首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Experiments were conducted using the biochemical specific-locus test to assess the mutagenicity of N-ethyl-N-nitrosourea (ENU) in mature oocytes of mice. C57Bl/6J females were treated with 100 mg/kg ENU by intraperitoneal injection and mated to untreated DBA males for 1 week following treatment. 1447 progeny were screened for evidence of mutations affecting the electrophoretic mobility of 32 different proteins; two mutants were detected by electrophoretic analyses. These results provide evidence that ENU is a germ-cell mutagen in mouse mature oocytes, although the frequency of mutants is somewhat lower than that obtained from spermatogonia treated with the same dose.  相似文献   

2.
A dose-response analysis was carried out with 2 independent data sets available for ethylnitrosourea-induced specific-locus mutations in spermatogonia of the mouse. It was assumed that the occurrence of mutation is binomially distributed and maximum-likelihood procedures were employed to determine the appropriateness of 4 alternative models, Linear, Linear-Quadratic, Power, and Threshold, in describing the dependence of the binomial parameter on dose. For both data sets, the Threshold model yielded a far superior fit and the threshold dose was estimated to be between 34 and 39 mg/kg. These results are supported by the relatively inefficient response of ethylnitrosourea at lower doses in inducing DNA adducts. Relevant specific-locus mutation results in the mouse for low-dose fractionated treatment as well as the recovery of mutation mosaics indicate the threshold model to be an oversimplification. Rather than a threshold dose below which 100% of the induced DNA adducts are repaired, we propose that some DNA adducts which may eventually be fixed as a mutation persist through a number of repair-competent cell divisions and do not interfere with normal cell function nor do they induce a repair response before being eventually fixed as a mutation. We interpret the thresholded response for ethylnitrosourea-induced specific-locus mutations to be due to a saturable repair process which at lower doses results in ethylnitrosourea being less efficient in inducing mutation. Once this repair process is saturated, a clear dose-related increase in the mutation rate is observed.  相似文献   

3.
Jack Favor 《Mutation research》1998,405(2):1488-226
Ethylnitrosourea is the most efficient chemical mutagen in spermatogonial stem cells of the mouse and its mutagenic activity has been intensively studied. The pertinent specific-locus mutation test results for a discussion of low dose–effect studies have been summarized and indicate: (1) A threshold dose response best characterizes the relationship between dose and mutation rate. (2) The reduced effectiveness of ethylnitrosourea in the low dose range is likely due to a saturable repair process. (3) The recovery of the saturable repair process as assessed in fractionated dose experiments is long (ca. 168 h). The dynamics of stem cell spermatogonia suggests a long time interval before the cell population passes through at least one cell division and this may be relevant to an interpretation of the fractionation effects. (4) There is a slight but important discrepancy between the predicted and observed mutagenic activity of ethylnitrosourea in the low dose range. This is interpreted to be due to the differences between a mathematical abstraction and the biological realities of the system being studied.  相似文献   

4.
The mutagenic effectiveness of ethylnitrosurea (ENU) was assessed in treated spermatogonia of DBA/2 mice. In a total of 17,515 offspring examined following 160 mg ENU/kg body weight treatment of parental males, 26 forward specific-locus mutations, 2 reverse specific-locus mutations and 9 dominant cataract mutations were recovered. ENU increased the mutation rate to all 3 genetic endpoints. However, ENU was less effective in treated DBA/2 mice than in the standard experimental protocol employing treated hybrid (102 X C3H)F1 male mice. This observed difference for a direct-acting mutagen such as ENU may result from differences in the detoxification of ENU or from differences in the DNA-repair capabilities of strain DBA/2. The first documented reverse mutation of the b allele is reported. The reversion was shown to be due to an AT to GC transition. To date, in addition to the reverse mutation of the b allele, 5 independent ENU-induced mutations recovered in germ cells of the mouse have been molecularly characterized and all have been shown to be base substitutions at an AT site. This is in contrast to the expected mechanism of ENU mutation induction due to O6-ethylguanine adduct formation which results in a GC to AT base-pair substitution and emphasizes the complexities of mutagenesis in germ cells of mammals.  相似文献   

5.
6.
7.
8.
J Favor 《Mutation research》1986,162(1):69-80
A systematic comparison of the frequency of dominant cataract and recessive specific-locus mutations in mice has been extended to include results for 80 and 160 mg ethylnitrosourea per kg body weight spermatogonial treatment. The frequency of confirmed dominant cataract mutations in the historical control, 80 and 160 mg/kg ethylnitrosourea treatment groups was 1/22594, 8/5090 and 14/6435, respectively. The frequency of recessive specific-locus mutations in the same dose groups was, respectively, 19/227805, 20/13274 and 35/8658. These present results confirm previous results, which indicate that ethylnitrosourea is effective in inducing both recessive specific-locus and dominant cataract mutations although the per locus mutation rate to recessive alleles was observed to be approximately 6 times greater than the per locus mutation rate to dominant alleles. The exclusion of certain classes of lens opacity variant phenotypes, previously demonstrated not to be due to a dominant mutation, from the group of suspected dominant cataract mutations subjected to a genetic confirmation test has greatly improved the efficiency of the test. A total of 23 dominant cataract mutations were confirmed from a group of 67 phenotypic variants. Of the 23 confirmed dominant cataract mutations, 8 were shown to have reduced transmission to the following generation of offspring expressing the mutant phenotype. These results are also consistent with previous results for ethylnitrosourea or radiation treatment in which it was shown that approximately one-third of the recovered mutations have reduced penetrance. One group of dominant cataract mutations, with phenotypic effects on the polar, sub-capsular or corneal regions, is overly represented in the group of recovered mutations with a reduced transmission of offspring expressing the mutant phenotype. Two hypotheses are suggested for this observation, both dependent on the fact that the regions affected indicate that the mutations are expressed later in the development of the eye. Either all carrier individuals have not expressed the phenotype at the time of examination and classification, or later acting mutations are more subject to environmental interactions resulting in more variable expression. Finally, it is argued that a dominant cataract mutation test represents a most practicable protocol to screen for induced dominant mutations in germ cells of the mouse. The imposition of the criterion that suspected variants be subjected to a genetic confirmation test has at least two advantages beside the fact that results represent unambiguous mutational events.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
A specific-locus test to determine the effect of N-propyl-N-nitrosourea (PNU) on the stem-cell spermatogonia of mice has been performed. Male wild-type mice (C3H/He) were treated with an intraperitoneal injection of 200 mg/kg [corrected] of PNU. Eight weeks after the injections, the males were mated with tester stock females (PW), homozygous for 6 visible recessive genes. Twelve mutants among 8605 offspring were observed. The mutation frequency with PNU was calculated to be 23.2 x 10(-5)/locus/gamete, showing a significant difference from that of the non-treated control. The mutations were all heritable and half of them were viable in homozygous condition. The mutation frequency with PNU was about one-third of that with N-ethyl-N-nitrosourea, a highly potent mutagen for mouse stem-cell spermatogonia.  相似文献   

10.
Specific-locus mutation frequencies in mouse stem-cell spermatogonia were determined in 3 experiments in which mature male mice were exposed to 100,m 300, or 500 R of X-rays followed, 24 h later, by intraperitoneal injection of 100 mg/kg of ethylnitrosourea (ENU). The purpose was to find out if the mutation frequencies would be augmented over those expected on the basis of additivity of the effects of the separate treatments. Such augmentation had been observed in earlier work in which exposure to 100 or 500 R of X-rays was followed 24 h later by a second exposure of 500 R. No augmentation was observed for X-rays followed by ENU. The mutation frequencies in all 3 experiments actually fell below those expected on the basis of additivity, although the reductions were not statistically significant.  相似文献   

11.
12.
13.
Two-dimensional electrophoresis should, in theory, be a suitable method for the measurement of induced mutation rates in the germ cells of mice. Not only can the polypeptide products of a large number of genes be resolved on a single gel but the detection of mutations which lead to proteins with altered electrophoretic properties (but not necessarily altered function) is possible. Our attempts to apply two-dimensional electrophoresis to the detection of mutation in vivo have involved three stages: (i) the rapid production of gels of high resolution and reproducibility; (ii) the identification of eight interstrain protein variants and demonstration of their simple genetic basis; and (iii) a pilot experiment using the powerful germ-cell mutagen ethylnitrosourea. It was found that although interstrain protein variants could be detected and shown to be inherited in a codominant manner, induced variants were rarely detected even on high quality gels. Only 2 variants were detected among 67 offspring of male mice treated with 150 mg/kg ethylnitrosourea. This represented a mutation rate of 0.88 X 10(-4) mutations per locus per gamete.  相似文献   

14.
Ethylene dibromide (1,2-dibromoethane; EDB) was tested for the induction of dominant lethal and electrophoretically-detectable specific-locus mutations in the germ cells of DBA/2J male mice. Males were treated with a single intraperitoneal injection of 100 mg/kg EDB and mated to two C57BL/6J females. In the dominant lethal assay, matings were carried out to measure the effect of EDB on meiotic and postmeiotic stages; germ cells representing spermatogonial stem cells were analyzed in the electrophoretic specific-locus test. Neither of these germ cell tests produced any evidence that EDB is a germ cell mutagen. It appears from these data and those reported in the literature that EDB, a genotoxic carcinogen that affects male fertility in some mammalian species, is not mutagenic in the germ cells of the male mouse.  相似文献   

15.
The frequency of dominant cataract and recessive specific-locus mutations and mutation mosaics was determined in F1 mice derived from post-spermatogonial germ-cell stage treatment with 2 X 80, 160 or 250 mg/kg ethylnitrosourea. A total of 5 dominant cataract mutations, 3 dominant cataract mutation mosaics, 1 specific-locus mutation and 9 specific-locus mutation mosaics were recovered in 15,542 screened F1 offspring. Results indicate that ethylnitrosourea treatment increases the mutation rate of dominant cataract and recessive specific-locus alleles in post-spermatogonial germ-cell stages of the mouse and that the mutations occur mainly as mosaics. Genetic confirmation of newly induced mutations occurring as mosaics is more problematical for induced recessive alleles than for induced dominant alleles and should be considered when evaluating such mutagenicity results.  相似文献   

16.
ENU mutagenesis in the mouse: application to human genetic disease.   总被引:2,自引:0,他引:2  
Genetic approaches in model organisms provide a powerful means by which to examine the biological basis of human diseases as well as the physiological processes that are affected by them. Although not without its drawbacks, the mouse has become the mammalian species of choice in studying the molecular basis of disease. Targeted mutagenesis approaches in the mouse have led to dramatic increases in our understanding of human disease processes. As a complement to these gene-driven studies, three developments have led to the reassessment of a phenotype-driven approach in the mouse--the accumulation of information that has emerged from human and mouse genome sequencing projects, the use of high-efficiency point mutagens such as N-ethyl-N-nitrosourea (ENU) and the application of systematic hierarchical screening protocols for the mouse. In this paper, progress with existing phenotypic screening programmes is discussed and opportunities for the development of new mouse disease models are presented.  相似文献   

17.
18.
J D West  G Fisher 《Mutation research》1986,164(2):127-136
6 mice with inherited cataracts and 1 new allele of microphthalmia were recovered from 923 progeny of untreated, outbred, PT stock females that had been mated to inbred C3H/HeH strain males, whose spermatogonia had been exposed to 250 mg/kg of ethylnitrosourea (ENU). The cataract phenotypes were quite variable in expression and 5/6 showed a similar range of phenotypes. 2 of the 6 mutant mice were daughters of the same ENU-treated C3H/HeH male and probably represent repeats of the same mutation. One mutation, designated lens opacity-4 (Lop-4), has been genetically mapped to the distal region of chromosome 2. The yield of 5 presumably independent cataract mutations from 923 F1 offspring is a little higher than that reported by others in similar but larger scale experiments. Approximately 3-5% of the F1 mice examined had cataracts, yet only 6/49 (12%) of these, in the experimental group, were inherited as simple Mendelian traits. We consider that this high frequency of false positives (88%), and the incomplete penetrance and variable expressivity of the cataract mutations that were found, pose serious problems that could undermine the objective nature of the dominant cataract mutation test. We suggest that further studies be made to evaluate whether the use of inbred strains would reduce the variability in the system and so make the test more objective. However, it seems likely that the high false positive rate will continue to be a serious drawback to this test system.  相似文献   

19.
To study how gamma-ray-induced germ-cell mutations are fixed at the early embryonic stage of the next generation, genomic alterations in the b locus mutants (colorless melanophores) detected during development in the medaka specific-locus test (SLT) were analyzed. First, nine anonymous DNA markers linked to the b locus were cloned and mapped into the region extending about 47cM surrounding the b locus. Next, losses of paternal alleles of these DNA markers were examined in each of the 51 gamma-ray-induced b locus mutants obtained after irradiation of sperm or spermatids. In these mutants, 47 were dominant lethals, three were semi-viable and one was viable. All the mutants examined had large deletions surrounding the b locus. One viable mutant had an interstitial deletion, while all the semi-viable and dominant lethal ones appeared to have terminal deletions. Deletions extending about 20-35cM were the most frequently observed in 18 of the 51 mutants examined. The largest one extended more than 40cM. These results suggest that most of the gamma-ray induced germ cell mutations recovered as total specific-locus mutants were accompanied by large genomic deletions, which eventually led the mutant embryos to dominant lethality.  相似文献   

20.
The aim of this study was the application of a phenotype-driven N-ethyl-N-nitrosourea (ENU) mutagenesis screen in mice for the identification of dominant mutations involved in the regulation and modulation of alcohol-drinking behavior. The chemical mutagen ENU was utilized in the generation of 131 male ENU-mutant C57BL/6J mice (G0). These ENU-treated mice were paired with wild-type C57BL/6J mice to generate G1 and subsequent generations. In total, 3327 mice were generated. Starting with G1, mice were screened for voluntary oral self-administration of 10% (v/v) alcohol vs. water in a two-bottle paradigm. From these mice, after a total period of 5 weeks of drinking, 43 mutants fulfilled the criteria of an “alcohol phenotype,” that is, high or low ethanol intake. They were then selected for breeding and tested in a “confirmation cross” (G2–G4) for inheritance. Although we did not establish stable high or low drinking lines, several results were obtained in the context of alcohol consumption. First, female mice drank more alcohol than their male counterparts. Second, the former demonstrated greater infertility. Third, all animals displayed relatively stable alcohol intake, although significantly different in two different laboratories. Finally, seasonal and monthly variability was observed, with the highest alcohol consumption occurring in spring and the lowest in autumn. In conclusion, it seems difficult to identify dominant mutations involved in the modulation or regulation of voluntary alcohol consumption via a phenotype-driven ENU mutagenesis screen. In accordance with the findings from knockout studies, we suggest that mainly recessive mutations contribute to an alcohol-drinking or alcohol-avoiding phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号