首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enterohemorrhagic O157 strain of Escherichia coli, which is one of the most well-known bacterial pathogens, has an O-antigen repeating unit structure with the sequence [-2-d-Rha4NAcα1-3-l-Fucα1-4-d-Glcβ1-3-d-GalNAcα1-]. The O-antigen gene cluster of E. coli O157 contains the genes responsible for the assembly of this repeating unit and includes wbdN. In spite of cloning many O-antigen genes, biochemical characterization has been done on very few enzymes involved in O-antigen synthesis. In this work, we expressed the wbdN gene in E. coli BL21, and the His-tagged protein was purified. WbdN activity was characterized using the donor substrate UDP-[(14)C]Glc and the synthetic acceptor substrate GalNAcα-O-PO(3)-PO(3)-(CH(2))(11)-O-Ph. The enzyme product was isolated by high pressure liquid chromatography, and mass spectrometry showed that one Glc residue was transferred to the acceptor by WbdN. Nuclear magnetic resonance analysis of the product structure indicated that Glc was β1-3 linked to GalNAc. WbdN contains a conserved DxD motif and requires divalent metal ions for full activity. WbdN activity has an optimal pH between 7 and 8 and is highly specific for UDP-Glc as the donor substrate. GalNAcα derivatives lacking the diphosphate group were inactive as substrates, and the enzyme did not transfer Glc to GlcNAcα-O-PO(3)-PO(3)-(CH(2))(11)-O-Ph. Our results illustrate that WbdN is a specific UDP-Glc:GalNAcα-diphosphate-lipid β1,3-Glc-transferase. The enzyme is a target for the development of inhibitors to block O157-antigen synthesis.  相似文献   

2.
Escherichia coli O157, Salmonella enterica O30, and Citrobacter freundii F90 have identical O-antigen structures, as do E. coli O55 and S. enterica O50. The O-antigen gene cluster sequences for E. coli O157 and E. coli O55 have been published, and the genes necessary for O-antigen biosynthesis have been identified, although transferase genes for glycosidic linkages are only generic and have not been allocated to specific linkages. We determined sequences for S. enterica O30 and C. freundii F90 O-antigen gene clusters and compared them to the sequence of the previously described E. coli O157 cluster. We also determined the sequence of the S. enterica O50 O-antigen gene cluster and compared it to the sequence of the previously described E. coli O55 cluster. For both the S. enterica O30-C. freundii F90-E. coli O157 group and the S. enterica O50-E. coli O55 group of O antigens, the gene clusters have identical or nearly identical organizations. The two sets of gene clusters had comparable overall levels of similarity in their genes, which were lower than the levels determined for housekeeping genes for these species, which were 55 to 65% for the genes encoding glycosyltransferases and O-antigen processing proteins and 75 to 93% for the nucleotide-sugar pathway genes. Nonetheless, the similarity of the levels of divergence in the five gene clusters required us to consider the possibility that the parent gene cluster for each structure was in the common ancestor of the species and that divergence is faster than expected for the common ancestor hypothesis. We propose that the identical O-antigen gene clusters originated from a common ancestor, and we discuss some possible explanations for the increased rate of divergence that is seen in these genes.  相似文献   

3.
The O-antigen of the lipopolysaccharide (LPS) from the enteroaggregative Escherichia coli strain 87/D2 has been determined by component analysis together with NMR spectroscopy. The polysaccharide has pentasaccharide repeating units in which all the residues have the galacto-configuration. The repeating unit of the O-antigen, elucidated using the O-deacylated LPS, is branched with the following structure: Analysis of the 1H NMR spectrum of the LPS revealed O-acetyl groups (approximately 0.7 per repeating unit) distributed over two positions. Subsequent analysis showed that the galactose residue carries acetyl groups at either O-3 or O-4 in a ratio of approximately 2:1. The international reference strain from E. coli O128ab was investigated and the repeating unit of the O-antigens has the following structure: Analysis of the 1H NMR spectrum of the LPS revealed O-acetyl groups (approximately one per repeating unit) distributed over two positions. The integrals of the resonances for the O-acetyl groups indicated similarities between the O-antigen from E. coli O128ab and that of E. coli strain 87/D2, whereas the O-acetyl substitution pattern in the E. coli O128ac O-antigen differed slightly. Enzyme immunoassay using specific anti-E. coli O128ab and anti-E. coli O128ac rabbit sera confirmed the results.  相似文献   

4.
Patients with haemolytic uraemic syndrome (HUS) and haemorrhagic colitis (HC) produce serum antibodies to the lipopolysaccharides (LPS) of Escherichia coli O157 and certain other E. coli serogroups. Patients may also make salivary antibodies to the LPS of E. coli O157. Serological tests based on these antibodies can be used to provide evidence of infection in the absence of culturable VTEC or the toxins they produce. Serum antibodies to LPS persist for several months following onset of disease, enabling both current and retrospective serological testing. The LPS of E. coli O157 shares epitopes with strains of Brucella abortus, Yersinia enterocolitica O9, Vibrio cholerae O1 Inaba, group N Salmonella and certain strains of Citrobacter freundii and E. hermanni. Serological tests for serum antibodies to E. coli O157 should be evaluated in the light of these cross-reactions. Serological tests to supply evidence of infection with E. coli O157 have been shown to provide a valuable adjunct to bacteriological procedures for detecting culturable VTEC and VT. The use of well characterized LPS antigens in association with the techniques of ELISA and immunoblotting provide valuable procedures for detecting evidence of infection with E. coli O157 and possibly other VTEC.  相似文献   

5.
The O-antigen, consisting of many repeats of an oligosaccharide, is an essential component of the lipopolysaccharide on the surface of Gram-negative bacteria. The O-antigen is one of the most variable cell constituents, and different O-antigen forms are almost entirely due to genetic variations in O-antigen gene clusters. In this paper, we present structural and genetic evidence for a close relationship between Escherichia coli O107 and E. coli O117 O antigens. The O-antigen of E. coli O107 has a pentasaccharide repeating unit with the following structure: →4)-β- d -Gal p NAc-(1→3)-α- l -Rha p -(1→4)-α- d -Glc p NAc-(1→4)-β- d -Gal p -(1→3)-α- d -Gal p NAc-(1→, which differs from the known repeating unit of E. coli O117 only in the substitution of d -GlcNAc for d -Glc. The O-antigen gene clusters of E. coli O107 and O117 share 98.6% overall DNA identity and contain the same set of genes in the same organization. It is proposed that one cluster was evolved from another via mutations, and the substitution of a few amino acids residues in predicted glycosyltransferases resulted in the functional change of one such protein for transferring different sugars in O107 ( d -GlcNAc) and O117 ( d -Glc), leading to different O-antigen structures. This is an example of the O-antigen alteration caused by nucleotide mutations, which is less commonly reported for O-antigen variations.  相似文献   

6.
The structure of the O-antigen polysaccharide (PS) from the enteroaggregative Escherichia coli strain 180/C3 has been determined. Sugar and methylation analysis together with (1)H and (13)C NMR spectroscopy were the main methods used. The PS is composed of tetrasaccharide repeating units with the following structure: -->2)beta-D-Quip3NAc-(1-->3)beta-D-RIBf-(1-->4)beta-D-Galp-(1-->3)alpha-D-GalpNAc-(1-->. Analysis of NMR data indicates that the presented sequence of sugar residues also represents the biological repeating unit of the O-chain. The structure is closely related to that of O-antigen polysaccharide from E. coli O5 and partially to that of E. coli O65. The difference between the O-antigen from the 180/C3 strain and that of E. coli O5 is the linkage to the D-Quip3NAc residue, which in the latter strain is 4-O-substituted. The E. coli O65 O-antigen contains as part of its linear pentasaccharide repeating unit a similar structural element, namely -->4)-beta-d-GalpA-(1-->3)-alpha-D-GlcpNAc-(1-->2)-beta-D-Quip3NAc-(1-->, thereby indicating that a common epitope could be present for the two polysaccharides. Monospecific anti-E. coli O5 rabbit serum did not distinguish between the two positional isomeric structures neither in slide agglutination nor in an indirect enzyme immunoassay. The anti-O65 serum did react with both the 180/C3 and O5 LPS showing a partial cross-reactivity.  相似文献   

7.
The structure of the O-antigen polysaccharide of the lipopolysaccharide from an enteroaggregative Escherichia coli (strain 105) has been elucidated, using primarily one-dimensional and two-dimensional NMR experiments. The sequence of residues was deduced with heteronuclear multiple-bond correlation and NOESY experiments. The structure of the repeating unit of the polysaccharide from the enteroaggregative E. coli is as follows:[sequence: see text] The structure of the O-antigen from enteroaggregative E. coli strain 105 was shown to be identical with that of E. coli O21 by sugar and methylation analyses as well as by 1H-NMR and 13C-NMR spectroscopy.  相似文献   

8.
Citrobacter freundii OCU158 is a serologically cross-reactive strain with Escherichia coli O157:H7. To explore the close relationship between two strains, we have analyzed the chemical structures of O-specific polysaccharides and antigenic properties of lipopolysaccharides (LPSs) of both strains. The structure of O-specific polysaccharides from both strains was found to be identical by chemical and nuclear magnetic resonance analyses, in which D-PerNAc was 4-acetamido-4,6-dideoxy-D-mannose: [-->4)-beta-D-Glc-(1-->3)-alpha-D-PerNAc-(1-->4)-alpha-D-GalNAc-(1 --> 3)-alpha-L-Fuc-(1-->](n). The enzyme immunoassay using LPS derived either from E. coli O157 or from C. freundii could equally detect high levels of serum antibodies against LPS in patients with enterohemorrhagic E. coli (EHEC) O157 infection. Absorption of antibodies in EHEC patient serum by LPS from E. coli O157 or C. freundii, however, showed a difference in the epitopes. This difference was attributable to the epitope specificity of the core region and/or lipid A structure in LPS.  相似文献   

9.
AIMS: Production of a monoclonal antibody (MAb) to Escherichia coli O157 to develop a rapid test using a sandwich ELISA (sELISA) format. METHODS AND RESULTS: A MAb (7A6) was developed to the long-chain lipopolysaccharide of E. coli O157. A sELISA developed with the MAb reacted with 28 bovine and seven human enterohaemorrhagic E. coli (EHEC) O157 strains and also with two enterotoxigenic E. coli O157 strains. Cross-reaction to a rabbit diarrhoeal E.coli O15, Citrobacter freundii, Salmonella urbana and Vibrio cholerae O1 Inaba was detected. CONCLUSION: A MAb-based sELISA to detect E. coli O157 was produced. Its application to field samples is required to fully determine its prospective use for the detection of EHEC O157, to evaluate the non-specific interference of the cross-reacting strains. SIGNIFICANCE AND IMPACT OF THE STUDY: The assay produced is not wholly specific to EHEC O157, but has the potential to be used as a rapid method for screening large numbers of samples for E. coli O157.  相似文献   

10.
The repeating pentasaccharide of O-antigen from Escherichia coli O111 contains galactose, glucose, N-acetylglucosamine, and colitose, the latter representing the major antigenic determinant. Phenol extraction of this strain was previously shown to release two fractions (I and II) containing O-antigen carbohydrate, and both fractions were believed to be lipopolysaccharide. We have now characterized fractions I and II and conclude that only fraction II represents lipopolysaccharide. Fraction II contains phosphate, 2-keto-3-deoxyoctonate, beta-hydroxymyristic acid, and potent endotoxin activity, whereas fraction I was deficient in all of these properties of the lipid A and core oligosaccharide regions of lipopolysaccharide. Fractions I and II each represented 50% of the total cellular O-antigen, and both were present on the cell surface. Both fractions were metabolically stable, and no precursor-product relationship existed between them. Fraction II had a number-average molecular weight of 15,800, corresponding to an average of 12 O-antigen repeats per molecule. In contrast, fraction I had a number-average molecular weight of 354,000, corresponding to an average of 404 O-antigen repeats per molecule. Before heat treatment, cells of E. coli O111 are poorly agglutinated by O-serum; although this indicates the presence of a capsule, the corresponding K-antigen was never detected. We conclude that fraction I, when present on the cell surface, inhibits agglutination of unheated cultures of E. coli O111 by O-serum because: (i) a variant strain which lacks fraction I was agglutinated by O-serum without prior heating; (ii) erythrocytes coated with purified fraction I behaved like bacteria containing fraction I in showing inhibition of O-serum agglutination; and (iii) heat treatment released fraction I and rendered bacterial cells agglutinable in O-serum.  相似文献   

11.
Most Escherichia coli O157-serogroup strains are classified as enterohemorrhagic E. coli (EHEC), which is known as an important food-borne pathogen for humans. They usually produce Shiga toxin (Stx) 1 and/or Stx2, and express H7-flagella antigen (or nonmotile). However, O157 strains that do not produce Stxs and express H antigens different from H7 are sometimes isolated from clinical and other sources. Multilocus sequence analysis revealed that these 21 O157:non-H7 strains tested in this study belong to multiple evolutionary lineages different from that of EHEC O157:H7 strains, suggesting a wide distribution of the gene set encoding the O157-antigen biosynthesis in multiple lineages. To gain insight into the gene organization and the sequence similarity of the O157-antigen biosynthesis gene clusters, we conducted genomic comparisons of the chromosomal regions (about 59 kb in each strain) covering the O-antigen gene cluster and its flanking regions between six O157:H7/non-H7 strains. Gene organization of the O157-antigen gene cluster was identical among O157:H7/non-H7 strains, but was divided into two distinct types at the nucleotide sequence level. Interestingly, distribution of the two types did not clearly follow the evolutionary lineages of the strains, suggesting that horizontal gene transfer of both types of O157-antigen gene clusters has occurred independently among E. coli strains. Additionally, detailed sequence comparison revealed that some positions of the repetitive extragenic palindromic (REP) sequences in the regions flanking the O-antigen gene clusters were coincident with possible recombination points. From these results, we conclude that the horizontal transfer of the O157-antigen gene clusters induced the emergence of multiple O157 lineages within E. coli and speculate that REP sequences may involve one of the driving forces for exchange and evolution of O-antigen loci.  相似文献   

12.
An environmental freshwater bacterial isolate, DM104, appearing as Shigella-like colonies on selective agar plates was found to show strong and specific serological cross-reactivity with Shigella dysenteriae type 4. Biochemical identification according to the analytical profile index, molecular serotyping by restriction of the amplified O-antigen gene cluster (rfb-RFLP), together with phylogenetic analysis of the 16S rRNA gene and multi-locus sequence analysis, identified the isolate as Escherichia albertii. rfb-RFLP of DM104, revealed a profile different from that of S. dysenteriae type 4. However, western blot analysis of extracted lipopolysaccharides demonstrated strong cross-reactivity with S. dysenteriae type 4 using specific monovalent antisera and a lipopolysaccharide gel banding profile similar to that of S. dysenteriae type 4. The observed O-antigen cross-reaction between an E. albertii isolate and S. dysenteriae extends our knowledge of the extent of O-antigen cross-reaction within the Escherichia/Shigella group of organisms, and offers the possibility of using DM104 and similar cross-reacting strains as shigellosis vaccine candidates.  相似文献   

13.
O-antigen representing the O-polysaccharide chain of the lipopolysaccharide is the most variable constituent on the cell surface of Gram-negative bacteria and a player in their pathogenicity. The O-polysaccharide of Escherichia coli O109 was studied by sugar analysis and nuclear magnetic resonance spectroscopy and found to contain a rarely occurring monosaccharide, 2,3-diacetamido-2,3,6-trideoxy-l-mannose (l-RhaNAc3NAc). The following structure of the tetrasaccharide repeating unit of the O-polysaccharide was established, which is closely related to that of Proteus penneri O66: Ac--4-β-L-RhapNAc3NAc -->4)-α-D-Glcp-(1-->3)-α-L-6dTalp-(1-->3)-β-D-GlcpNAc-(1-->. The O-antigen gene cluster of E. coli O109 was sequenced and all 14 genes found were assigned functions based on their similarity to genes from the available databases. Putative genes for synthesis of l-RhaN3N were found in E. coli O109 and their homologues in E. coli O119, whose O-antigen has been reported earlier to contain 2-acetamido-2,3,6-trideoxy-3-formamido-d-mannose (d-RhaNAc3NFo). Analysis by GLC of the (S)-2-octyl glycosides confirmed that the absolute configuration of RhaN3N in E. coli O119 should be revised from D TO L.  相似文献   

14.
The chemical composition of each O-antigen subunit in gram-negative bacteria is a reflection of the unique DNA sequences within each rfb operon. By characterizing DNA sequences contained with each rfb operon, a diagnostic serotype-specific probe to Escherichia coli O serotypes that are commonly associated with bacterial infections can be generated. Recently, from an E. coli O157:H7 cosmid library, O-antigen-positive cosmids were identified with O157-specific antisera. By using the cosmid DNAs as probes, several DNA fragments which were unique to E. coli O157 serotypes were identified by Southern analysis. Several of these DNA fragments were subcloned from O157-antigen-positive cosmids and served as DNA probes in Southern analysis. One DNA fragment within plasmid pDS306 which was specific for E. coli O157 serotypes was identified by Southern analysis. The DNA sequence for this plasmid revealed homology to two rfb genes, the first of which encodes a GDP-mannose dehydratase. These rfb genes were similar to O-antigen biosynthesis genes in Vibrio cholerae and Yersinia enterocolitica serotype O:8. An oligonucleotide primer pair was designed to amplify a 420-bp DNA fragment from E. coli O157 serotypes. The PCR test was specific for E. coli O157 serotypes. PCR detected as few as 10 cells with the O157-specific rfb oligonucleotide primers. Coupled with current enrichment protocols, O157 serotyping by PCR will provide a rapid, specific, and sensitive method for identifying E. coli O157.  相似文献   

15.
Glycoconjugate is one of the most efficacious and safest vaccines against bacterial pathogens. Previous studies of glycoconjugates against pathogen E. coli O157:H7 focused more on the humoral responses they elicited. However, little was known about their cellular responses. In this study, we exploited a novel approach based on bacterial protein N-linked glycosylation system to produce glycoconjugate containing Escherichia coli O157:H7 O-antigen linked with maltose-binding protein and examined its humoral and cellular responses in BALB/c mice. The transfer of E. coli O157:H7 O-antigen to MBP was confirmed by western blot and MALDI-TOF MS. Mice injected with glycoconjugate O-Ag-MBP elicited serum bactericidal antibodies including anti-E. coli O157:H7 O-antigen IgG and IgM. Interestingly, O-Ag-MBP also stimulated the secretion of anti-E. coli O157:H7 O-antigen IgA in intestine. In addition, O-Ag-MBP stimulated cellular responses by recruiting Th1-biased CD4+ T cells, CD8+ T cells. Meanwhile, O-Ag-MBP induced the upregulation of Th1-related IFN-γ and downregulation of Th2-related IL-4, and the upregulation of IFN-γ was stimulated by MBP in a dose-dependent manner. MBP showed TLR4 agonist-like properties to activate Th1 cells as carrier protein of O-Ag-MBP. Thus, glycoconjugate vaccine E. coli O157:H7-specific O-Ag-MBP produced by bacterial protein N-linked glycosylation system was able to elicit both humoral and Th1-biased cellular responses.  相似文献   

16.
Two chemically different O-polysaccharides, a low molecular mass form of LPS and core LPS produced by chemostat-grown E. coli O157, were analysed by SDS-PAGE, silver staining and immunoblotting. The reactivities of the different O-polysaccharides with antisera prepared against E. coli O157 grown in batch culture, Salmonella O30 or Brucella abortus were very similar, showing that the O-polysaccharides share at least some antigenic determinants. The reactions of the low molecular mass LPS with the antisera indicated it was semi-rough LPS having one repeat unit of the O-polysaccharide attached to core LPS.  相似文献   

17.
The phenol-phase soluble lipopolysaccharide isolated from Escherichia coli 0:157 by the hot phenol-water extraction procedure was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, periodate oxidation, methylation, and 13C and 1H nuclear magnetic resonance studies to be an unbranched linear polysaccharide with a tetrasaccharide repeating unit having the structure: (formula; see text) The serological cross-reactivity of E. coli 0:157 with Brucella abortus, Yersinia enterocolitica (serotype 0:9), group N Salmonella, and some other E. coli species can be related immunochemically to the presence of 1,2-glycosylated N-acylated 4-amino-4, 6-dideoxy-alpha-D-mannopyranosyl residues in the O-chains of their respective lipopolysaccharides.  相似文献   

18.
The lipopolysaccharide of Citrobacter youngae O1, strain PCM 1492 was degraded with acid or alkali under mild conditions, and the resultant polysaccharide was isolated by GPC and studied by sugar and methylation analyses and 1H and 13C NMR spectroscopies, including 2D COSY, TOCSY, NOESY and 1H, 13C HSQC experiments. The following structure of the branched tetrasaccharide repeating unit of the O-polysaccharide was established: [structure: see text] where substitution with the alpha-D-Ribf group is nonstoichiometric. This group occurs rarely in bacterial polysaccharides and is easily cleaved under mild acidic conditions. Studies with polyclonal rabbit antisera against whole cells of C. youngae PCM 1492 and PCM 1506 showed the serological identity of the lipopolysaccharides of C. youngae PCM 1492, PCM 1493 and PCM 1506, which are classified in serogroup O1.  相似文献   

19.
PCR-based assays for detecting enterohemorrhagic Escherichia coli serogroups O26 and O113 were developed by targeting the wzx (O-antigen flippase) and the wzy (O-antigen polymerase) genes found in the O-antigen gene cluster of each organism. The PCR assays were specific for the respective serogroups, as there was no amplification of DNA from non-O26 and non-O113 E. coli serogroups or from other bacterial genera tested. Using the PCR assays, we were able to detect the organisms in seeded apple juice inoculated at concentration levels as low as < or =10 CFU/ml. The O26- and O113-specific PCR assays can potentially be used for typing E. coli O26 and O113 serogroups; these assays will offer an advantage to food and environmental microbiology laboratories in terms of identifying these non-O157 serogroups by replacing antigen-based serotyping.  相似文献   

20.
Molecular beacons (MBs) are oligonucleotide probes that fluoresce upon hybridization. In this paper, we described the development of a real-time PCR assay to detect the presence of Escherichia coli O157:H7 using these fluorogenic reporter molecules. MBs were designed to recognize a 26-bp region of the rfbE gene, coding for an enzyme necessary for O-antigen biosynthesis. The specificity of the MB-based PCR assay was evaluated using various enterohemorrhagic (EHEC) and Shiga-like toxin-producing (STEC) E. coli strains as well as bacteria species that cross-react with the O157 antisera. All E. coli serotype O157 tested was positively identified while all other species, including the closely related O55 were not detected by the assay. Positive detection of E. coli O157:H7 was demonstrated when >10(2) CFU/ml was present in the samples. The capability of the assay to detect E. coli O157:H7 in raw milk and apple juice was demonstrated. As few as 1 CFU/ml was detected after 6 h of enrichment. These assays could be carried out entirely in sealed PCR tubes, enabling rapid and semiautomated detection of E. coli O157:H7 in food and environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号