首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Benzo[a]pyrene (BP) and two of its major metabolites, the ultimate mutagen BP-4,5-oxide and the proximate mutagen trans-7,8-dihydro-7,8-dihydroxybenzo[a]pyrene (BP-7,8-diol) were investigated for mutagenicity in Salmonella typhimurium TA1538, TA98 and TA100 using an intrasanguineous host-mediated assay. BP and BP-4,5-oxide were not mutagenic under any experimental conditions. BP-7,8-diol was inactive with the strain TA1538 but was mutagenic with the strains TA98 and TA100. The effect was potentiated by pretreatment of the host mice with the cytochrome P-450 inducer 5,6-benzoflavone. We conclude: (i) one of the reasons for the observed insensitivity of the intrasanguineous host-mediated assay towards BP is that BP-4,5-oxide, which contributes to the microsome-mediated mutagenicity of BP, is inactive in the host-mediated assay; (ii) the finding that BP-7,8-diol is mutagenic in the host-mediated assay demonstrates that the lack of mutagenicity of BP is not intrinsic; (iii) the potentiated mutagenicity after treatment of the hosts with 5,6-benzoflavone suggests that cytochrome P-450 is more important in the activation of BP-7,8-diol in this system than other enzymes (e.g. prostaglandin synthase) that can also activate this compound in vitro.  相似文献   

2.
R J Lorentzen  P O Ts'o 《Biochemistry》1977,16(7):1467-1473
The ability of the isomeric quinone metabolites of benzo[a]pyrene, benzo[a]pyrene-6,12-dione, benzo[a]pyrene-1,6-dione, and benzo[a]pyrene-3,6-dione to undergo reversible, univalent oxidation-reduction cycles involving the corresponding benzo[a]pyrenediols and intermediate semiquinone radicals has been characterized. Under anaerobic conditions, all three benzo[a]pyrenediones are easily reduced to benzo[a]pyrenediols, even by mild biological agents such as NAD(P)H, cysteamine, and glutathione. The benzo[a]pyrenediols, in turn, are very rapidly autoxidized to the benzo[a]pyrenediones when exposed to air. Substantial amounts of hydrogen peroxide are produced during these autoxidations, and other reactive reduced oxygen species, such as the superoxide and hydroxyl radicals, are probably formed transiently as well. The benzo[a]pyrenediol-benzo[a]pyrenedione interconversions proceed by one-electron steps; the corresponsing semiquinone radicals can be monitored by electron spin resonance spectroscopy as inter mediates during these reactions carried out at high pH. Benzo[a]pyrenediones induce DNA strand scission when incubated with bacteriophage T7 DNA. This damage is modified by conditions which indicate that reduced oxygen species propagate the free-radical reactions responsible for the strand scission. Benzo[a]pyrenediones are electron-acceptor substrates for NADH dehydrogenase from Clostridium kluyveri. Catalytic amounds of these benzo[a]pyrene metabolites, together with this respiratory enzyme function as cyclic oxidation-reduction couples which link NADH and molecular oxygen in the continuous production of hydrogen peroxide. These data, together with preliminary results with cells in culture, indicate that benzo[a]pyrenediones are potentially harmful metabolites of benzo[a]pyrene, acting by processes which lead to their regeneration rather than depletion; nucleic acid and call damage is probably produced by the reactive reduced oxygen species resulting from such regenerative oxidation-reduction cycles.  相似文献   

3.
The formation of benzo[a]pyrene (BP)-3,6 quinol glucuronides in liver microsomes in the presence of UDP-glucuronic acid and NAD(P)H appears to occur by a sequence of three reactions: BP-3,6-quinone → BP-3,6 hydroquinone → BP-3,6-quinol monoglucuronide → BP-3,6-quinol diglucuronide. This conclusion is based on the following results. Incubations with [14C]BP-3,6-quinone or UDP-[14C]glucuronic acid and analysis of the samples by TLC established the existence and identity of the two BP-3,6-quinol glucuronides which exhibit different fluorescence spectra. The nature of the monoglucuronide, i.e., a quinol and not a semiquinone glucuronide, was suggested by the finding that the rate of diglucuronide formation was the same with or without NAD(P)H provided that a sufficient amount of monoglucuronide had been formed prior to oxidation of the nucleotides. Furthermore, BP-3,6-quinol monoglucuronides can serve as substrates in the formation of diglucuronides. The ratio between the decrease in monoglucuronides and the formation of diglucuronides was found to be close to 1, suggesting that the conversion of the monoglucuronide of BP-3,6-quinol to the diglucuronide is also catalyzed by UDP-glucuronosyltransferase. However, great differences in the pattern of induction of mono- and diglucuronide formation indicate that two different UDP-glucuronosyltransferases are involved. The yield of BP-3,6-quinol glucuronides with NADH relative to NADPH and the increase in glucuronide formation observed in the presence of cytosolic DT-diaphorase (NAD(P)H-quinone oxidoreductase) are discussed with regards as to whether DT-diaphorase plays an important role as a BP-3,6-quinone reductase in the formation of BP-3,6-quinol glucuronides compared to other NAD(P)H-oxidizing flavoproteins.  相似文献   

4.
Carcinogenic benzo[a]pyrene (BP) is generally considered to show genotoxicity by forming DNA adducts of its metabolite, BP-7,8-diol-9,10-epoxide. We investigated oxidative DNA damage and its sequence specificity induced by BP-7,8-dione, another metabolite of BP, using (32)P-5'-end-labeled DNA. Formamidopyrimidine-DNA glycosylase treatment induced cleavage sites mainly at G residues of 5'-TG-3' sequence and at poly(C) sequences, in DNA incubated with BP-7,8-dione in the presence of NADH and Cu(II), whereas piperidine treatment induced cleavage sites at T mainly of 5'-TG-3'. BP-7,8-dione strongly damaged the G and C of the ACG sequence complementary to codon 273 of the p53 gene. Catalase and a Cu(I)-specific chelator attenuated the DNA damage, indicating the involvement of H(2)O(2) and Cu(I). BP-7,8-dione with NADH and Cu(II) also increased 8-oxo-7,8-dihydro-2'-deoxyguanosine formation. We conclude that oxidative DNA damage, especially double base lesions, may participate in the expression of carcinogenicity of BP in addition to DNA adduct formation.  相似文献   

5.
The metabolism of benzo(a)pyrene [BP], a model carcinogenic PAH, by hepatic microsomes of two duck species, mallard (Anas platyrhynchos) and common merganser (Mergus merganser americanus) collected from chemically-contaminated and relatively non-contaminated areas was investigated. The rate of metabolism of BP by liver microsomes of common merganser and mallard collected from polluted areas (2,650 +/- 310 and 2,200 +/- 310 pmol/min per mg microsomal protein, respectively) was significantly higher than that obtained with liver microsomes of the two species collected from non-polluted areas (334 +/- 33 and 231 +/- 30 pmol/min per mg microsomal protein, respectively). The level of cytochrome P-450 1A1 was significantly higher in the liver microsomes of both duck species from the polluted areas as compared to the ducks from the non-polluted areas. The major BP metabolites, including BP-9, 10-diol, BP-4, 5-diol, BP-7, 8-diol, BP-1, 6-dione, BP-3, 6-dione, BP-6, 12-dione, 9-hydroxy-BP and 3-hydroxy-BP, formed by liver microsomes of both duck species from polluted and non-polluted areas, were qualitatively similar. However, the patterns of these metabolites were considerably different from each other. Liver microsomes of ducks from the polluted areas produced a higher proportion of benzo-ring dihydrodiols than the liver microsomes of ducks from the non-polluted areas, which converted a greater proportion of BP to BP-phenols. The predominant enantiomer of BP-7,8-diol formed by hepatic microsomes of the two duck species had an (-)R,R absolute stereochemistry. The data suggest that duck and rat liver microsomal enzymes have different regioselectivity but similar stereoselectivity in the metabolism of BP.  相似文献   

6.
The ability was tested of appropriate substituents of benzo[a]pyrene (BP) at C-6 to decrease or suppress the carcinogenic activity for these BP derivatives relative to the parent compound. 8-week-old female Swiss mice in 9 groups of 30 were treated on the back with 0.2 mumol of compound in acetone 4 times weekly for 20 weeks. The following compounds were administered: BP, 6-methylbenzo[a]pyrene (BP-6-CH3), 6-hydroxymethylbenzo[a]pyrene (BP-6-CH2OH), benzo[a]pyrene-6-carboxaldehyde (BP-6-CHO), benzo[a]pyrene-6-carboxylic acid, 6-methoxybenzo[a]pyrene, 6-acetoxybenzo[a]pyrene, 6-bromobenzo[a]pyrene, and 6-iodobenzo[a]pyrene. Two additional groups received BP or BP-6-CH3 twice weekly for 20 weeks at a total dose 25% of that above. In addition, the metabolism of selected 6-substituted BP derivatives was studied, using mouse skin homogenates in vitro and mouse skin in vivo. Only four compounds were carcinogenic; the order of potency was BP greater than BP-6-CH3 greater than BP-6-CH2OH and BP-6-CHO. The difference in carcinogenicity between BP-6-CH2OH and BP-6-CHO could not be assessed by this experiment. In a further tumorigenesis experiment the carcinogenicity of BP-6-CH2OH was compared to that of BP-6 CHO, BP-6-CH3 and 6-hydroxymethylbenzo[a]pyrere sulfate ester (BP-6-CH2OSO3Na) on mouse skin. 9-week-old female Swiss mice in groups of 28 were treated at three dose levels with 0.8, 0.2 and 0.05 mumol of compounds in dioxane--dimethyl sulfoxide (75 : 25) twice weekly for 40 weeks. After 40 experimental weeks BP-6-CH2OSO3Na proved to be a more potent carcinogen than BP-6-CH2OH, which, in turn was more active than BP-6-CHO. The greater carcinogenicity of BP-6-CH3 relative to BP-6-CH2OH and BP-6-CHO is confirmed, suggesting that BP-6-CH2OH is not a proximate carcinogenic metabolite for BP-6-CH3. Since BP-6-CHO is a weaker carcinogen than BP-6-CH2OH and is efficiently reduced metabolically to BP-6-CH2OH, the latter compound may be a common proximal carcinogenic metabolite. The stronger potency of BP-6-CH2OSO3Na, compared to its alcohol, suggests that an ester of BP-6-CH2OH might be the ultimate alkylating compound reacting with cellular nucleophiles.  相似文献   

7.
L Recio  A W Hsie 《Mutation research》1987,178(2):257-269
Biologically reactive metabolites of benzo[a]pyrene (BP) and benzo[a]-pyrene 7,8-diol (BP-diol), formed by the mixed-function oxidase (MFO) system, are substrates for conjugation and detoxication by glutathione (GSH) when catalyzed by glutathione S-transferases (GSHT). We have investigated the detoxication of BP- and BP-diol-induced cytotoxicity and mutagenicity with GSH by supplementing the S9 mix used in the Chinese hamster ovary cells/hypoxanthine-guanine phosphoribosyltransferase (CHO/HGPRT) assay with GSH (6.5 mM) or GSH plus GSHT. The addition of GSH to the S9 mix resulted in a reduction of BP- and BP-diol induced cytotoxicity. GSH plus GSHT eliminated BP-induced cytotoxicity and reduced the mutagenicity of BP. GSH inhibited the mutagenicity at low (essentially non-lethal) concentrations of BP-diol, but did not do so at toxic concentrations. GSH plus GSHT inhibited the cytotoxicity and mutagenicity of BP-diol at concentrations not affected by GSH alone. These studies indicate that biochemical mechanisms of detoxication can affect the biological activity of a carcinogen, such as BP or BP-diol as profoundly as bioactivation by the MFO system.  相似文献   

8.
The effect of dicoumarol on glucuronidation of 3-OH-benzo(a)pyrene (BP) appears to be due to inhibition of UDPglucuronosyltransferase (UDPGT) and not to an inhibited DT-diaphorase (NAD(P)H:quinone oxidoreductase); to date the only enzyme known to be inhibited by dicoumarol. This dicoumarol-sensitive form of UDPGT does not seem to be identical to the major form catalyzing the glucuronidation of p-nitrophenol or methylumbelliferone, nor to the isozyme involved in the formation of phenolphthalein glucuronides. These conclusions are based on the following observations: In solubilized microsomes, devoid of DT-diaphorase, a 3-OH-BP glucuronidation activity is found which is very similar to that observed in microsomes before passing through an azodicoumarol Sepharose 6B column that binds more than 98% of DT-diaphorase; in the eluate from this column the inhibition by dicoumarol of 3-OH-BP glucuronidation is the same as in microsomes containing DT-diaphorase; other coumarin derivatives, which are either modified or substituted in the methylene bridge between the two coumarin entities in dicoumarol, are potent inhibitors of DT-diaphorase but not of UDPGT; a concentration of 10(-6) M dicoumarol is sufficient to inhibit 3-OH-BP glucuronidation 50%. In contrast, to inhibit glucuronidation of p-nitrophenol or methylumbelliferone the concentration of dicoumarol must be raised to the substrate level: i.e., 10(-4) M. Phenolphthalein glucuronidation is almost unaffected even by this high concentration of dicoumarol. The present investigation also reveals that DT-diaphorase and NADPH-cytochrome P-450 reductase can both catalyze the reduction of BP-3,6-quinone for the formation of BP-3,6-quinol glucuronides. In the eluate from the azodicoumarol Sepharose 6B column, no NADH-supported glucuronidation of BP-3,6-quinone can be detected unless DT-diaphorase is added. However, NADPH-supported formation of BP-3,6-quinol glucuronides can still be observed. The rate of the latter reaction is sufficient enough to allow studies on the effect of dicoumarol on BP-3,6-quinone glucuronidation. These results show that glucuronidation of BP-3,6-quinols is also catalyzed by a dicoumarol-sensitive UDPGT. However, not only is the formation of BP-3,6-quinol monoglucuronides inhibited by dicoumarol, but the conversion of monoglucuronides to diglucuronides is inhibited as well. The former reaction is inhibited 50% by 3.5 X 10(-6) M dicoumarol (close to the I50 for 3-OH-BP glucuronidation), whereas 10 times less dicoumarol (2 X 10(-7) M) is sufficient for 50% inhibition of the latter reaction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The mutagenicity of nitrated benzo[a]pyrene (BP) and the related compounds, 1- and 3-nitrobenzo[a]pyrene (NBP), 1- and 3-nitro-6-cyanobenzo[a]pyrene (N-6-CBP), 1- and 3-nitro-6-azabenzo[a]-pyrene (N-6-ABP), 1- and 3-nitro-6-azabenzo[a]-pyrene-N-oxide (N-6-ABPO) and 1,6- and 3,6-dinitrobenzo[a]-pyrene (DNBP), was investigated. The mutagenic activities of 3-N-6-CBP and 3-N-6-ABP were 117 and 76 times, respectively, that of 3-NBP. In addition, 3,6-DNBP was more mutagenic than 1,6-DNBP. It is suggested that the mutagenic activation differs with the position of NO2 substitution in the chemical structure. A nitro derivative with NO2 substitution at the 3 position of the aromatic ring of BP was more mutagenic than that with the substitution at the 1 or 6 position. The reducibility of DNBPs was then determined by detecting 1- or 3-amino-6-nitrobenzo[a]pyrene (A-6-NBP), a metabolite of DNBP; 3,6- and 1,6-DNBP were reduced to 3- and 1-A-6-NBP at frequencies of 958 +/- 26 and 79 +/- 8, respectively, pmole per mg of protein, when the compound was incubated anaerobically with rat liver S9 mix at 37 degrees C for 15 min. NO2 substituted at the 3 position of the aromatic ring of BP was readily reduced by a microsome enzyme to form an amino derivative. The result suggests that these compounds have a structure-activity relationship between mutagenicity and NO2 substitution of BP.  相似文献   

10.
NADPH-reduction of benzo[a]pyrene 4,5-oxide (BP-4,5-oxide) to BP required four components from rat liver: cytochrome P-450, NADPH cytochrome P-450 reductase, phosphatidylcholine and a soluble, heat-sensitive factor which was present in 105 000 × g supernatant and was also released from microsomes by sonication. The requirement for this factor contrasts with recently reported results from Sugiura et al. (Cancer Res., 40 (1980) 2910). Oxide-reduction was 40 times faster under anaerobic conditions, but oxygen did not affect the stimulation factor. This stimulation was highest (× 15) at low concentrations of microsomal protein (<0.1 mg/ml) and was almost absent at high concentrations of microsomal protein (>1 mg/ml). Oxide-reduction activity was proportional to microsomal protein concentration in the presence of added 105 000 × g supernatant, but for microsomes alone (>0.1 mg/ml) exhibited a parallel plot with an intercept at 0.08 mg/ml microsomal protein. Stimulation was highest at high concentrations of BP-4,5-oxide and a linear plot of V−1 vs. [BP-4,5-oxide]−1 was only obtained in the presence of 105 000 × g supernatant (Km = 3 μM, Vmax = 3.3 nmol/mg/min). Microsomal hydration of BP-4,5-oxide (inhibited in reductase assays) was unaffected by 105 000 × g supernatant, suggesting that stimulation of oxide-reduction did not derive from solubilization of BP-4,5-oxide. Stimulation was observed in the initial rate of reaction and was independent of incubation time. Inhibition of lipid peroxidation, removal of peroxides and deoxygenation were all excluded as explanations of the stimulatory effect.  相似文献   

11.
A novel and sensitive high-performance liquid chromatography (HPLC) method was developed to analyze dione metabolites of benzo[a]pyrene (BaP). Because BaP-diones do not fluoresce, detection of low concentrations is difficult to achieve when analyzing these chemicals with a simple HPLC system. We developed a method to increase the detection sensitivities for BaP-diones using reduction by zinc after the chromatographic separation. A post-column zinc reducer was used to convert BaP-diones, in-line, to their corresponding fluorescent BaP-hydroquinones, which can be measured by fluorescence detection with high sensitivity. With 20-muL injections, the limits of detection for the BaP-diones tested (BaP-1,6-dione, BaP-3,6-dione, and BaP-6,12-dione) were all below 1.0 nM. In addition to the high detection sensitivity, this HPLC method provides a wide linear dynamic range for BaP-dione detection (1.0-220 nM). We also studied the extraction recovery of BaP-diones from recombinant human cytochrome P450 and epoxide hydrolase. To demonstrate the application of this method, the kinetics of BaP-dione formation was studied by incubating BaP with these recombinant enzymes. The present method enhances the detection sensitivity for BaP-diones by more than two orders of magnitude compared with traditional ultraviolet detection. Moreover, the method avoids the time-consuming derivatization or reduction steps required by other methods.  相似文献   

12.
Novel antitumoral agents with quinonic structure were synthesized and evaluated for their in vitro cytotoxic activities. This study examines the cytotoxic activities of several aryl benzo[g]isoquinoline-5,10-dione derivatives and a number of aminoacyl dihydrothieno[2,3-b]naphtho-4,9-dione (DTNQ) derivatives containing amino acids in position 3 of the ring system. Compound 6 showed remarkable cytotoxic activity at submicromolar concentration not only against several human leukaemia and solid tumour cell lines, but also toward sensitive and resistant human cell lines.  相似文献   

13.
(±)-7β,8α-Dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BP 7,8-diol-9,10-epoxide) is a suspected metabolite of benzo[a]pyrene that is highly mutagenic and toxic in several strains of Salmonellatyphimurium and in cultured Chinese hamster V79 cells. BP 7,8-diol-9,10-epoxide was approximately 5, 10 and 40 times more mutagenic than benzo[a]pyrene 4,5-oxide (BP 4,5-oxide) in strains TA 98 and TA 100 of S.typhimurium and in V79 cells, respectively. Both compounds were equally mutagenic to strain TA 1538 and non-mutagenic to strain TA 1535 of S.typhimurium. The diol epoxide was toxic to the four bacterial strains at 0.5–2.0 nmole/plate, whereas BP 4,5-oxide was nontoxic at these concentrations. In V79 cells, the diol epoxide was about 60-fold more cytotoxic than BP 4,5-oxide.  相似文献   

14.
Selenium added to the incubation mix containing rat-liver S9 modified both the metabolism and mutagenicity of benzo[a]pyrene (BaP) and several of its metabolites. Selenium (Na2SeO3) inhibited the S9-dependent mutagenic effects of BaP on Salmonella typhimurium strain TA100 as indicated by the number of histidine-dependent revertants counted. This inhibition was concentration-dependent over a range of 12.5 to 100 ppm. When used as the substrate the BaP metabolites 7,8-dihydrodiol, 9,10-dihydrodiol and 3-hydroxy also produced significantly fewer revertants in TA100 when selenium was included in the incubation mix. High-performance liquid chromatographic analysis of metabolites from S9-dependent metabolism of BaP indicated that selenium inhibited the formation of 3-hydroxy-BaP, 9,10-dihydrodiol, 7,8-dihydrodiol, 1,3- and 3,6-quinone. Eluting samples on an alumina column to isolate the conjugated metabolites showed that selenium caused 12% less binding to glucuronides, no significant differences in binding to sulfate esters or glutathione but the amount of unmetabolized BaP and unconjugated metabolites was increased by 48%. These results suggest that selenium inhibits S9-dependent BaP metabolism therefore reducing the mutagenic effects of this compound.  相似文献   

15.
Diphenyl diselenide (DPDS) is an electrophilic reagent used in the synthesis of a variety of pharmacologically active organic selenium compounds, and may increase the risk of human exposure to this chemical at the workplace. In a previous study, we demonstrated the pro-oxidant action and the mutagenic properties of this compound on bacteria and yeast. In the present study, we evaluated the putative cytotoxic, pro-oxidant, genotoxic, and mutagenic properties of this molecule in V79 Chinese lung fibroblast cells. When cells were treated with increasing concentrations of DPDS, its cytotoxic activity, as determined using four cell viability endpoints, occurs in doses up to 50 microM. The MTT reduction was stimulated, which may indicate reactive oxygen species (ROS) generation. Accordingly, the treatment of cells for 3h with cytotoxic doses of DPDS increased TBARS levels, and sensitized cells to oxidative challenge, indicating a pro-oxidant effect. The measurement of total, reduced, and oxidized glutathione showed that DPDS can lead to lower intracellular glutathione depletion, with no increase in the oxidation rate in a dose- and time-dependent manner. At the higher doses, DPDS generates DNA strand breaks, as observed using the comet assay. The treatment also induced an increase in the number of binucleated cells in the micronucleus test, showing mutagenic risk by this molecule at high concentrations. Finally, pre-incubation with N-acetylcysteine, which restored GSH to normal levels, annulled DPDS pro-oxidant and genotoxic effects. These findings show that DPDS-induced oxidative stress and toxicity are closely related to intracellular level of reduced glutathione. Moreover, at lower doses, this molecule has antioxidant properties, protecting the cell against oxidative damage induced by hydrogen peroxide.  相似文献   

16.
The cytotoxic effects of many quinones are thought to be mediated through their one-electron reduction to semiquinone radicals, which subsequently enter redox cycles with molecular oxygen to produce active oxygen species and oxidative stress. The two-electron reduction of quinones to diols, mediated by DT-diaphorase (NAD(P)H: (quinone-acceptor) oxidoreductase), may therefore represent a detoxifying pathway which protects the cell from the formation of these reactive intermediates. By using menadione (2-methyl-1,4-naphthoquinone) and isolated hepatocytes, the relative contribution of the two pathways to quinone metabolism has been studied and a protective role for DT-diaphorase demonstrated. Moreover, in the presence of cytotoxic concentrations of menadione rapid changes in intracellular thiol and Ca2+ homeostasis were observed. These were associated with alterations in the surface structure of the hepatocytes which may be an early indication of cytotoxicity.  相似文献   

17.
Cisplatin is one of the most active cytotoxic agents used in the treatment of cancer. However, cisplatin therapy is also associated with severe side effects like nephrotoxicity and genotoxicity. Free oxygen radicals are known to play a major role in cisplatin induced toxicities. Selenium is believed to be an important trace element and dietary antioxidant because of its ability to scavenge free oxygen radicals, thereby preventing cells from oxidative stress. The purpose of this study is to evaluate the protective role of a novel naphthalimide based organoselenium compound 2-(5-selenocyanato-pentyl)-benzo[de]isoquinoline 1,3-dione against cisplatin induced toxicities in Swiss albino mice. Cisplatin was administered intraperitoneally (5 mg/kg b.w.) and the organoselenium compound was given by oral gavages (3 mg/kg b.w.) in concomitant and pretreatment schedule. The results showed that the test compound substantially reduced cisplatin induced reactive oxygen species generation and lipid peroxidation in kidney as well as blood urea nitrogen and creatinine levels in serum. Treatment with organoselenium compound was also able to restore the renal antioxidant system by modulating the cisplatin induced depleted activities of glutathione S-transferase, thioredoxin reductase, superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione level. In addition, the organoselenium compound could efficiently minimize cisplatin induced chromosomal aberrations in bone marrow cells and extent of DNA damage in lymphocytes. Furthermore, the chemoprotective efficacy of the compound against cisplatin induced toxicity was confirmed by histopathological evaluation. The results suggest that the organoselenium compound has the potential to protect against cisplatin induced nephrotoxicity and genotoxicity in part by scavenging reactive oxygen species and by up regulating the antioxidant enzyme system.  相似文献   

18.
The mutagenicity of benzo[a]pyrene (BP) and a number of methylated derivatives towards Salmonella typhimurium has been tested. The most mutagenic derivative tested was 6-methylbenzo[a]pyrene which produced about twice the number of revertants as did BP, 11-Methylbenzo[a]pyrene was slightly more mutagenic than BP. All the other compounds tested (7-, 8-, 9- and 10-methylbenzo[a]pyrene and 7,8- and 7,10-dimethylbenzo[a]pyrene) were significantly less active than benzo[a]pyrene. With the exception of 6-methylbenzo[a]pyrene, these results closely parallel the known carcinogenicity of the methylated benzo[a]pyrenes, and support the view that metabolic activation of BP may involve the 7-10 positions which are blocked in the methylated compounds.  相似文献   

19.
M Sato  T Sato  Y Ose  H Nagase  H Kito  Y Sakai 《Mutation research》1992,265(2):149-154
The modulating effects of the Chinese medicinal plant 'Tan-shen', the radix of Salvia miltiorrhiza Bunge, on the mutagenic activities of Trp-P-1 (3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole) and B(a)P (benzo[a]pyrene) were investigated using Salmonella typhimurium TA98. Ether- and hot water-extracted 'Tan-shen' enhanced both mutagens at low concentrations, but suppressed them at high concentrations. Extracts by ether treatment were more effective than those extracted by hot water. Dihydrotanshinone I, cryptotanshinone, tanshinone I, and tanshinone IIA were isolated from the ether extract by high performance liquid chromatography (HPLC) and were recognized to be the mutagenic modulators. 4 tanshinones enhanced the mutagenicity of Trp-P-1 by 8-24-fold at 20 micrograms/plate and the enhancement was reduced at the higher concentration. Dihydrotanshinone I suppressed Trp-P-1 activity completely at 100 micrograms/plate.  相似文献   

20.
The lipid peroxidation (as malondialdehyde, MDA), activities of superoxide dismutase (SOD) and catalase (CAT), and benzo[a]pyrene (BaP) metabolites were investigated in sera and erythrocytes of male Sprague-Dawley rats treated with BaP (20 mg per rat). MDA levels were significantly increased in sera (16.98+/-3.29 nmol/ml serum, P<0.05) 12 h after BaP treatment and persisted up to 96 h (13.80+/-1. 65 nmol/ml serum, P<0.05), but no significant change in NIDA levels was observed in erythrocytes. SOD and CAT activities were significantly increased in erythrocytes shortly after BaP exposure, and they were slightly decreased in sera, indicating an inverse correlation between lipid peroxidation and antioxidant enzyme activity. BaP and BaP-quinones (BaP-1,6-quinone and BaP-3,6-quinone) were measured in sera during the study period. A rapid increase of unmetabolized BaP was observed in sera (41.27+/-4.14 pmol/ml serum) 3 h after BaP treatment, reaching a peak at 6 h (48.56+/-4.62 pmol/ml serum) followed by a sharp decrease. Formation of the BaP-1, 6-quinone and BaP-3,6-quinone started in sera 3 h after BaP treatment, reached a peak at 24 h (7.23+/-1.02 pmol/ml serum) and 12 h (9.20+/-0.98 pmol/ml serum), respectively, and then decreased gradually. The time-dependent pattern of serum lipid peroxidation and the level of erythrocyte antioxidant enzymes were shown to be related to the concentrations of the BaP-quinone metabolites. These results suggest that BaP treatment, probably via the formation of BaP-quinones, oxidatively altered lipids and antioxidant enzymes in the blood, and might be associated with BaP-related vascular toxicity including carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号