首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ATPase (ATP phosphohydrolase, EC 3.6.1.3) was detected in the membrane fraction of the strict anaerobic bacterium, Clostridium pasteurianum. About 70% of the total activity was found in the particulate fraction. The enzyme was Mg2+ dependent; Co2+ and Mn2+ but not Ca2+ could replace Mg2+ to some extent; the activation by Mg2+ was slightly antagonized by Ca2+. Even in the presence of Mg2+, Na+ or K+ had no stimulatory effect. The ATPase reaction was effectively inhibited by one of its products, ADP, and only slightly by the other product, inorganic phosphate. Of the nucleoside triphosphates tested ATP was hydrolyzed with highest affinity ([S]0.5 v = 1.3 mM) and maximal activity (120 U/g). The ATPase activity could be nearly completely solubilized by treatment of the membranes with 2 M LiCl in the absence of Mg2+. Solubilization, however, led to instability of the enzyme. The clostridial solubilized and membrane-bound ATPase showed different properties similar to the "allotopic" properties of mitochondrial and other bacterial ATPases. The membrane-bound ATPase in contrast to the soluble ATPase was sensitive to the ATPase inhibitor dicyclohexylcarbodiimide (DCCD). DCCD, at 10(-4) M, led to 80% inhibition of the membrane-bound enzyme; oligomycin ouabain, or NaN3 had no effect. The membrane-bound ATPase could not be stimulated by trypsin pretreatment. Since none of the mono- or divalent cations had any truly stimulatory effect, and since a pH gradient (interior alkaline), which was sensitive to the ATPase inhibitor DCCD, was maintained during growth of C. pasteurianum, it was concluded that the function of the clostridial ATPase was the same as that of the rather similar mitochondrial enzyme, namely H+ translocation. A H+-translocating, ATP-consuming ATPase appears to be intrinsic equipment of all prolaryotic cells and as such to be phylogenetically very old; in the course of evolution the enzyme might have been developed to a H+-(re)translocating, ATP-forming ATPase as probably realized in aerobic bacteria, mitochondria and chloroplasts.  相似文献   

2.
Homogeneous preparations of cytoplasmic membrane isolated from Staphylococcus aureus 6538P exhibited membrane-associated adenosine triphosphatase (ATPase) activity. Membrane ATPase activity was activated by divalent cations (4.0 mM: Mg2+ greater than Mn2+ greater than Co2+ greater than Zn2+), and ATP was hydrolyzed more readily than other nucleoside triphosphates and phosphorylated substrates. The pH optimum for the membrane ATPase was 6.5. The ATPase could not be released from the membrane by differential osmotic treatments, but detergent treatment effectively solubilized active enzyme. The nonionic detergent Triton X-100 (1%) released a protein with ATPase activity, after substrate-dependent staining in polyacrylamide gels, that differed slightly in electrophoretic migration when compared to the active enzyme solubilized with sodium dodecyl sulfate (0.1%). Membrane-associated ATPase activity was inhibited by N,N'-dicyclohexylcarbodiimide (0.001 to 1 mM) and NaF (50% inhibition at 5 mM NaF). Azide and trypsin inhibited activity, whereas ouabain had a slight inhibitory effect. Diethylstilbestrol showed appreciable activation of the membrane ATPase over the range employed (0.001 to 1 mM).  相似文献   

3.
The Kdp system from Escherichia coli is a derepressible high-affinity K+-uptake ATPase. Its membrane-bound ATPase activity was approximately 50 mumol g-1 min-1. The Kdp-ATPase complex was purified from everted vesicles by solubilization with the nonionic detergent Aminoxid WS 35 followed by DEAE-Sepharose CL-6B chromatography at pH 7.5 and pH 6.4 and gel filtration on Fractogel TSK HW-65. The overall yield of activity was 6.5% and the purity at least 90%. The isolated KdpABC complex had a high affinity for its substrates K+ (Km app. = 10 microM) and Mg2+-ATP (Km = 80 microM) and a narrow substrate specificity. The ATPase activity was inhibited by vanadate (Ki = 1.5 microM), fluorescein isothiocyanate (Ki = 3.5 microM), N,N'-dicyclohexylcarbodiimide (Ki = 60 microM) and N-ethylmaleimide (Ki = 0.1 mM). The purification protocol was likewise applicable to the isolation of a KdpA mutant ATPase which in contrast to the wild-type enzyme exhibited an increased Km value for K+ of 6 mM and a 10-fold lowered sensitivity for vanadate. Starting from the purified Kdp complex the single subunits were obtained by gel filtration on Bio-Gel P-100 in the presence of SDS. Both the native Kdp-ATPase and the SDS-denatured polypeptides were used to raise polyclonal antibodies. The specificity of the antisera was established by immunoblot analysis. In functional inhibition studies the anti-KdpABC and anti-KdpB sera impaired ATPase activity in the membrane-bound as well as in the purified state of the enzyme. In contrast, the anti-KdpC serum did not inhibit enzyme activity.  相似文献   

4.
Basal and trypsin-stimulated adenosine triphosphatase activities of Escherichia coli K 12 have been characterized at pH 7.5 in the membrane-bound state and in a soluble form of the enzyme. The saturation curve for Mg2+/ATP = 1/2 was hyperbolic with the membrane-bound enzyme and sigmoidal with the soluble enzyme. Trypsin did not modify the shape of the curves. The kinetic parameters were for the membrane-bound ATPase: apparent Km = 2.5 mM, Vmax (minus trypsin) = 1.6 mumol-min-1-mg protein-1, Vmax (plus trypsin) = 2.44 mumol-min-1-mg protein-1; for the soluble ATPase: [S0.5] = 1.2 mM, Vmax (-trypsin) = 4 mumol-min-1-mg protein-1; Vmax (+ trypsin) = 6.6 mumol-min-1-mg protein-1. Hill plot analysis showed a single slope for the membrane-bound ATPase (n = 0.92) but two slopes were obtained for the soluble enzyme (n = 0.98 and 1.87). It may suggest the existence of an initial positive cooperativity at low substrate concentrations followed by a lack of cooperativity at high ATP concentrations. Excess of free ATP and Mg2+ inhibited the ATPase but excess of Mg/ATP (1/2) did not. Saturation for ATP at constant Mg2+ concentration (4 mM) showed two sites (groups) with different Kms: at low ATP the values were 0.38 and 1.4 mM for the membrane-bound and soluble enzyme; at high ATP concentrations they were 17 and 20 mM, respectively. Mg2+ saturation at constant ATP (8 mM) revealed michealian kinetics for the membrane-bound ATPase and sigmoid one for the protein in soluble state. When the ATPase was assayed in presence of trypsin we obtained higher Km values for Mg2+. These results might suggest that trypsin stimulates E. coli ATPase by acting on some site(s) involved in Mg2+ binding. Adenosine diphosphate and inorganic phosphate (Pi) act as competitive inhibitors of Escherichia coli ATPase. The Ki values for Pi were 1.6 +/- 0.1 mM for the membrane-bound ATPase and 1.3 +/- 0.1 mM for the enzyme in soluble form, the Ki values for ADP being 1.7 mM and 0.75 mM for the membrane-bound and soluble ATPase, respectively. Hill plots of the activity of the soluble enzyme in presence of ADP showed that ADP decreased the interaction coefficient at ATP concentrations below its Km value. Trypsin did not modify the mechanism of inhibition or the inhibition constants. Dicyclohexylcarbodiimide (0.4 mM) inhibited the membrane-bound enzyme by 60-70% but concentrations 100 times higher did not affect the residual activity nor the soluble ATPase. This inhibition was independent of trypsin. Sodium azide (20 muM) inhibited both states of E. coli ATPase by 50%. Concentrations 25-fold higher were required for complete inhibition. Ouabain, atebrin and oligomycin did not affect the bacterial ATPase.  相似文献   

5.
The effects of chlorpromazine on various properties of the F1-ATPases from bovine heart mitochondria (MF1), the plasma membranes of Escherichia coli (EF1), and plasma membranes of the thermophilic bacterium PS3 (TF1) have been examined. While chlorpromazine inhibited MF1 with an I0.5 of about 50 microM and EF1 with an I0.5 of about 150 microM at 23 degrees C, the ATPase activity of TF1 was stimulated by chlorpromazine concentrations up to 0.6 mM at this temperature. Maximal activation of about 20% was observed at 0.2 mM chlorpromazine at 23 degrees C. Chlorpromazine concentrations greater than 0.6 mM inhibited TF1 at 23 degrees C. At 37 degrees C the ATPase activity of TF1 was doubled in the presence of 0.5 mM chlorpromazine, the concentration at which maximal stimulation was observed at this temperature. Chlorpromazine inhibited the rate of inactivation of EF1 by dicyclohexylcarbodiimide (DCCD) at 23 degrees C and pH 6.5. Concentrations of chlorpromazine which inhibited the ATPase activity of TF1 at pH 7.0 accelerated the rate of inactivation of the enzyme by DCCD at pH 6.5, while lower concentrations of the phenothiazine, which stimulated the ATPase, had no effect on DCCD inactivation. Chlorpromazine concentrations up to 1.0 mM had no effect on the rate of inactivation of TF1 by DCCD at 37 degrees C and pH 6.5. Chlorpromazine at 0.5 mM accelerated the rate of inactivation of MF1 by 5'-p-fluorosulfonylbenzoyladenosine (FSBA), while it slowed the rate of inactivation of EF1 by FSBA. The inactivation of TF1 by FSBA in the absence of chlorpromazine was complex and was not included in this comparison. Chlorpromazine protected MF1 and EF1 against cold inactivation. Whereas 100 microM chlorpromazine afforded about 90% stabilization of MF1 at 4 degrees C, only about 30% stabilization of EF1 was observed under the same conditions in the presence of 400 microM chlorpromazine. Each of the ATPases was inactivated by the structural analog of chlorpromazine, quinacrine mustard. Whereas 5 mM ATP and 5 mM ADP protected MF1 and TF1 against inactivation by 0.5 mM quinacrine mustard, the rate of inactivation of EF1 by quinacrine mustard was accelerated fourfold by 5 mM ATP and slightly accelerated by 5 mM ADP.  相似文献   

6.
We have measured the inhibitory potencies of local anesthetics (procaine, lidocaine, tetracaine and dibucaine) on ATP-mediated H+-translocation, Ca2+-transport and ATPase activity in membrane vesicles from Mycobacterium phlei. Procaine and lidocaine up to 1 mM concentration did not inhibit ATP-dependent H+-translocation, Ca2+-transport and ATPase activity. However, tetracaine and dibucaine at 0.2 mM concentration caused dissipation of the proton gradient, measured by the reversal of the quenching of fluorescence of quinacrine, and inhibition of active Ca2+-transport. Tetracaine (1 mM) inhibited membrane-bound ATPase activity without affecting solubilized F1-ATPase activity. Studies show that these local anesthetics do not prevent the inactivation of F0-F1 ATPase by dicyclohexylcarbodiimide (DCCD). Binding of [14C]DCCD to F0-proteolipid component remained unchanged in the presence of tetracaine indicating that DCCD and tetracaine do not share common binding sites on the F0-proteolipid sector. The inhibition of H+-translocation and membrane-bound ATPase activity by tetracaine was substantially additive in the presence of vanadate.  相似文献   

7.
ATPase (ATP phosphohydrolase, EC 3.6.1.3) was detected in the membrane fraction of the strict anaerobic bacterium, Clostridium pasteurianum. About 70% of the total activity was found in the particulate fraction. The enzyme was Mg2+ dependent; Co2+ and Mn2+ but not Ca2+ could replace Mg2+ to some extent; the activation by Mg2+ was slightly antagonized by Ca2+. Even in the presence of Mg2+, Na+ or K+ had no stimulatory effect. The ATPase reaction was effectively inhibited by one of its products, ADP, and only slightly by the other product, inorganic phosphate. Of the nucleoside triphosphates tested ATP was hydrolyzed with highest affinity ([S]0.5 V = 1.3 mM) and maximal activity (120 U/g). The ATPase activity could be nearly completely solubilized by treatment of the membranes with 2 M LiCl in the absence of Mg2+. Solubilization, however, led to instability of the enzyme.

The clostridial solubilized and membrane-bound ATPase showed different properties similar to the “allotopic” properties of mitochondrial and other bacterial ATPases. The membrane-bound ATPase in contrast to the soluble ATPase was sensitive to the ATPase inhibitor dicyclohexylcarbodiimide (DCCD). DCCD, at 10-4 M, led to 80% inhibition of the membrane-bound enzyme; oligomycin, ouabain, or NaN3 had no effect. The membrane-bound ATPase could not be stimulated by trypsin pretreatment.

Since none of the mono- or divalent cations had any truly stimulatory effect, and since a pH gradient (interior alkaline), which was sensitive to the ATPase inhibitor DCCD, was maintained during growth of C. pasteurianum, it was concluded that the function of the clostridial ATPase was the same as that of the rather similar mitochondrial enzyme, namely H+ translocation. A H+-translocating, ATP-consuming ATPase appears to be intrinsic equipment of all prokaryotic cells and as such to be phylogenetically very old; in the course of evolution the enzyme might have been developed to a H+-(re)translocating, ATP-forming ATPase as probably realized in aerobic bacteria, mitochondria and chloroplasts.  相似文献   


8.
An N-ethylmaleimide-sensitive ATPase was purified 100-fold from chromaffin granule membranes. The purification procedure included solubilization with polyoxyethylene 9 lauryl ether, chromatography on hydroxylapatite and DEAE-cellulose columns, and glycerol gradient centrifugations. Inclusion of phosphatidylserine and a mixture of protease inhibitors during the purification procedure was necessary to maintain the activity of the preparation. The purified preparation contained four major polypeptides with molecular masses of about 115, 72, 57, and 39 kDa, which were copurified with the ATPase activity. The 115-kDa subunit binds [14C]dicyclohexylcarbodiimide and the subunits of 115 and 39 kDa bind [14C]N-ethylmaleimide. The ATP-dependent proton uptake activity of chromaffin granule membranes is inhibited 50% with about 20 microM N-ethylmaleimide, while over 5 mM concentrations of the inhibitor were required to block the ATPase activity of the membranes. The ATPase activity of the purified enzyme was inhibited via two different affinities: a high affinity site with a Ki in the microM range and a low affinity site in the mM range, each contributing to about 50% inhibition of the enzyme. It is concluded that the proton-ATPase of chromaffin granule membranes contains at least four subunits with the 115-kDa polypeptide being the main subunit having the active site for the ATPase activity of the enzyme.  相似文献   

9.
The membrane-bound coupling factor from Mycobacterium phlei was solubilized from membrane vesicles by washing with low ionic strength buffer or 0.25 M sucrose. The solubilized enzyme exhibited coupling factor, latent ATPase, and succinate oxidation-stimulating activity. Purification by affinity chromatography using Sepharose coupled to ADP yielded a homogeneous preparation of latent ATPase which was purified about 200-fold with an 84% yield in a single step. Purified latent ATPase exhibited coupling factor activity but no succinate oxidation-stimulating activity. The molecular weight of latent ATPase was determined to be 250,000 +/- 10,000 by Sephadex G-200 chromatography. The ATPase was unmasked by trypsin treatment and activated by Mg2+ ion. However, trypsin treatment inactivated the coupling factor activity in the purified enzyme, indicating that the catalytic sites for ATPase and coupling activity are different. Unlike mitochondrial ATPase, latent ATPase from M. phlei was not cold-labile. Of the nucleoside triphosphates, UTP, ITP, and epsilon-ATP (1-N6-ethenoadenosine triphosphate) were hydrolyzed to a lesser extent compared to ATP. Kinetic data showed that ADP acted as a competitive inhibitor of latent ATPase activity with a Ki of 5 x 10(-3) M. Uncouplers of oxidative phosphorylation and respiratory inhibitors did not affect the latent ATPase activity, while sodium azide (0.1 mM) inhibited the latent ATPase activity.  相似文献   

10.
Two different types of essential carboxyl groups were detected in the extrinsic component of the proton ATPase of Rhodospirillum rubrum. Chemical modification of R. rubrum chromatophores or its solubilized ATPase by Woodward's reagent K resulted in inactivation of photophosphorylating and ATPase activities. The apparent order of reaction was nearly 1 with respect to reagent concentration and similar K1 were obtained for the soluble and membrane-bound ATPases suggesting that inactivation was associated with modification of one essential carboxyl group located in the soluble component of the proton ATPase. Inactivation was prevented by adenine nucleotides but not by divalent cations. Dicyclohexylcarbodiimide completely inhibited the solubilized ATPase with a K1 of 5.2 mM and a K2 of 0.81 min-1. Mg2+ afforded nearly complete protection with a Kd of 2.8 mM. Two moles of [14C]dicyclohexylcarbodiimide were incorporated per mole of enzyme for complete inactivation but in the presence of 30 mM MgCl2 only one mole was incorporated and there was no inhibition. The labeling was recovered mostly from the beta subunit. The incorporation of the labeled reagent into the ATPase was not prevented by previous modification with Woodward's reagent K. It is concluded that both reagents modified two different essential carboxyl groups in the soluble ATPase from R. rubrum.  相似文献   

11.
A high-affinity calcium-dependent ATPase (Ca2+-ATPase) was identified in a crude plasma membrane fraction from Entamoeba invadens (IP-1 strain). The Ca2+-ATPase activity was solubilized from the membrane by utilizing the non-ionic detergent octylglucoside. The activity had an apparent half maximal saturation constant of 0.4 +/- 0.05 microM for free calcium. The calcium activation of ATPase activity followed a cooperative mechanism (Hill number of 2.3 +/- 0.13) which suggests that two interacting sites were involved. The high-affinity Ca2+-ATPase appeared to be magnesium-independent, since by lowering contaminant free magnesium with trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid did not modify the activity observed with Ca2+. The apparent Km of the enzyme for ATP was 31 microM. The observed activity had an optimum pH of 8.8. The enzyme was insensitive to various agents such as Na+, K+, ouabain, dicyclohexylcarbodiimide, KCN, NaN3, mersalyl, quercetin, ruthenium red and vanadate. Only lanthanum (0.5 mM) inhibited 100% the enzymatic activity. Calmodulin and trifluoperazine at the concentrations tested did not modify the Ca2+-ATPase activity.  相似文献   

12.
Calmodulin-dependent guanylate cyclase from Tetrahymena plasma membranes was solubilized in about a 22% yield by using digitonin in the presence of 0.2 mM CaCl2 and 20% glycerol. The detergent, when present in the assay at concentrations above 0.05%, diminished the basal and calmodulin-stimulated activity of the enzyme. Guanylate cyclase solubilized with digitonin was eluted from DEAE-cellulose with 200 mM KCl in a yield of 50%. Properties of the solubilized enzyme were similar to those of the native membrane-bound enzyme. The Kms for Mg-GTP and Mn-GTP were 140 and 30 microM, respectively. The enzyme required Mn2+ for maximum activity, the relative activity in the presence of Mg2+ being 30% of the activity with Mn2+. The solubilized enzyme retained the ability to be activated by calmodulin, with its extent being reduced as compared to the membrane-bound enzyme. The presence of a Ca2+-dependent calmodulin-binding site on the solubilized enzyme was shown by the Ca2+-dependent retention of the enzyme on a calmodulin-Sepharose-4B column.  相似文献   

13.
An ATPase was purified from Nitrobacter winogradskyi, and some of its molecular and enzymatic properties were determined. The enzyme was composed of two subunits of 64 and 59 kDa, respectively. The enzyme had its pH optimum at 9.5 and showed a specific activity of 7 units per mg protein. This activity was about 14% and 18% of that of F1-ATPases obtained from Escherichia coli and Sulfolobus acidocaldarius, respectively. The enzyme was 29% and 6% inhibited by 100 microM dicyclohexylcarbodiimide (DCCD) and 100 microM NaN3, respectively. It was not inhibited by 20 mM NaNO3.  相似文献   

14.
The plasma membrane ATP-phosphohydrolase (ATPase) from red beet (Beta vulgaris L.) storage tissue was solubilized with the zwitterionic detergent Zwittergent 3-14 from a plasma membrane-enriched fraction which was extracted with the anionic detergent, sodium deoxycholate. For both the extraction of extraneous proteins by deoxycholate and the solubilization of active plasma membrane ATPase by Zwittergent 3-14, the optimal concentration of detergent was 0.1% (weight per volume) with a detergent to protein ratio of 1.0 (milligram per milligram). The properties of the solubilized ATPase were found to be similar to the membrane-bound enzyme with respect to pH optimum, substrate specificity, inhibitor sensitivity, and kinetics of K+ stimulation. The solubilized ATPase preparation formed a rapidly turning over phosphoenzyme, the breakdown velocity of which was increased in the presence of 50 millimolar KCl. Solubilization with 0.1% Zwittergent 3-14 following extraction with 0.1% deoxycholate resulted in an increase in both ATPase activity and steady state phosphoenzyme level; however, a direct correspondence between the increase in ATPase activity and phosphorylation level did not exist. It is proposed that this discrepancy may be the result of a detergent-mediated modification of kinetic rate constants in the mechanism of the enzyme.  相似文献   

15.
We have systematically investigated certain characteristics of the ATP-dependent proton transport mechanism of bovine brain clathrin-coated vesicles. H+ transport specific activity was shown by column chromatograpy to co-purify with coated vesicles, however, the clathrin coat is not required for vesicle acidification as H+ transport was not altered by prior removal of the clathrin coat. Acidification of the vesicle interior, measured by fluorescence quenching of acridine orange, displayed considerable anion selectively (Cl- greater than Br- much greater than NO3- much greater than gluconate, SO2-(4), HPO2-(4), mannitol; Km for Cl- congruent to 15 mM), but was relatively insensitive to cation replacement as long as Cl- was present. Acidification was unaffected by ouabain or vanadate but was inhibited by N-ethylmaleimide (IC50 less than 10 microM), dicyclohexylcarbodiimide (DCCD) (IC50 congruent to 10 microM), chlorpromazine (IC50 congruent to 15 microM), and oligomycin (IC50 congruent to 3 microM). In contrast to N-ethylmaleimide, chlorpromazine rapidly dissipated preformed pH gradients. Valinomycin stimulated H+ transport in the presence of potassium salts (gluconate much greater than NO3- greater than Cl-), and the membrane-potential-sensitive dye Oxonol V demonstrated an ATP-dependent interior-positive vesicle membrane potential which was greater in the absence of permeant anions (mannitol greater than potassium gluconate greater than KCl) and was abolished by N-ethylmaleimide, protonophores or detergent. Total vesicle-associated ouabain-insensitive ATPase activity was inhibited 64% by 1 mM N-ethylmaleimide, and correlated poorly with H+ transport, however N-ethylmaleimide-sensitive ATPase activity correlated well with proton transport (r = 0.95) in the presence of various Cl- salts and KNO3. Finally, vesicles prepared from bovine brain synaptic membranes exhibited H+ transport activity similar to that of the coated vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The Ca-ATPase of sarcoplasmic reticulum was solubilized at pH 6.5 and 30 degrees C using different nonionic detergents, Triton X-100, C12E8, Lubrol PX, or Tween 20. After full solubilization by any of these detergents, the enzyme was unstable (t1/2 = 2-3 min) in the absence of Ca2+. The soluble enzyme was stable in the presence of calcium, half-maximal protection being attained in the presence of 0.2 mM Ca2+. In the absence of Ca2+, stability was restored by addition of co-solvents dimethyl sulfoxide or glycerol. In the presence of 4 mM Ca2+, the progressive addition of nonionic detergents to a medium containing leaky vesicles promoted an increase, up to 3-fold, in the rate of ATP hydrolysis. This was not observed when ITP was used as substrate. The small amount of ADP accumulated in the medium during ATP hydrolysis was sufficient to inhibit the ATPase activity of the membrane-bound enzyme but had no effect on the soluble enzyme. Increasing concentrations of detergent promoted a progressive inhibition of the ATP----Pi exchange reaction. The ATP hydrolysis/synthesis ratio of soluble enzyme was 10 times higher than that of membranous enzyme. Addition of co-solvent restored this ratio to values similar to those obtained with membrane-bound Ca-ATPase. Soluble enzyme prepared from native sarcoplasmic reticulum vesicles was able to catalyze the net synthesis of ATP when phosphorylated by Pi in the presence of dimethyl sulfoxide and then diluted in a medium containing 10 mM CaCl2 and 2 mM ADP. This was not observed when the soluble enzyme was prepared from purified Ca-ATPase. The results suggest that some of the partial reactions of the catalytic cycle of Ca-ATPase are dependent on the hydrophobic environment found in the native membrane. This environment can be mimicked by co-solvents.  相似文献   

17.
1. The ADP plus Pi-stimulated oxidation of succinate by mitochondria from the insect trypanosomatid Crithidia fasciculata was maximally inhibited (64%) by suramin at a concentration (60 microM) which did not affect the electron transport uncoupled by FCCP. Inhibition of the latter required a considerably higher concentration of the drug, 50% inhibition being attained at about 0.8 mM. 2. ATP synthesis by mitochondrial particles was inhibited by suramin, 50% inhibition being attained at about 50 microM. This inhibition was strictly competitive towards ADP, but it was not linearly competitive, since a secondary plot of apparent Km values vs concentration of the drug was strongly concave upwards. 3. The FCCP-stimulated ATPase activity of the mitochondrial particles was completely abolished either by oligomycin (20 micrograms/ml) or by 200 microM suramin. 4. The results suggest that oxidative phosphorylation may be a primary target for the trypanocide effect of suramin on organisms having, like C. fasciculata, a well-developed respiratory chain.  相似文献   

18.
The activity of the membrane-bound ethylene-forming enzyme, previously reported in carnation (Dianthus caryophyllus L. cv White Sim) petals (Mayak, Legge, Thompson 1981 Planta 153: 49-55), is inhibited by sugars. Of the various sugars tested, sorbitol was the most effective and glucose the least. The effect of sugars was also evaluated on solubilized ethylene-forming enzyme activity, obtained by the use of 0.6% Nonidet NP-40 detergent. Similar to the membrane-bound activity, the solubilized activity was also inhibited. Kinetic studies revealed that the inhibition by sugars is reversible, and that inhibition by sucrose is uncompetitive while that by sorbitol is competitive. During senescence of petals, a decline in sugar content and climacteric like increase in ethylene occurs. Hence, the physiological relevance of sugar inhibition and its possible involvement in the regulation of ethylene biosynthesis is suggested.  相似文献   

19.
LaATP is shown to be an effective inhibitor of the calcium ATPase of sarcoplasmic reticulum because the binding of LaATP to cE.Ca2 results in the formation of lanthanum phosphoenzyme, which decays slowly. Steady-state activity of the calcium ATPase in leaky sarcoplasmic reticulum vesicles is inhibited 50% by 0.16 microM LaCl3 (15 nM free La3+, 21 nM LaATP) in the presence of 25 microM Ca2+ and 49 microM MgATP (5 mM MgSO4, 100 mM KCl, 40 mM 4-morpholinepropanesulfonic acid, pH 7.0, 25 degrees C). However, 50% inhibition of the uptake of 45Ca and phosphorylation by [gamma-32P]ATP in a single turnover experiment requires 100 microM LaCl3 (28 microM free La3+) in the presence of 25 microM Ca2+; this inhibition is reversed by calcium but inhibition of steady-state turnover is not. Therefore, binding of La3+ to the cytoplasmic calcium transport site is not responsible for the inhibition of steady-state ATPase activity. The addition of 6.7 microM LaCl3 (1.1 microM free La3+) has no effect on the rate of dephosphorylation of phosphoenzyme formed from MgATP and enzyme in leaky vesicles, while 6.7 mM CaCl2 slows the rate of phosphoenzyme hydrolysis as expected; 6.7 microM LaCl3 and 6.7 mM CaCl2 cause 95 and 98% inhibition of steady-state ATPase activity, respectively. This shows that inhibition of ATPase activity in the steady state is not caused by binding of La3+ to the intravesicular calcium transport site of the phosphoenzyme. Inhibition of ATPase activity by 2 microM LaCl3 (0.16 microM free La3+, 0.31 microM LaATP) requires greater than 5 s, which corresponds to approximately 50 turnovers, to reach a steady-state level of greater than or equal to 80% inhibition. Inhibition by La3+ is fully reversed by the addition of 0.55 mM CaCl2 and 0.50 mM EGTA; this reactivation is slow with t1/2 approximately 9 s. Two forms of phosphoenzyme are present in reactions that are partially inhibited by La3+: phosphoenzyme with Mg2+ at the catalytic site and phosphoenzyme with La3+ at the catalytic site, which undergo hydrolysis with observed rate constants of greater than 4 and 0.05 s-1, respectively. We conclude, therefore, that La3+ inhibits steady-state ATPase activity under these conditions by replacing Mg2+ as the catalytic ion for phosphoryl transfer. The slow development of inhibition corresponds to the accumulation of lanthanum phosphoenzyme. Initially, most of the enzyme catalyzes MgATP hydrolysis, but the fraction of enzyme with La3+ bound to the catalytic site gradually increases because lanthanum phosphoenzyme undergoes hydrolysis much more slowly than does magnesium phosphoenzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Electrophorus electroplax microsomes were examined for Ca2+- and Mg2+-dependent ATPase activity. In addition to the previously reported low-affinity ATPase, a high-affinity (Ca2+,Mg2+)-ATPase was found. At low ATP and Mg2+ concentrations (200 microM or less), the high-affinity (Ca2+,Mg2+)-ATPase exhibits an activity of 18 nmol Pi mg-1 min-1 with 0.58 microM Ca2+. At higher ATP concentrations (3 mM), the low-affinity Ca2+-ATPase predominates, with an activity of 28 nmol Pi mg-1 min-1 with 1 mM Ca2+. In addition, Mg2+ can also activate the low-affinity ATPase (18 nmol Pi mg-1 min-1). The high-affinity ATPase hydrolyzes ATP at a greater rate than it does GTP, ITP, or UTP and is insensitive to ouabain, oligomycin, or dicyclohexylcarbodiimide inhibition. The high-affinity enzyme is inhibited by vanadate, trifluoperazine, and N-ethylmaleimide. Added calmodulin does not significantly stimulate enzyme activity; rinsing the microsomes with EGTA does not confer calmodulin sensitivity. Thus the high-affinity ATPase from electroplax microsomes is similar to the (Ca2+,Mg2+)-ATPase reported to be associated with Ca2+ transport, based on its affinity for calcium and its response to inhibitors. The low-affinity enzyme hydrolyzes all tested nucleoside triphosphates, as well as diphosphates, but not AMP. Vanadate and N-ethylmaleimide do not inhibit the low-affinity enzymes. The low-affinity enzyme reflects a nonspecific nucleoside triphosphatase, probably an ectoenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号