caused a twofold volume increase and showed a granular nucleoid at the earliest UV-exposure; the expansion could be reversed with 50 μM ethidium bromide, but not with chloroquine. While DNase (1 μg/ml) caused a rapid disruption of the nucleoids, RNase (0.1-400 μg/ml) had no effect. DAPI-stained nucleoids treated with protease, SDS or DNase consisted of granular substructures at the earliest exposure similar to UV-disrupted nucleoids obtained after prolonged (>4 s) UV irradiation. We interpret the measured volume in terms of a physical model of the nucleoid viewed as a branched DNA supercoil crosslinked by adhering proteins into a homogeneous network.  相似文献   

8.
The genomic DNA of Escherichia coli occurs in compact bodies known as nucleoids. Organization and structure of nucleoids are poorly understood. Compact, characteristically shaped, nucleoids isolated by the polylysine-spermidine procedure were visualized by DNA fluorescence microscopy. Treatment with urea or trypsin converted compact nucleoids to partially expanded forms. The transition in urea solutions was accompanied by release of most DNA-associated proteins; the transition point between compact and partially expanded forms was not changed by the loss of the proteins nor was it changed in nucleoids isolated from cells after exposure to chloramphenicol or from cells in which Dps, Fis, or H-NS and StpA had been deleted. Partially expanded forms became dispersed upon RNase exposure, indicating a role of RNA in maintaining the partial expansion. Partially expanded forms that had been stripped of most DNA-associated proteins were recompacted by polyethylene glycol 8,000, a macromolecular crowding agent, in a cooperative transition. DNA-associated proteins are suggested to have relatively little effect on the phase-like behavior of the cellular nucleoid. Changes in the urea transition indicate that a previously described procedure for compaction of polylysine-spermidine nucleoids may have an artifactual basis, and raise questions about reports of repetitive local structures involving the DNA of lysed cells.  相似文献   

9.
The genomic DNA of Escherichia coli is contained in one or two compact bodies known as nucleoids. Isolation of typically shaped nucleoids requires control of DNA expansion, accomplished here by a modification of the polylysine-spermidine procedure. The ability to control expansion of in vitro nucleoids has application in nucleoid purification and in preparation of samples for high-resolution imaging, and may allow an increased resolution in gene localization studies. Polylysine of relatively low average molecular weight (approximately 3 kDa) is used to produce lysates containing nucleoids that are several-fold expanded relative to the sizes of in vivo nucleoids. These expanded forms can be converted to compact forms similar in dimensions to the cellular nucleoids by either a further addition of polylysine or by incubation of diluted lysates at 37 degrees C. The incubation at 37 degrees C is accompanied by autolytic degradation of most ribosomal RNA. Hyperchromism and circular dichroism spectra indicate that polylysine-DNA complexes are modified during the incubation. Compact forms of the nucleoid can be progressively reexpanded by exposure to salt solutions. Nucleoid compaction was similar in lysates made from rapidly or slowly growing cells or from cells that had been briefly treated with chloramphenicol to reduce linkages between DNA and cell envelope.  相似文献   

10.
The sedimentation of DNA-nuclear protein complexes in 1.9 M salt-neutral sucrose gradients (nucleoid sedimentation) was used to examine the effects of the DNA intercalator 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) on mouse leukemia cell DNA. Mild detergent cell lysis and neutral pH make nucleoid sedimentation an extremely gentle, but sensitive, method to detect DNA scission. DNA breaks reduce the compaction of nucleoids and slow their sedimentation. Nucleoids from m-AMSA-treated cells sedimented as did those from untreated cells, indicating no detectable m-AMSA-dependent alterations in compaction despite an apparent underlying DNA break frequency of approximately 3 per 10(6) nucleotides, as measured by alkaline elution with proteinase. Mild proteinase digestion of cell lysates prior to nucleoid sedimentation unmasked some, but not all, of the underlying breaks. The frequency of DNA-protein cross-links in nucleoids from cells treated with m-AMSA was comparable to the single-strand break frequency produced by m-AMSA in whole cells. These results indicate that m-AMSA-induced DNA-protein cross-links conceal DNA breaks so as to prevent swiveling around the breaks within the nucleoids. This unique sort of DNA scission is consistent with the involvement of topoisomerases in the DNA breaks elicited by intercalators in mammalian cells.  相似文献   

11.
The nucleoids in Mycoplasma capricolum cells were visualized by phase-combined fluorescence microscopy of DAPI (4', 6-diamidino-2-phenylindole)-stained cells. Most growing cells in a rich medium had one or two nucleoids in a cell, and no anucleate cells were found. The nucleoids were positioned in the center in mononucleoid cells and at one-quarter and three-quarters of the cell length in binucleoid cells. These formations may have the purpose of ensuring delivery of replicated DNA to daughter cells. Internucleoid distances in binucleoid cells correlated with the cell lengths, and the relationship of DNA content to cell length showed that cell length depended on DNA content in binucleoid cells but not in mononucleoid cells. These observations suggest that cell elongation takes place in combination with nucleoid movement. Lipid synthesis was inhibited by transfer of cells to a medium lacking supplementation for lipid synthesis. The transferred cells immediately stopped dividing and elongated while regular spaces were maintained between the nucleoids for 1 h. After 1 h, the cells changed their shapes from rod-like to round, but the proportion of multinucleoid cells increased. Inhibition of protein synthesis by chloramphenicol induced nucleoid condensation and abnormal positioning, although partitioning was not inhibited. These results suggest that nucleoid partitioning does not require lipid or protein synthesis, while regular positioning requires both. When DNA replication was inhibited, the cells formed branches, and the nucleoids were positioned at the branching points. A model for the reproduction process of M. capricolum, including nucleoid migration and cell division, is discussed.  相似文献   

12.
When germinating spores of the temperature-sensitive DNA initiation mutant of Bacillus subtilis TsB134 are shifted to the restrictive temperature at a time such that just one or two rounds of replication are accomplished, the completed, nonreplicating nucleoids that form eventually adopt a doublet conformation. This conformation has now been observed after fixation by glutaraldehyde or osmium tetroxide, as well as by Formalin as found previously. The doublet was observed in media of different degrees of richness and under both light and electron microscopes. Electron micrographs of serial sections through the doublet were consistent with its formation by the gradual pulling apart of a single mass of DNA into two lobes. A systematic study was made of the effect of the time of shifting from the permissive to the restrictive temperature and of the restrictive temperature used on the number of nucleoids segregating within the outgrowing rod. It was established that the doublet nucleoid behaved as a single unit in replication control and segregation in both rich and poor media. Measurement of the relative position of the two segregating nucleoids within the outgrowing rod after completion of just one round of replication yielded quantitative information on the segregation and cell length extension processes. Segregation was accompanied by cell length extension at approximately equal rates on both sides of each nucleoid. Furthermore, the data were consistent with an exponential increase in such an extension with time over the early and major portion of the period studied, but it was not possible to rule out other models of length extension.  相似文献   

13.
When outgrowing spores of the temperature-sensitive dna initiation mutants of Bacillus subtilis, TsB134 and dna-1, were allowed to undergo a single round of replication by shifting to the restrictive temperature soon after its initiation, both segregating daughter nucleoids appeared as clearly defined doublet structures. The components of each doublet remained together as a discrete pair, even under conditions which resulted in the formation of deoxyribonucleic acid (DNA)-less cells. A doublet nucleoid was also observed at a high frequency when TsB134 spores were allowed to germinate and grow out in the complete absence of DNA synthesis at the permissive temperature. TsB134 spores were foud to contain the usual "haploid" amount of DNA. It is suggested that the doublet nucleoid reflects a folding of a single chromosome into two large domains which resolve from one another under conditions of cell extension in the absence of DNA synthesis.  相似文献   

14.
Heat damage to the chromosome of Escherichia coli K-12.   总被引:2,自引:2,他引:0       下载免费PDF全文
The folded chromosome or nucleoid of Escherichia coli was analyzed by low-speed sedimentation in neutral sucrose gradients after in vivo heat treatment. Heat treatment of cultures at 50 degree C for 15, 30, and 60 min resulted in in vivo association of the nucleoids with cellular protein. Structural changes, determined by the increase in speed dependence of the nucleoids from heated cells, also occurred. These changes were most likely due to the unfolding of the typical compact nucleoid structure. The nucleoids from heated cells also had notably higher sedimentation coefficients (3,000 to 4,500S) than nucleoids from control cells (1,800S). These nucleoids did not contain greater than normal amounts of membrane phospholipids or ribonucleic acid. We propose that the protein associated with the nucleoids from heated cells causes the observed sedimentation coefficient increases.  相似文献   

15.
We present a cryo-electron tomographic analysis of the three-dimensional architecture of a strain of the Gram-negative bacterium Bdellovibrio bacteriovorus in which endogenous MreB2 was replaced with monomeric teal fluorescent protein (mTFP)-labeled MreB2. In contrast to wild-type Bdellovibrio cells that predominantly displayed a compact nucleoid region, cells expressing mTFP-labeled MreB2 displayed a twisted spiral organization of the nucleoid. The more open structure of the MreB2-mTFP nucleoids enabled clear in situ visualization of ribosomes decorating the periphery of the nucleoid. Ribosomes also bordered the edges of more compact nucleoids from both wild-type cells and mutant cells. Surprisingly, MreB2-mTFP localized to the interface between the spiral nucleoid and the cytoplasm, suggesting an intimate connection between nucleoid architecture and MreB arrangement. Further, in contrast to wild-type cells, where a single tight chemoreceptor cluster localizes close to the single polar flagellum, MreB2-mTFP cells often displayed extended chemoreceptor arrays present at one or both poles and displayed multiple or inaccurately positioned flagella. Our findings provide direct structural evidence for spiral organization of the bacterial nucleoid and suggest a possible role for MreB in regulation of nucleoid architecture and localization of the chemotaxis apparatus.  相似文献   

16.
The reorganization of the bacterial nucleoid of an Escherichia coli mutant, MX74T2 ts52, was studied by electron microscopy after protein synthesis inhibition by using whole mounts of cell ghosts, ultrathin-sectioning, and freeze-etching. The bacterial nucleoid showed two morphological changes after chloramphenicol addition: deoxyribonucleic acid (DNA) localization and DNA condensation. DNA localization was observed 10 min after chloramphenicol addition; the DNA appeared as a compact, solid mass. DNA condensation was observed at 25 min; the nucleoid appeared as a cytoplasm-filled sphere, often opened at one end. Ribosomes were observed in the center. Giant nucleoids present in some mutant filaments showed fused, spherical nucleoids arranged linearly, suggesting that the tertiary structure of the nucleoid reflects the number of replicated genomes. Inhibitors which directly or indirectly blocked protein synthesis and caused DNA condensation were chloramphenicol, puromycin, amino acid starvation, rifampicin, or carbonyl cyanide m-chlorophenyl hydrazone. All inhibitors that caused cell division in the mutant also caused condensation, although some inhibitors caused condensation without cell division. Nucleoid condensation appears to be related to chromosome structure rather than to DNA segregation upon cell division.  相似文献   

17.
The genomic DNA in cells of Escherichia coli is localized in one or two compact, phase-like regions with characteristic shapes. Nucleoids undergo progressive changes in shape and compaction in the presence of drugs such as chloramphenicol or puromycin. Forces which influence nucleoid shape and compaction are reviewed, with particular emphasis on crowding effects of the cytoplasm and confinement effects of the cell envelope. Based in part on the theory of Kornyshev and Leikin for interaction between DNA duplexes, the folding of DNA caused by binding of DNA-associated proteins is suggested to antagonize DNA condensation and, thereby, increase access to DNA sequences. These views are incorporated into a working model for nucleoid organization.  相似文献   

18.
Nucleoid partitioning and the division plane in Escherichia coli.   总被引:4,自引:1,他引:3       下载免费PDF全文
Escherichia coli nucleoids were visualized after the DNA of OsO4-fixed but hydrated cells was stained with the fluorochrome DAPI (4',6-diamidino-2-phenylindole dihydrochloride hydrate). In slowly growing cells, the nucleoids are rod shaped and seem to move along the major cell axis, whereas in rapidly growing, wider cells they consist of two- to four-lobed structures that often appear to advance along axes lying perpendicular or oblique to the major axis of the cell. To test the idea that the increase in cell diameter following nutritional shift-up is caused by the increased amount of DNA in the nucleoid, the cells were subjected to DNA synthesis inhibition. In the absence of DNA replication, the nucleoids continued to move in the growing filaments and were pulled apart into small domains along the length of the cell. When these cells were then transferred to a richer medium, their diameters increased, especially in the region enclosing the nucleoid. It thus appears that the nucleoid motive force does not depend on DNA synthesis and that cell diameter is determined not by the amount of DNA per chromosome but rather by the synthetic activity surrounding the nucleoid. Under the non-steady-state but balanced growth conditions induced by thymine limitation, nucleoids become separated into small lobules, often lying in asymmetric configurations along the cell periphery, and oblique and asymmetric division planes occur in more than half of the constricting cells. We suggest that such irregular DNA movement affects both the angle of the division plane and its position.  相似文献   

19.
The morphology and dynamics of DNA in a bacterial nucleoid affects the kinetics of such major processes as DNA replication, gene expression. and chromosome segregation. In this work, we have applied fluorescence correlation spectroscopy to assess the structure and internal dynamics of isolated Escherichia coli nucleoids. We show that structural information can be extracted from the amplitude of fluorescence correlation spectroscopy correlation functions of randomly labeled nucleoids. Based on the developed formalism we estimate the characteristic size of nucleoid structural units for native, relaxed, and positively supercoiled nucleoids. The degree of supercoiling was varied using the intercalating agent chloroquine and evaluated from fluorescence microscopy images. The relaxation of superhelicity was accompanied by 15-fold decrease in the length of nucleoid units (from approximately 50 kbp to approximately 3 kbp).  相似文献   

20.
Mitochondrial DNA plays a crucial role in cellular homeostasis; however, the molecular mechanisms underlying mitochondrial DNA inheritance and propagation are only beginning to be understood. To ensure the distribution and propagation of the mitochondrial genome, mitochondrial DNA is packaged into macromolecular assemblies called nucleoids, composed of one or more copies of mitochondrial DNA and associated proteins. We review current research on the mitochondrial nucleoid, including nucleoid-associated proteins, nucleoid dynamics within the cell, potential mechanisms to ensure proper distribution of nucleoids, and the impact of nucleoid organization on mitochondrial dysfunction. The nucleoid is the molecular organizing unit of mitochondrial genetics, and is the site of interactions that ultimately determine the bioenergetic state of the cell as a whole. Current and future research will provide essential insights into the molecular and cellular interactions that cause bioenergetic crisis, and yield clues for therapeutic rescue of mitochondrial dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号