首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT:?

β-Glucosidases constitute a major group among glycosylhydrolase enzymes. Out of the 82 families classified under glycosylhydrolase category, these belong to family 1 and family 3 and catalyze the selective cleavage of glucosidic bonds. This function is pivotal in many crucial biological pathways, such as degradation of structural and storage polysaccharides, cellular signaling, oncogenesis, host-pathogen interactions, as well as in a number of biotechnological applications. In recent years, interest in these enzymes has gained momentum owing to their biosynthetic abilities. The enzymes exhibit utility in syntheses of diverse oligosaccharides, glycoconjugates, alkyl- and amino-glucosides. Attempts are being made to understand the structure-function relationship of these versatile biocatalysts. Earlier reviews described the sources and properties of microbial β-glucosidases, yeast β-glucosidases, thermostable fungal β-glucosidase, and the physiological functions, characteristics, and catalytic action of native β-glucosidases from various plant, animal, and microbial sources. Recent efforts have been directed towards molecular cloning, sequencing, mutagenesis, and crystallography of the enzymes. The aim of the present article is to describe the sources and properties of recombinant β-glucosidases, their classification schemes based on similarity at the structural and molecular levels, elucidation of structure-function relationships, directed evolution of existing enzymes toward enhanced thermostability, substrate range, biosynthetic properties, and applications.  相似文献   

2.
The thermo-tolerant yeast Pichia etchellsii produced two cell-wall-bound inducible beta-glucosidases, BGLI (molecular mass 186 kDa) and BGLII (molecular mass 340 kDa), which were purified by a simple, three-step method, comprising ammonium sulfate precipitation, ion-exchange and hydroxyapatite chromatography. The two enzymes exhibited a similar pH and temperature optima, inhibitory effect by glucose and gluconolactone, and stability in the pH range of 3.0-9.0. Placed in family 3 of glycosylhydrolase families, BGLI was more active on salicin, p-nitrophenyl beta-D-glucopyranoside and alkyl beta-D-glucosides whereas BGLII was most active on cellobiose. k(cat) and K(M) values were determined for a number of substrates and, for BGLI, it was established that the deglycosylation step was equally effective on aryl- and alkyl-glucosides while the glycosylation step varied depending on the substrate used. This information was used to synthesize alkyl-glucosides (up to a chain length of C(10)) using dimethyl sulfoxide stabilized single-phase reaction microenvironment. About 12% molar yield of octyl-glucoside was calculated based on a simple spectrophotometric method developed for its estimation. Further, detailed comparison of properties of the enzymes indicated these to be different from the previously cloned beta-glucosidases from this yeast.  相似文献   

3.
Among the wide variety of amylolytic enzymes synthesized by microorganisms, α-amylases are the most widely used biocatalysts in starch saccharification, baking industries and textile desizing. These enzymes randomly cleave the α-1,4-glycosidic linkages in starch, generating maltose and malto-oligosaccharides. The commercially available α-amylases have certain limitations, such as limited activity at low pH and Ca2+-dependence, and therefore, the search for novel acid-stable and thermostable amylases from extremophilic microorganisms and the engineering of the already available enzymes have been the major areas of research in this field over the years. Several attempts have been made to find suitable microbial sources of acid-stable and thermostable α-amylases. Acid-stable α-amylases have been reported in fungi, bacteria and archaea. α-Amylases that are active at elevated temperatures have been reported in bacteria as well as in archaea. α-Amylases that possess both characteristics, to the extent required for their various applications are very scarce. The developments that have been made in molecular biology, directed evolution and structural conformation studies of α-amylases for improving their properties to suit various industrial applications are discussed in this review.  相似文献   

4.
Protein engineering of lantibiotics   总被引:6,自引:0,他引:6  
Whereas protein engineering of enzymes and structural proteins nowadays is an established research tool for studying structure-function relationships of polypeptides and for improving their properties, the engineering of posttranslationally modified peptides, such as the lantibiotics, is just coming of age. The engineering of lantibiotics is less straightforward than that of unmodified proteins, since expression systems should be developed not only for the structural genes but also for the genes encoding the biosynthetic enzymes, immunity protein and regulatory proteins. Moreover, correct posttranslational modification of specific residues could in many cases be a prerequisite for production and secretion of the active lantibiotic, which limits the number of successful mutations one can apply. This paper describes the development of expression systems for the structural lantibiotic genes for nisin A, nisin Z, gallidermin, epidermin and Pep5, and gives examples of recently produced site-directed mutants of these lantibiotics. Characterization of the mutants yielded valuable information on biosynthetic requirements for production. Moreover, regions in the lantibiotics were identified that are of crucial importance for antimicrobial activity. Eventually, this knowledge will lead to the rational design of lantibiotics optimally suited for fighting specific undesirable microorganisms. The mutants are of additional value for studies directed towards the elucidation of the mode of action of lantibiotics.  相似文献   

5.
Plants, as sessile organisms, evolve and exploit metabolic systems to create a rich repertoire of complex natural products that hold adaptive significance for their survival in challenging ecological niches on earth. As an experimental tool set, structural biology provides a high-resolution means to uncover detailed information about the structure-function relationships of metabolic enzymes at the atomic level. Together with genomic and biochemical approaches and an appreciation of molecular evolution, structural enzymology holds great promise for addressing a number of questions relating to secondary or, more appropriately, specialized metabolism. Why is secondary metabolism so adaptable? How are reactivity, regio-chemistry and stereo-chemistry steered during the multi-step conversion of substrates into products? What are the vestigial structural and mechanistic traits that remain in biosynthetic enzymes during the diversification of substrate and product selectivity? What does the catalytic landscape look like as an enzyme family traverses all possible lineages en route to the acquisition of new substrate and/or product specificities? And how can one rationally engineer biosynthesis using the unique perspectives of evolution and structural biology to create novel chemicals for human use?  相似文献   

6.
Herscovics A 《Biochimie》2001,83(8):757-762
Class I alpha 1,2-mannosidases (glycosylhydrolase family 47) are conserved through eukaryotic evolution. This protein family comprises three subgroups distinguished by their enzymatic properties. The first subgroup includes yeast (Saccharomyces cerevisiae) and human alpha 1,2-mannosidases of the endoplasmic reticulum that primarily form Man(8)GlcNAc(2) isomer B from Man(9)GlcNAc(2). The second subgroup includes mammalian Golgi alpha 1,2-mannosidases, as well as enzymes from insect cells and from filamentous fungi, that trim Man(9)GlcNAc(2) to Man(8)GlcNAc(2) isomers A and/or C intermediates toward the formation of Man(5)GlcNAc(2). Yeast and mammalian proteins of the third subgroup have no enzyme activity with Man(9)GlcNAc(2) as substrate. The members of subgroups 1 and 3 participate in endoplasmic reticulum quality control and promote proteasomal degradation of misfolded glycoproteins. The yeast endoplasmic reticulum alpha 1,2-mannosidase has served as a model for structure-function studies of this family. Its structure was determined by X-ray crystallography as an enzyme-product complex. It consists of a novel (alpha alpha)(7) barrel containing the active site that includes essential acidic residues and calcium. The structures of the subgroup 1 human endoplasmic reticulum alpha 1,2-mannosidase and of a subgroup 2 fungal alpha 1,2-mannosidase were determined by molecular replacement. Comparison of the enzyme structures is providing some insight into the reasons for their different specificities.  相似文献   

7.
Plant P450 monooxygenases represent the largest family of plant proteins and the largest collection of P450s available for comparative studies and biotechnological applications. They have been shown to catalyze a diverse array of difficult chemical reactions and have demonstrated potential to be used in pharmacological, agronomic and phytoremediative applications. Central to our use of these catalytically competent enzymes is the need to understand their interactions with substrates. Because most characterized plant P450s are membrane-bound proteins that are resistant to standard X-ray and NMR structure determinations, homology modeling represents a reliable and relatively rapid alternative method for analyzing structure-function relationships and predicting substrates for many P450s that are only now being characterized. These methods, which are being widely used in mammalian P450 structure-function studies, can allow plant biologists to define critical residues interacting with substrates and, in a directed fashion, alter the reactivities of individual monooxygenases. The homology modelings that have been done on a limited number of plant P450s and the site-directed mutations that validate them indicate that current modeling and substrate docking procedures are capable of providing structural explanations for sequence variants as well as for predicting functional characteristics of undefined P450s.  相似文献   

8.
Biotransformations using prokaryotic P450 monooxygenases   总被引:5,自引:0,他引:5  
Recent studies on microbial cytochrome P450 enzymes have covered several new areas. Advances have been made in structure-function analysis and new non-enzymatic/electrochemical systems for the replacement of NAD(P)H in biocatalysis have been developed. Furthermore, the properties of some enzymes have been re-engineered by site-directed mutagenesis or by methods of directed evolution and new P450s have been functionally expressed and characterized. It is thought that a combination of these approaches will facilitate the use of isolated P450 monooxygenases in biocatalysis.  相似文献   

9.
Hill AD  Reilly PJ 《Biopolymers》2008,89(11):1021-1031
Glycoside hydrolase family 1 consists of beta-glucosidases, beta-galactosidases, 6-phospho-beta-galactosidases, myrosinases, and other enzymes having similar primary and tertiary structures but diverse specificities. Among these enzymes, beta-glucosidases hydrolyze cellobiose to glucose, and therefore they are key players in any cellulose to glucose process. All family members attack beta-glycosidic bonds between a pyranosyl glycon and an aglycon, but most have little specificity for the aglycon or for the bond configuration. Furthermore, glycon specificity is not absolute. Sixteen family members (six beta-glucosidases, two cyanogenic beta-glucosidases, one 6-phospho-beta-galactosidase, two myrosinases, and five beta-glycosidases) have known tertiary structures. We have used automated docking to computationally bind disaccharides with allopyranosyl, galactopyranosyl, glucopyranosyl, mannopyranosyl, 6-phosphogalactopyranosyl, and 6-phosphoglucopyranosyl glycons, all linked by beta-(1,2), beta-(1,3), beta-(1,4), and beta-(1,6)-glycosidic bonds to beta-glucopyranoside aglycons, along with beta-(1,1-thio)-allopyranosyl, -galactopyranosyl, -glucopyranosyl, and -mannopyranosyl) beta-glucopyranosides, into all of these structures to investigate the structural determinants of their enzyme specificities. The following are the eight active-site residues: Glu191, Thr194, Phe205, Asn285, Arg336, Asn376, Trp378, and Trp465 (Zea mays beta-glucosidase numbering), that control a significant amount of glycon specificity. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 1021-1031, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

10.
Bacteriocins are heat-stable ribosomally synthesized antimicrobial peptides produced by various bacteria, including food-grade lactic acid bacteria (LAB). These antimicrobial peptides have huge potential as both food preservatives, and as next-generation antibiotics targeting the multiple-drug resistant pathogens. The increasing number of reports of new bacteriocins with unique properties indicates that there is still a lot to learn about this family of peptide antibiotics. In this review, we highlight our system of fast tracking the discovery of novel bacteriocins, belonging to different classes, and isolated from various sources. This system employs molecular mass analysis of supernatant from the candidate strain, coupled with a statistical analysis of their antimicrobial spectra that can even discriminate novel variants of known bacteriocins. This review also discusses current updates regarding the structural characterization, mode of antimicrobial action, and biosynthetic mechanisms of various novel bacteriocins. Future perspectives and potential applications of these novel bacteriocins are also discussed.  相似文献   

11.
Glucoamylase is an extracellular enzyme produced mainly by microorganisms. It belongs to the commercially frequently exploited biocatalysts. The major application of glucoamylase is in the starch bioprocessing to produce glucose and in alcoholic fermentations of starchy materials. Filamentous fungi have been the source of glucoamylases for industrial purposes as well as an object of numerous research studies. Some yeasts also secrete a large amount of glucoamylase with biochemical characteristics slightly different from those of filamentous fungi. Modern biotechnological applications require glucoamylases of certain properties optimal for a given process. Novel biocatalysts can be prepared from already existing enzymes using techniques of protein engineering or directed evolution. Tailoring of a commercial glucoamylase requires knowledge, on a molecular level, of structure/function relationships of enzymes originating from various sources and having different catalytic properties. Sequences of the cloned genes, their recombinant expression and the tertiary structure determination of glucoamylase are prerequisite to obtain such information. The presented review focuses on molecular-genetic and structural aspects of yeast glucoamylases, supplemented with the basic biochemical characterization of the given enzymes.  相似文献   

12.
Single-strand-specific nucleases are multifunctional enzymes and widespread in distribution. Their ability to act selectively on single-stranded nucleic acids and single-stranded regions in double-stranded nucleic acids has led to their extensive application as probes for the structural determination of nucleic acids. Intracellularly, they have been implicated in recombination, repair and replication, whereas extracellular enzymes have a role in nutrition. Although more than 30 single-strand-specific nucleases from various sources have been isolated till now, only a few enzymes (S1 nuclease from Aspergillus oryzae, P1 nuclease from Penicillium citrinum and nucleases from Alteromonas espejiana, Neurospora crassa, Ustilago maydis and mung bean) have been characterized to a significant extent. Recently, some of these enzymes have been cloned, their crystal structures solved and their interactions with different substrates have been established. The detection, purification, characteristics, structure-function correlations, biological role and applications of single-strand-specific nucleases are reviewed.  相似文献   

13.
Skerra A 《The FEBS journal》2008,275(11):2677-2683
Antibodies are the paradigm for binding proteins, with their hypervariable loop region supported by a structurally rigid framework, thus providing the vast repertoire of antigen-binding sites in the immune system. Lipocalins are another family of proteins that exhibit a binding site with high structural plasticity, which is composed of four peptide loops mounted on a stable beta-barrel scaffold. Using site-directed random mutagenesis and selection via phage display against prescribed molecular targets, it is possible to generate artificial lipocalins with novel ligand specificities, so-called anticalins. Anticalins have been successfully selected both against small hapten-like compounds and against large protein antigens and they usually possess high target affinity and specificity. Their structural analysis has yielded interesting insights into the phenomenon of molecular recognition. Compared with antibodies, they are much smaller, have a simpler molecular architecture (comprising just one polypeptide chain) and they do not require post-translational modification. In addition, anticalins exhibit robust biophysical properties and can easily be produced in microbial expression systems. As their structure-function relationships are well understood, rational engineering of additional features such as site-directed pegylation or fusion with functional effector domains, dimerization modules or even with another anticalin, can be readily achieved. Thus, anticalins offer many applications, not only as reagents for biochemical research but also as a new class of potential drugs for medical therapy.  相似文献   

14.
Numerous in vitro and in vivo studies on biological activities of phytostilbenes have brought to the fore the remarkable properties of these compounds and their derivatives, making them a top storyline in natural product research fields. However, getting stilbenes in sufficient amounts for routine biological activity studies and make them available for pharmaceutical and/or nutraceutical industry applications, is hampered by the difficulty to source them through synthetic chemistry-based pathways or extraction from the native plants. Hence, microbial cell cultures have rapidly became potent workhorse factories for stilbene production. In this review, we present the combined efforts made during the past 15?years to engineer stilbene metabolic pathways in microbial cells, mainly the Saccharomyces cerevisiae baker yeast, the Escherichia coli and the Corynebacterium glutamicum bacteria. Rationalized approaches to the heterologous expression of the partial or the entire stilbene biosynthetic routes are presented to allow the identification and/or bypassing of the major bottlenecks in the endogenous microbial cell metabolism as well as potential regulations of the genes involved in these metabolic pathways. The contributions of bioinformatics to synthetic biology are developed to highlight their tremendous help in predicting which target genes are likely to be up-regulated or deleted for controlling the dynamics of precursor flows in the tailored microbial cells. Further insight is given to the metabolic engineering of microbial cells with “decorating” enzymes, such as methyl and glycosyltransferases or hydroxylases, which can act sequentially on the stilbene core structure. Altogether, the cellular optimization of stilbene biosynthetic pathways integrating more and more complex constructs up to twelve genetic modifications has led to stilbene titers ranging from hundreds of milligrams to the gram-scale yields from various carbon sources. Through this review, the microbial production of stilbenes is analyzed, stressing both the engineering dynamic regulation of biosynthetic pathways and the endogenous control of stilbene precursors.  相似文献   

15.
The demand for beta-glucosidases insensitive to product inhibition is increasing in modern biotechnology, for these enzymes would improve the process of saccharification of lignocellulosic materials. In this study, a beta-glucosidase gene which encodes a 442-amino-acid protein was isolated from a marine microbial metagenomic library by functional screening and named as bgl1A. The protein was identified to be a member of GH1 family, and was recombinantly expressed, purified and biochemically characterized. The recombinant beta-glucosidase, Bgl1A, exhibited high level of stability in the presence of various cations and high concentrations of NaCl. Interestingly, it was activated by glucose at concentrations lower than 400 mM. With glucose further increasing, the enzyme activity of Bgl1A was gradually inhibited, but remained 50% original value in even as high as 1,000 mM glucose. These findings indicate Bgl1A might be a potent candidate for industrial applications.  相似文献   

16.
The members of the alpha/beta hydrolase-fold family represent a functionally versatile group of enzymes with many important applications in biocatalysis. Given the technical significance of alpha/beta hydrolases in processes ranging from the kinetic resolution of enantiomeric precursors for pharmaceutical compounds to bulk products such as laundry detergent, optimizing and tailoring enzymes for these applications presents an ongoing challenge to chemists, biochemists, and engineers alike. A review of the recent literature on alpha/beta hydrolase engineering suggests that the early successes of "random processes" such as directed evolution are now being slowly replaced by more hypothesis-driven, focused library approaches. These developments reflect a better understanding of the enzymes' structure-function relationship and improved computational resources, which allow for more sophisticated search and prediction algorithms, as well as, in a very practical sense, the realization that bigger is not always better.  相似文献   

17.
Glycoglycerolipids are structural components of mycoplasma membranes with a fundamental role in membrane properties and stability. Their biosynthesis is mediated by glycosyltransferases (GT) that catalyze the transfer of glycosyl units from a sugar nucleotide donor to diacylglycerol. The essential function of glycolipid synthases in mycoplasma viability, and the absence of glycoglycerolipids in animal host cells make these GT enzymes a target for drug discovery by designing specific inhibitors. However, rational drug design has been hampered by the lack of structural information for any mycoplasma GT. Most of the annotated GTs in pathogenic mycoplasmas belong to family GT2. We had previously shown that MG517 in Mycoplasma genitalium is a GT-A family GT2 membrane-associated glycolipid synthase. We present here a series of structural models of MG517 obtained by homology modeling following a multiple-template approach. The models have been validated by mutational analysis and refined by long scale molecular dynamics simulations. Based on the models, key structure-function relationships have been identified: The N-terminal GT domain has a GT-A topology that includes a non-conserved variable region involved in acceptor substrate binding. Glu193 is proposed as the catalytic base in the GT mechanism, and Asp40, Tyr126, Tyr169, Ile170 and Tyr218 define the substrates binding site. Mutation Y169F increases the enzyme activity and significantly alters the processivity (or sequential transferase activity) of the enzyme. This is the first structural model of a GT-A glycoglycerolipid synthase and provides preliminary insights into structure and function relationships in this family of enzymes.  相似文献   

18.
Versatility of polyketide synthases in generating metabolic diversity   总被引:1,自引:0,他引:1  
Polyketide synthases (PKSs) form a large family of multifunctional proteins involved in the biosynthesis of diverse classes of natural products. Architecturally at least three different types of PKSs have been discovered in the microbial world and recent years have revealed tremendous versatility of PKSs, both in terms of their structural and functional organization and in their ability to produce compounds other than typical secondary metabolites. Mycobacterium tuberculosis exploits polyketide biosynthetic enzymes to synthesize complex lipids, many of which are essential for its survival. The functional significance of the large repertoire of PKSs in Dictyostelium discoideum, perhaps in producing developmental regulating factors, is emerging. Recently determined structures of fatty acid synthases (FASs) and PKSs now provide an opportunity to delineate the mechanistic and structural basis of polyketide biosynthetic machinery.  相似文献   

19.
The wide utility and catalytic efficiency of microbial pectinase in various industries has greatly increased its global demand. Among the natural sources of pectinases, microbial pectinases are used frequently for its ease of production and unique physicochemical properties. Yet similar to other industrial enzymes, pectinases also face the constraint of thermo-tolerance and low yield in its economised production. The current review addresses the various strategies adopted to meet the high yield and thermo-tolerance of pectinases as well as the various attempts made in the field of pectinases to its improved production and better catalytic efficiency. The utilisation of natural as well as recombinant microbial sources, metagenomic approaches, metabolic engineering, site directed mutagenesis and media engineering techniques adopted in the field of pectinases have been discussed. The significance of pectinases in various industries is depicted by enlisting its applications. To the best our knowledge the current review is unique being the first attempt to compile the recent advancements in the field of pectinases.  相似文献   

20.
Polyketides constitute a large family of natural products that display various biological activities. Polyketides exhibit a high degree of structural diversity, although they are synthesized from simple acyl building blocks. Recent biochemical and structural studies provide a better understanding of the biosynthetic logic of polyketide diversity. This review highlights the biosynthetic mechanisms of structurally unique polyketides, β-amino acid-containing macrolactams, enterocin, and phenolic lipids. Functional and structural studies of macrolactam biosynthetic enzymes have revealed the unique biosynthetic machinery used for selective incorporation of a rare β-amino acid starter unit into the polyketide skeleton. Biochemical and structural studies of cyclization enzymes involved in the biosynthesis of enterocin and phenolic lipids provide mechanistic insights into how these enzymes diversify the carbon skeletons of their products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号