首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ten type I loci from HSA10 (IL2RA and VIM), HSA11 (HBB and FSHB) and HSA20 (THBD, AVP/OXT, GNAS1, HCK and TOP1) and two domestic cattle type II loci (CSSM30 and BL42) were FISH mapped to R-banded river buffalo (BBU) and sheep (OAR) chromosomes. IL2RA (HSA10) maps on BBU14q13 and OAR13q13, VIM (HSA10) maps on BBU14q15 and OAR13q15, HBB (HSA11) maps on BBU16q25 and OAR15q23, FSHB (HSA11) maps on BBU16q28 and OAR15q26, THBD (HSA20) maps on BBU14q15 and OAR13q15 while AVP/OXT, GNAS1, HCK, and TOP1 (HSA20) as well as CSSM30 and BL42 map on the same large band of BBU14q22 and OAR13q22. All loci were mapped on the same homologous chromosomes and chromosome bands of the two species, and these results agree with those earlier reported in cattle homologous chromosomes 15 and 13, respectively, confirming the high degree of both banding and physical map similarities among the bovid species. Indirect comparisons between physical maps achieved on bovid chromosomes and those reported on HSA10, HSA11 and HSA20 were performed.  相似文献   

2.
Twelve loci (11 of type I and 1 of type II) previously FISH-mapped in cattle were comparatively FISH-mapped in both river buffalo chromosome 1p (BBU1p) and homologous chromosome 26 of sheep (OAR26), extending the cytogenetic maps in both chromosome species and providing a more precise localization of these loci in single chromosome bands than previous locations on BTA27. Bovine BAC clones containing DCTD, C4orf20, CASP3, TLR3, MSR1, FAT, LONRF1, DLC1, C8orf41, CSSM036, LSM1 and EIF4EBP1 were used for FISH on RBPI-banded chromosomes. All loci were located on the same homologous chromosome bands (R-band positive) of both species further confirming the high degree of banding and gene (order of loci) homologies among bovids. Detailed cytogenetic maps of OAR26 and BBU1p were performed and compared with that of BTA27 as well as with those of both HSA8p and HSA4q, revealing complex chromosome rearrangements differentiating OAR26/BBU1p/BTA27 from human chromosomes.  相似文献   

3.
4.
Forty autosomal type I loci earlier mapped in goat were comparatively FISH mapped on river buffalo (BBU) and sheep (OAR) chromosomes, noticeably extending the physical map in these two economically important bovids. All loci map on homoeologous chromosomes and chromosome bands, with the exception of COL9A1 mapping on BBU10 (homoeologous to cattle/goat chromosome 9) and OAR9 (homoeologous to cattle/goat chromosome 14). A FISH mapping control with COL9A1 on both cattle and goat chromosomes gave the same results as those obtained in river buffalo and sheep, respectively. Direct G- and R-banding comparisons between Bovinae (cattle and river buffalo) and Caprinae (sheep and goat) chromosomes 9 and 14 confirmed that a simple translocation of a small pericentromeric region occurred between the two chromosomes. Comparisons between physical maps obtained in river buffalo and sheep with those reported in sixteen human chromosomes revealed complex chromosome rearrangements (mainly translocations and inversions) differentiating bovids (Artiodactyls) from humans (Primates).  相似文献   

5.
Six expressed gene loci (NF1, CRYB1, CHRNB1, TP53, P4HB and GH1), recently assigned to cattle chromosome 19 by both radiation hybrid analysis and FISH-mapping, were comparatively FISH-mapped to river buffalo chromosome (BBU) 3p and sheep chromosome (OAR) 11, extending the physical map in these two important bovids. The six loci mapped to the same homoeologous chromosome bands of BBU 3p and OAR 11, and their gene order was centromere-NF1-CRYB1-CHNRB1-TP53-(GH1, P4HB).  相似文献   

6.
Genetic factors associated with the risk of smoking related cancers have until recently remained elusive. Since the publication of a genome-wide association study (GWAS) on lung cancer new genetic loci have been identified that appear to be associated with disease risk. In this replication study we genotyped 14 single nucleotide polymorphisms (SNPs) located at the 5p12.3-p15.33, 6p21.3-p22.1, 6q23-q27 and 15q25.1 loci in 874 lung, 450 bladder, 418 laryngeal cancer cases and cancer-free controls, matched by year of birth and sex to the cases. Our results revealed that loci in the chromosome region 15q25.1 (rs16969968[A], rs8034191[G]) and 5p15 (rs402710[T]) are associated with lung cancer risk in the Polish population (smoking status adjusted OR = 1.45, 1.35, 0.77; p ≤ 0.0001, 0.0005, 0.002; 95%CI 1.23-1.72, 1.14-1.59, 0.66-0.91 respectively). None of the other regions analyzed herein were implicated in the risk of lung, bladder or laryngeal cancer. This study supports previous findings on lung cancer but fails to show association of SNPs located in 15q25.1 and 5p15 region with other smoking related cancers like bladder and laryngeal cancer.  相似文献   

7.
8.
《Gene》1997,184(2):163-167
Mouse Ocp2-rs2 maps to chromosome 11 and encodes an 18.6 kDa peptide abundantly expressed in the organ of Corti. We show that sequences similar to murine Ocp2-rs2 are found on human chromosomes 4p16.2-4p14, 5p13-5q35.2, 7pter-q22, 10 and 12p13-12qter as revealed by Southern blot analyses of human/rodent somatic cell hybrids. A fetal human inner ear cDNA library was screened with a cloned 254 bp PCR product of murine Ocp2-rs2. One of two human cDNA clones (CM1) was sequenced from the 5′ end that begins with murine Ocp2-rs2 codon 14 through the stop codon and 258 nucleotides of 3′-UTR and was found to have the identical deduced amino acid sequence to Ocp2-rs2. Based on the sequence in the 3′-UTR of CM1, a PCR primer pair was synthesized and used to confirm that a human homologue of Ocp2-rs2, designated OCP2 and expressed in the developing human inner ear, is localized to 5q22-5q35.2. Other OCP2-like sequences located on chromosomes 4p16.2-4p14, 7pter-q22 and 12p13-12qter (but not the chromosome 10 OCP2-like sequence) will PCR amplify the expected size product at a lower annealing temperature using the OCP2 3′-UTR PCR primers indicating that there may be a human OCP2 gene family.  相似文献   

9.
For 22 carcass traits, we identified 16 QTLs (based on data for pig resource population no. 214, including 180 F2 hybrids of 3 Yorkshire boars and 8 Meishan sows) and mapped them with the use of 39 microsatellite marker loci on chromosomes 4, 6, 7, 8 and 13. Five QTLs were highly significant (P < or = 0.01 at chromosome level): for skin weight (on chromosome 7 at SW1856 and on chromosome 13 at SW1495), skin percentage (on chromosome 7 between SW2155 and SW1856 and on chromosome 13 between SW1495 and SW520), and ratio of leg and butt to carcass (on chromosome 4 at SW1996). The remaining 11 QTLs were significant (P < or = 0.05 at chromosome level): for backfat thickness at shoulder, loin eye width, loin eye height, fat meat weight, lean meat weight, skin weight, bone weight, skin percentage, fat meat percentage, and ratio of lean meat to fat meat. The proportion of phenotypic variance explained by these QTLs ranged from 0.06% (QTL for loin eye width on chromosome 8 between SW1037 and SW1953) to 18.04% (QTL for ratio of lean meat to fat meat on chromosome 7 between SW252 and SW581). Seven of the QTLs reported here are novel.  相似文献   

10.
Analysis of genetic linkage to dyslexia was performed using 133,165 array‐based SNPs genotyped in 718 persons from 101 dyslexia‐affected families. Results showed five linkage peaks with lod scores >2.3 (4q13.1, 7q36.1‐q36.2, 7q36.3, 16p12.1, and 17q22). Of these five regions, three have been previously implicated in dyslexia (4q13.1, 16p12.1, and 17q22), three have been implicated in attention‐deficit hyperactivity disorder (ADHD, which highly co‐occurs with dyslexia; 4q13.1, 7q36.3, 16p12.1) and four have been implicated in autism (a condition characterized by language deficits; 7q36.1‐q36.2, 7q36.3, 16p12.1, and 17q22). These results highlight the reproducibility of dyslexia linkage signals, even without formally significant lod scores, and suggest dyslexia predisposing genes with relatively major effects and locus heterogeneity. The largest lod score (2.80) occurred at 17q22 within the MSI2 gene, involved in neuronal stem cell lineage proliferation. Interestingly, the 4q13.1 linkage peak (lod 2.34) occurred immediately upstream of the LPHN3 gene, recently reported both linked and associated with ADHD. Separate analyses of larger pedigrees revealed lods >2.3 at 1–3 regions per family; one family showed strong linkage (lod 2.9) to a known dyslexia locus (18p11) not detected in our overall data, demonstrating the value of analyzing single large pedigrees. Association analysis identified no SNPs with genome‐wide significance, although a borderline significant SNP (P = 6 × 10–7) occurred at 5q35.1 near FGF18, involved in laminar positioning of cortical neurons during development. We conclude that dyslexia genes with relatively major effects exist, are detectable by linkage analysis despite genetic heterogeneity, and show substantial overlapping predisposition with ADHD and autism.  相似文献   

11.
A substantial proportion of familial colorectal cancer (CRC) is not a consequence of known susceptibility loci, such as mismatch repair (MMR) genes, supporting the existence of additional loci. To identify novel CRC loci, we conducted a genome-wide linkage scan in 356 white families with no evidence of defective MMR (i.e., no loss of tumor expression of MMR proteins, no microsatellite instability (MSI)-high tumors, or no evidence of linkage to MMR genes). Families were ascertained via the Colon Cancer Family Registry multi-site NCI-supported consortium (Colon CFR), the City of Hope Comprehensive Cancer Center, and Memorial University of Newfoundland. A total of 1,612 individuals (average 5.0 per family including 2.2 affected) were genotyped using genome-wide single nucleotide polymorphism linkage arrays; parametric and non-parametric linkage analysis used MERLIN in a priori-defined family groups. Five lod scores greater than 3.0 were observed assuming heterogeneity. The greatest were among families with mean age of diagnosis less than 50 years at 4q21.1 (dominant HLOD?=?4.51, α?=?0.84, 145.40 cM, rs10518142) and among all families at 12q24.32 (dominant HLOD?=?3.60, α?=?0.48, 285.15 cM, rs952093). Among families with four or more affected individuals and among clinic-based families, a common peak was observed at 15q22.31 (101.40 cM, rs1477798; dominant HLOD?=?3.07, α?=?0.29; dominant HLOD?=?3.03, α?=?0.32, respectively). Analysis of families with only two affected individuals yielded a peak at 8q13.2 (recessive HLOD?=?3.02, α?=?0.51, 132.52 cM, rs1319036). These previously unreported linkage peaks demonstrate the continued utility of family-based data in complex traits and suggest that new CRC risk alleles remain to be elucidated.  相似文献   

12.
Male breast cancer accounts for approximately 1% of all breast cancer. To date, risk factors for male breast cancer are poorly defined, but certain risk factors and genetic features appear common to both male and female breast cancer. Genome-wide association studies (GWAS) have recently identified common single nucleotide polymorphisms (SNPs) that influence female breast cancer risk; 12 of these have been independently replicated. To examine if these variants contribute to male breast cancer risk, we genotyped 433 male breast cancer cases and 1,569 controls. Five SNPs showed a statistically significant association with male breast cancer: rs13387042 (2q35) (odds ratio (OR)  = 1.30, p = 7.98×10−4), rs10941679 (5p12) (OR = 1.26, p = 0.007), rs9383938 (6q25.1) (OR = 1.39, p = 0.004), rs2981579 (FGFR2) (OR = 1.18, p = 0.03), and rs3803662 (TOX3) (OR = 1.48, p = 4.04×10−6). Comparing the ORs for male breast cancer with the published ORs for female breast cancer, three SNPs—rs13387042 (2q35), rs3803662 (TOX3), and rs6504950 (COX11)—showed significant differences in ORs (p<0.05) between sexes. Breast cancer is a heterogeneous disease; the relative risks associated with loci identified to date show subtype and, based on these data, gender specificity. Additional studies of well-defined patient subgroups could provide further insight into the biological basis of breast cancer development.  相似文献   

13.
Atopic dermatitis (AD) is a common, itchy skin disease of complex inheritance characterized by dermal and epidermal inflammation. The heritability is considerable and well documented. To date, four genome scans have examined the AD phenotype, showing replicated linkage at 3p26-22, 3q13-21 and 18q11-21. Our previous AD scan showed evidence of linkage to loci at 3p and 18q, and furthermore at 4p15-14. In order to further investigate the genetic basis of AD, we collected and analysed a new Danish family sample consisting of 130 AD sib pair families (555 individuals including 295 children with AD). AD was diagnosed after clinical examination, AD severity was scored and specific IgE was determined. A linkage scan of chromosome 3, 4 and 18 was performed using 91 microsatellite markers. Linkage analyses were performed of dichotomous phenotypes and semi-quantitative traits including the AD severity score. We analysed the novel AD sample alone and together with the previously examined sample. AD severity showed a maximum Z-score of 3.7 at 4q22.1 suggesting the localization of a novel gene for AD severity. A maximum MOD score of 4.6 was obtained at 3p24 for the AD phenotype, providing the first significant linkage of AD at this locus. A maximum MLS score of 3.3 was obtained at 3q21 for IgE-associated AD, and evidence of linkage was also obtained at 3p22.2-21.31, 3q13, 4q35, and 18q12. The results presented should provide a firm basis for gene-targeting studies of AD and related disorders.  相似文献   

14.
DNA amplification is known to occur in approximately 50% of glioblastomas, with the epidermal growth factor receptor (EGFR) gene being the most frequently amplified. Whereas previous amplification studies have largely been limited to the analysis of known tumor-related genes, reverse chromosome painting allows us to search for as yet unidentified amplified domains. Here, we report the analysis of a glioblastoma multiforme by reverse chromosome painting. Hybridization signals were found on chromosome 7p12-13 and chromosome 9q12-13. Standard Southern blot analysis revealed amplification of the EGFR gene, which is localized on band 7p13. These findings corroborate previous reports on coamplification of sequences on different chromosomes in glioblastoma.  相似文献   

15.
Autism is characterized by impairments in reciprocal communication and social interaction and by repetitive and stereotyped patterns of activities and interests. Evidence for a strong underlying genetic predisposition comes from twin and family studies, although susceptibility genes have not yet been identified. A whole-genome screen for linkage, using 83 sib pairs with autism, has been completed, and 119 markers have been genotyped in 13 candidate regions in a further 69 sib pairs. The addition of new families and markers provides further support for previous reports of linkages on chromosomes 7q and 16p. Two new regions of linkage have also been identified on chromosomes 2q and 17q. The most significant finding was a multipoint maximum LOD score (MLS) of 3.74 at marker D2S2188 on chromosome 2; this MLS increased to 4.80 when only sib pairs fulfilling strict diagnostic criteria were included. The susceptibility region on chromosome 7 was the next most significant, generating a multipoint MLS of 3.20 at marker D7S477. Chromosome 16 generated a multipoint MLS of 2.93 at D16S3102, whereas chromosome 17 generated a multipoint MLS of 2.34 at HTTINT2. With the addition of new families, there was no increased allele sharing at a number of other loci originally showing some evidence of linkage. These results support the continuing collection of multiplex sib-pair families to identify autism-susceptibility genes.  相似文献   

16.
Several independent studies and meta-analyses aimed at identifying genomic regions linked to bipolar disorder (BP) have failed to find clear and consistent evidence of linkage regions. Our hypothesis is that combining the original genotype data provides benefits of increased power and control over sources of heterogeneity that outweigh the difficulty and potential pitfalls of the implementation. We conducted a combined analysis using the original genotype data from 11 BP genomewide linkage scans comprising 5,179 individuals from 1,067 families. Heterogeneity among studies was minimized in our analyses by using uniform methods of analysis and a common, standardized marker map and was assessed using novel methods developed for meta-analysis of genome scans. To date, this collaboration is the largest and most comprehensive analysis of linkage samples involving a psychiatric disorder. We demonstrate that combining original genome-scan data is a powerful approach for the elucidation of linkage regions underlying complex disease. Our results establish genomewide significant linkage to BP on chromosomes 6q and 8q, which provides solid information to guide future gene-finding efforts that rely on fine-mapping and association approaches.  相似文献   

17.
18.
BACKGROUND: NTDs are considered complex disorders that arise from an interaction between genetic and environmental factors. NTD family 8776 is a large multigenerational Caucasian family that provides a unique resource for the genetic analysis of NTDs. Previous linkage analysis using a genome‐wide SNP screen in family 8776 with multipoint nonparametric mapping methods identified maximum LOD* scores of ~3.0 mapping to 2q33.1–q35 and 7p21.1–pter. METHODS: We ascertained an additional nuclear branch of 8776 and conducted additional linkage analysis, fine mapping, and haplotyping. Expression data from lymphoblast cell lines were used to prioritize candidate genes within the minimum candidate intervals. Genomic copy number changes were evaluated using BAC tiling arrays and subtelomeric fluorescent in situ hybridization probes. RESULTS: Increased evidence for linkage was observed with LOD* scores of ~3.3 for both regions. Haplotype analyses narrowed the minimum candidate intervals to a 20.3 Mb region in 2q33.1–q35 between markers rs1050347 and D2S434, and an 8.3 Mb region in 7p21.1–21.3 between a novel marker 7M0547 and rs28177. Within these candidate regions, 16 genes were screened for mutations; however, no obvious causative NTD mutation was identified. Evaluation of chromosomal aberrations using comparative genomic hybridization arrays, subtelomeric fluorescent in situ hybridization, and copy number variant detection techniques within the 2q and 7p regions did not detect any chromosomal abnormalities. CONCLUSIONS: This large NTD family has identified two genomic regions that may harbor NTD susceptibility genes. Ascertainment of another branch of family 8776 and additional fine mapping permitted a 9.1 Mb reduction of the NTD candidate interval on chromosome 7 and 37.3 Mb on chromosome 2 from previously published data. Identification of one or more NTD susceptibility genes in this family could provide insight into genes that may affect other NTD families. Birth Defects Research (Part A), 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
Cytogenetic maps are useful tools for several applications, such as the physical anchoring of linkage and RH maps or genome sequence contigs to specific chromosome regions or the analysis of chromosome rearrangements. Recently, a detailed RH map was reported in OAR1. In the present study, we selected 38 markers equally distributed in this RH map for identification of ovine genomic DNA clones within the ovine BAC library CHORI-243 using the virtual sheep genome browser and performed FISH mapping for both comparison of OAR1 and homoeologous chromosomes BBU1q-BBU6 and BTA1-BTA3 and considerably extending the cytogenetic maps of the involved species-specific chromosomes. Comparison of the resulting maps with human-identified homology with HSA2q, HSA3, HSA21 and HSA1q reveals complex chromosome rearrangements differentiating human and bovid chromosomes. In addition, we identified 2 new small human segments from HSA2q and HSA3q conserved in the telomeric regions of OAR1p and homoeologous chromosome regions of BTA3 and BBU6, and OAR1q, respectively. Evaluation of the present OAR1 cytogenetic map and the OAR1 RH map supports previous RH assignments with 2 main exceptions. The 2 loci BMS4011 and CL638002 occupy inverted positions in these 2 maps.  相似文献   

20.
In lung cancer pathogenesis, genetic instability, i.e., loss of heterozygosity (LOH) and microsatellite instability (MSI) is a frequent molecular event, occurring at an early stage of cancerogenesis. The presence of LOH/MSI in non-small cell lung carcinoma (NSCLC) was found in many chromosomal regions, but exclusive of 3p their diagnostic value remains controversial. In this study we focused on other than 3p regions—1p31.2, 7q32.2, 9p21.3, 11p15.5, 12q23.2 and 16q22—the loci of many oncogenes and tumour suppressor genes. To analyze the potential role of LOH/MSI involved in NSCLC pathogenesis we allelotyped a panel of 13 microsatellite markers in a group of 56 cancer specimens. Our data demonstrate the presence of allelic loss for all (13) analyzed markers. Total LOH/MSI frequency in NSCLC was the highest for chromosomal region 11p15.5 (25.84 %), followed by 9p21.3 and 1p31.2 (19.87 and 16.67 % respectively). A statistically significant increase of total LOH/MSI frequency was detected for the 11p15.5 region (p = 0.0301; χ2 test). The associations of total LOH/MSI frequency: 1) increase in 11p15.5 region (p = 0.047; χ2 test) and 2) decrease in 7q32.2 region (p = 0.037; χ2 test) have been statistically significant in AJCC III (American Joint Committee on Cancer Staging). In Fractional Allele Loss (FAL) index analysis, the correlation with cigarette addiction has been statistically significant. The increased amount of cigarettes smoked (pack years) in a lifetime correlates with increasing FAL (p = 0.024; Kruskal–Wallis test). These results demonstrate that LOH/MSI alternation in studied chromosomal regions is strongly influenced by tobacco smoking but do not seem to be pivotal NSCLC diagnostic marker with prognostic impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号