首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cathodoluminescence (CL) from lipid droplets (LDs) in the rat testis was examined by analytical color fluorescence electron microscopy. The results show that (1) the Cl at wavelengths of 320 nm (CL320) and 450 nm (CL450) is derived from cholesterol esters and a mixture of lipids including vitamin A esters, respectively; (2) CL320 in the LDs of Leydig cells sharply decreases on postnatal day 21, while CL320 and CL450 in the LDs of Sertoli cells begin to be detectable; (3) the CL450-emitting LDs in seminiferous tubules, whose distributional patterns display cyclic changes during the spermatogenic cycle, are involved in spermatogenesis; and (4) the intensity of CL as well as the distributional patterns of CL-emitting LDs in testicular cells change after hypophysectomy, vitamin-A deficiency, and treatment with ethylene dimethane sulfonate and testosterone propionate. This study demonstrates that analytical color fluorescence electron microscopy is a useful tool for in-vivo observation of some specific compounds which cannot be visualized by other methods.  相似文献   

2.
Nautilusr pompilius and N. macromphalus shells show, under cathodoluminescence microscopy. a zoned luminescence of yellow to green for the former and blue to blue-green for the latter. Cathodoluminescence results from fluctuations in the amount of manganese present in the aragonite. There is a relationship between this phenomenon and growth lines. Luminescence intensity increases with ontogeny. Variations in the metabolic activity appear to be linked with the manganese content of the shell. Environmental factors may have an effect by way of their repercussion on the metabolic activity of Nautilus . The Mn2+ amount may be influenced by the physico-chemical pattern of the surrounding water but it appears also to be controlled at the species level.  相似文献   

3.
Correlative microscopy is a powerful imaging approach that refers to observing the same exact structures within a specimen by two or more imaging modalities. In biological samples, this typically means examining the same sub-cellular feature with different imaging methods. Correlative microscopy is not restricted to the domains of fluorescence microscopy and electron microscopy; however, currently, most correlative microscopy studies combine these two methods, and in this review, we will focus on the use of fluorescence and electron microscopy. Successful correlative fluorescence and electron microscopy requires probes, or reporter systems, from which useful information can be obtained with each of the imaging modalities employed. The bi-functional immunolabeling reagent, FluoroNanogold, is one such probe that provides robust signals in both fluorescence and electron microscopy. It consists of a gold cluster compound that is visualized by electron microscopy and a covalently attached fluorophore that is visualized by fluorescence microscopy. FluoroNanogold has been an extremely useful labeling reagent in correlative microscopy studies. In this report, we present an overview of research using this unique probe.  相似文献   

4.
Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets.  相似文献   

5.
Although fluorescence microscopy permeates all of cell and molecular biology, most biologists have little experience with the underlying photophysical phenomena. Understanding the principles underlying fluorescence microscopy is useful when attempting to solve imaging problems. Additionally, fluorescence microscopy is in a state of rapid evolution, with new techniques, probes and equipment appearing almost daily. Familiarity with fluorescence is a prerequisite for taking advantage of many of these developments. This review attempts to provide a framework for understanding excitation of and emission by fluorophores, the way fluorescence microscopes work, and some of the ways fluorescence can be optimized.  相似文献   

6.
7.
目的:对三套荧光显微成像系统在国产新型光敏剂HMME亚细胞定位研究中的应用特点及适用范围进行了比较与评价。方法:分别应用LSCM、CCD、ICCD荧光显微成像系统,选择特异性细胞器荧光探针Rhodamine-123、DIOC6(3)标记细胞内线粒体和内质网。采用细胞器-细胞荧光强度比值法,对HMME进行单细胞内分布的定性与定量研究。结果:LSCM和CCD成像系统能采集到浓度达到160μg/ml时的HMME的荧光图像,获得荧光探针图像信息显示所标记的细胞内线粒体和内质网平均荧光强度比值(J1/J2值)都明显高于细胞内J1/J2值。而ICCD成像系统只需HMME浓度为5μg/ml,荧光图像特点都呈胞浆中荧光强度较高且分布不均,细胞核区荧光较弱的中空现象。ICCD系统对细胞器探针荧光图像在空间分辨上不理想。结论:LSCM与CCD成像系统限于其探测灵敏度,对于弱荧光性光敏剂,适用于其高孵育浓度条件下的亚细胞定位研究。二者获得的结果相一致:孵育24h,HMME在鼠肺内皮细胞线粒体和内质网有分布而几乎不进入细胞核。ICCD成像系统可不受孵育浓度条件的限制,实现光敏剂极微弱荧光的有效探测,但空间分辨率较低。  相似文献   

8.
Bridging fluorescence microscopy and electron microscopy   总被引:1,自引:1,他引:0  
Development of new fluorescent probes and fluorescence microscopes has led to new ways to study cell biology. With the emergence of specialized microscopy units at most universities and research centers, the use of these techniques is well within reach for a broad research community. A major breakthrough in fluorescence microscopy in biology is the ability to follow specific targets on or in living cells, revealing dynamic localization and/or function of target molecules. One of the inherent limitations of fluorescence microscopy is the resolution. Several efforts are undertaken to overcome this limit. The traditional and most well-known way to achieve higher resolution imaging is by electron microscopy. Moreover, electron microscopy reveals organelles, membranes, macromolecules, and thus aids in the understanding of cellular complexity and localization of molecules of interest in relation to other structures. With the new probe development, a solid bridge between fluorescence microscopy and electron microscopy is being built, even leading to correlative imaging. This connection provides several benefits, both scientifically as well as practically. Here, I summarize recent developments in bridging microscopy.  相似文献   

9.
Laser-scanning fluorescence microscopy for efficient acquisition of time-gated and spectrally resolved fluorescence images was developed based on line illumination of the laser beam and detection of the fluorescence image through a slit. In this optical arrangement, the fluorescence image was obtained by scanning only one axis perpendicular to the excitation line, and the acquisition time was significantly reduced compared with conventional laser-scanning confocal microscopy. A multidimensional fluorescence dataset consisting of fluorescence intensities as a function of x-position, y-position, fluorescence wavelength, and delay time after photoexcitation was analyzed and decomposed based on the parallel factor analysis model. The performance of the line-scanning microscopy was examined by applying it to the analysis of one of the plant defense responses, accumulation of antimicrobial compounds of phytoalexin in oat (Avena sativa), induced by the elicitor treatment.  相似文献   

10.
The utility of fluorescence microscopy for studying development of fern spores is investigated. Changes in the fluorescence characteristics during the developmental stages of fern sporangia can be attributed to the changes in the chemical composition of the cell wall. Bright blue autofluorescence of the spores indicated the presence of sporopollenin. The sporan-gial walls and the spores autofluoresced yellow under blue light excitation. Fluorescence microscopy is a useful addition to light, scanning, and transmission electron microscopy because living specimens can be studied owing to their fluorescence properties.  相似文献   

11.
Microscopy has become increasingly important for analysis of cells and cell function in recent years. This is due in large part to advances in light microscopy that facilitate quantitative studies and improve imaging of living cells. Analysis of fluorescence signals has often been a key feature in these advances. Such studies involve a number of techniques, including imaging of fluorescently labeled proteins in living cells, single-cell physiological experiments using fluorescent indicator probes, and immunofluorescence localization. The importance of fluorescence microscopy notwithstanding, there are instances in which electron microscopy provides unique information about cell structure and function. Correlative microscopy in which a fluorescence signal is reconciled with a signal from the electron microscope is an additional tool that can provide powerful information for cellular analysis. Here we review two different methodologies for correlative fluorescence and electron microscopy using ultrathin cryosections and the advantages attendant on this approach. (J Histochem Cytochem 49:803-808, 2001)  相似文献   

12.
《Biophysical journal》2019,116(10):1815-1822
Two decades of fast-paced innovation have improved the spatial resolution of fluorescence microscopy to enable molecular resolution with low invasiveness and high specificity. Fluorescence microscopy also enables scientists and clinicians to map and quantitate the physicochemical properties (e.g., analyte concentration, enzymatic activities, and protein-protein interactions) of biological samples. But the biochemical resolving power of fluorescence microscopy is not as well optimized as its spatial resolution. Current techniques typically observe only the individual properties of fluorescence, thus limiting the opportunities for sensing and multiplexing. Here, we demonstrate a new, to our knowledge, imaging paradigm, hyperdimensional imaging microscopy, which quantifies simultaneously and efficiently all the properties of fluorescence emission (excited-state lifetime, polarization, and spectra) in biological samples, transcending existing limitations. Such simultaneous detection of fluorescence features maximizes the biochemical resolving power of fluorescence microscopy, thereby providing the means to enhance sensing capabilities and enable heavily multiplexed assays. Just as multidimensional separation in mass-spectroscopy and multidimensional spectra in NMR have empowered proteomics and structural biology, we envisage that hyperdimensional imaging microscopy spectra of unprecedented dimensionality will catalyze advances in systems biology and medical diagnostics.  相似文献   

13.
Fluorescence microscopy was used to examine Papanicolaou-stained smears of sputum and other secretions from the respiratory tract. Under these conditions Charcot-Leyden crystals (CLC) appear as bright yellow-green fluorescing needles. the study was performed to determine the value of this approach for the diagnosis of allergic lung diseases. the time taken to detect the crystals was recorded and the sensitivity of fluorescence microscopy for the detection of CLC was compared with light microscopy of the same samples. the data show that fluorescence microscopy is superior to light microscopy for the detection of CLC. the characteristic needle-shaped crystal can be recognized easily and fragments of crystals could be easily identified. In doubtful cases of allergic lung diseases, fluorescence microscopy may be used to supplement light microscopy for the detection of Charcot-Leyden crystals.  相似文献   

14.
While fluorescence microscopy has proven to be an exceedingly useful tool in bioscience, it is difficult to offer simultaneous high resolution, fast speed, large volume, and good biocompatibility in a single imaging technique. Thus, when determining the image data required to quantitatively test a complex biological hypothesis, it often becomes evident that multiple imaging techniques are necessary. Recent years have seen an explosion in development of novel fluorescence microscopy techniques, each of which features a unique suite of capabilities. In this Technical Perspective, we highlight recent studies to illustrate the benefits, and often the necessity, of combining multiple fluorescence microscopy modalities. We provide guidance in choosing optimal technique combinations to effectively address a biological question. Ultimately, we aim to promote a more well-rounded approach in designing fluorescence microscopy experiments, leading to more robust quantitative insight.  相似文献   

15.
We present a label-free detection of protein interaction between beta-galactosidase from Escherichia coli (Ecbeta-Gal) and monoclonal anti-Ecbeta-Gal using deep UV laser-based fluorescence lifetime microscopy. The native fluorescence from intrinsic tryptophan emission was observed after one-photon excitation at 266 nm. Applying the time-correlated single-photon counting (TCSPC) method, we investigated the mean fluorescence lifetime and lifetime distributions from tryptophan residues in Ecbeta-Gal protein, monoclonal anti-Ecbeta-Gal, and corresponding complex. The results demonstrate that deep UV laser-based fluorescence lifetime microscopy is useful for sensitive identification of biological macromolecules interaction using intrinsic fluorescence.  相似文献   

16.
Summary Using a new filter system for fluorescence microscopy, in the hypothalamic area and spinal cord of the lamprey the yellow fluorescent cells and varicosities could clearly be differentiated from the blue-green fluorescent cells and varicosities. On the basis of the criteria for monoamines, the blue-green fluorescence and the yellow one were due to catecholamine and indolealkylamine (most probably 5-hydroxytryptamine), respectively. This filter system can specially be recommended for observations and color microphotography of monoamine fluorescence in trasmitted-light darkfield fluorescence microscopy.  相似文献   

17.
Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated 1-3. However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated 4-7. However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot 8-10. We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are imaged in these same sections using a scanning electron microscope. Fifth, the fluorescence and electron micrographs are aligned using gold particles as fiducial markers. In summary, the subcellular localization of fluorescently tagged proteins can be determined at nanometer resolution in approximately one week.  相似文献   

18.
Correlative microscopy is a powerful technique that combines the strengths of fluorescence microscopy and electron microscopy. The first enables rapid searching for regions of interest in large fields of view while the latter exhibits superior resolution over a narrow field of view. Routine use of correlative microscopy is seriously hampered by the cumbersome and elaborate experimental procedures. This is partly due to the use of two separate microscopes for fluorescence and electron microscopy. Here, an integrated approach to correlative microscopy is presented based on a laser scanning fluorescence microscope integrated in a transmission electron microscope. Using this approach the search for features in the specimen is greatly simplified and the time to carry out the experiment is strongly reduced. The potential of the integrated approach is demonstrated at room temperature on specimens of rat intestine cells labeled with AlexaFluor488 conjugated to wheat germ agglutinin and on rat liver peroxisomes immunolabeled with anti-catalase antibodies and secondary AlexaFluor488 antibodies and 10nm protein A-gold.  相似文献   

19.
The interphase nuclei of parenchyma cells and epidermal cells of garlic (Allium sativum L.) clove were labelled with rabbit anti-actin antibody and FITC-conjugated goat anti-rabbit IgG antibody. The authors observed results with fluorescence microscopy and confocal laser scanning microscopy. The nuclei showed prominent green-yellow fluorescence, indicating the presence of actin in the nuclei. Fluorescence examination with TRITC-phalloidin showed distinctive red fluorescence in the nuclei, indicating that F-actin is present in the nuclei. Confocal laser scanning microscopy indicated the presence of F-actin containing network structures in the nuclei, but the network structures were absent and the nuclei still showed red fluorescence when the cells were treated with cytochalasin D before fixation; the red fluorescence in the nuclei was hard to be observed when the cells were treated with unlabelled phalloidin before the cells were stained with TRITC-phalloidin. These results indicate that F-actin is in the nuclei and forms network structures in the nuclei of garlic cells.  相似文献   

20.
The analysis of membrane surface immunoglobulin (SmIg) on B lymphocytes was carried out in 59 normal individuals and nine patients with B-cell non-Hodgkin's lymphomas by conventional immunofluorescence microscopy and flow cytometry. Five channel settings of a cytofluorograph were evaluated (100, 150, 200, 250, 300) and the mean and standard deviation of the percent positive cells were calculated and compared to the mean and standard deviation of the microscope reading. On the basis of the relative fluorescence reactivity, we were able to determine a fluorescence intensity at which the results of flow cytometry and fluorescence microscopy were comparable. In normal individuals, for cells expressing surface Ia, the channel giving similar results to that of fluorescence microscopy was 150; for kappa and lambda chains, channel 200; for Fab'PV, channel 200; and for IgM, channel 250. In patients with B-cell non-Hodgkin's lymphomas, for cells expressing surface Ia the channel giving similar results to that of fluorescence microscopy was 100; for kappa, channel 100; for lambda, channel 200; for Fab'FV, channel 150; and for IgM, channel 150. Flow cytometric analysis of SmIg appears to be superior to fluorescence microscopy in efficiency, and has the added advantages of being a rapid, sensitive, and objectively quantitative methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号