首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vertical versus planar induction in amphibian early development   总被引:3,自引:1,他引:2  
In the Urodeles, the archenteron roof invaginates as a single continuous sheet of cells, vertically inducing the neural anlage in the overlying ectoderm during invagination. The induction comprises first the activation process, leading, to forebrain differentiation tendencies, and then the superimposed transformation process, which changes presumptive forebrain development into that of hindbrain and spinal cord acting with a caudally increasing intensity. The activating action, being maximal anteriorly, decreases caudally to nearly zero. In the double-layered Xenopus embryo, the internal mesodermal marginal zone shows much more independent and earlier regional segregation and involution than the external marginal zone in the Urodeles; its prechordal mesoderm already initiating vertical neural induction in overlying ectoderm at stages 10 to 10+ before any visible archenteron invagination. In Xenopus incomplete exogastrulae the prechordal mesoderm involutes normally prior to evagination of the endoderm and mesodem. Artificially produced Xenopus total exogastrulae, made at stage 9 before mesoderm involution, behave just like axolotl total exogastrulae, showing no neural differentiation. The notion of planar neural induction in Xenopus can only be applied in exogastrulae and Keller explants for the transforming action, which is maximal in the caudal archenteron roof. In normal Xenopus development, the formation of the entire nervous system is essentially due to vertical induction by the successively involuting prechordal and notochordal mesoderm. The different behavior of Xenopus embryos in comparison with Urodele embryos can essentially be explained by the double-layered character of the animal moiety of the Xenopus embryo.  相似文献   

2.
3.
We report the characterization of an Otx2 and an Otx5 orthologue in the urodele Pleurodeles waltl. These two genes, termed PwOtx2 and PwOtx5, share highly conserved expression domains with their gnathostome counterparts at tailbud stages, like the developing forebrain ( PwOtx2), or the embryonic eye and epiphysis ( PwOtx5). As in Xenopus laevis, both are also transcribed in the dorsal lip of the blastopore during gastrulation and in anterior parts of the neural plate during neurulation. In addition, PwOtx5 displays a prominent expression in the developing balancers and the lateral non-neural ectoderm during neurulation, from which they derive. By contrast, PwOtx2 expression remains undetectable in the balancers and their presumptive territory. These data suggest that PwOtx5, but not PwOtx2, may be involved in the differentiation and early specification of balancers. Comparisons of Otx5 expression patterns in P. waltland X. laevis embryos suggest that, as previously shown for Otx2, changes in the regulatory mechanisms controlling Otx5 early expression in the non-neural ectoderm may occur frequently among amphibians. These changes may be related to the rise of cement glands in anurans and of balancers in urodeles. This hypothesis could account for some similarities between the two organs, but does not support a homology relationship between them.  相似文献   

4.
5.
Early patterning of the endoderm as a prerequisite for pancreas specification involves retinoic acid (RA) as a critical signalling molecule in gastrula stage Xenopus embryos. In extension of our previous studies, we made systematic use of early embryonic endodermal and mesodermal explants. We find RA to be sufficient to induce pancreas-specific gene expression in dorsal but not ventral endoderm. The differential expression of retinoic acid receptors (RARs) in gastrula stage endoderm is important for the distinct responsiveness of dorsal versus ventral explants. Furthermore, BMP signalling, that is repressed dorsally, prevents the formation of pancreatic precursor cells in the ventral endoderm of gastrula stage Xenopus embryos. An additional requirement for mesoderm suggests the production of one or more further pancreas inducing signals by this tissue. Finally, recombination of manipulated early embryonic explants, and also inhibition of RA activity in whole embryos, reveal that RA signalling, as it is relevant for pancreas development, operates simultaneously on both mesodermal and endodermal germ layers.  相似文献   

6.
The Xenopus laevis homeobox gene Xhox3 is expressed in the axial mesoderm of gastrula and neurula stage embryos. By the late neurula-early tailbud stage, mesodermal expression is no longer detectable and expression appears in the growing tailbud and in neural tissue. In situ hybridization analysis of the expression of Xhox3 in neural tissue shows that it is restricted within the neural tube and the cranial neural crest during the tailbud-early tadpole stages. In late tadpole stages, Xhox3 is only expressed in the mid/hindbrain area and can therefore be considered a marker of anterior neural development. To investigate the mechanism responsible for the anterior-posterior (A-P) regionalization of the neural tissue, the expression of Xhox3 has been analysed in total exogastrula. In situ hybridization analyses of exogastrulated embryos show that Xhox3 is expressed in the apical ectoderm of total exogastrulae, a region that develops in the absence of anterior axial mesoderm. The results provide further support for the existence of a neuralizing signal, which originates from the organizer region and spreads through the ectoderm. Moreover, the data suggest that this neural signal also has a role in A-P patterning the neural ectoderm.  相似文献   

7.
In intact Xenopus embryos, an increase in intracellular Ca(2+) in the dorsal ectoderm is both necessary and sufficient to commit the ectoderm to a neural fate. However, the relationship between this Ca(2+) increase and the expression of early neural genes is as yet unknown. In intact embryos, studying the interaction between Ca(2+) signaling and gene expression during neural induction is complicated by the fact that the dorsal ectoderm receives both planar and vertical signals from the mesoderm. The experimental system may be simplified by using Keller open-face explants where vertical signals are eliminated, thus allowing the interaction between planar signals, Ca(2+) transients, and neural induction to be explored. We have imaged Ca(2+) dynamics during neural induction in open-face explants by using aequorin. Planar signals generated by the mesoderm induced localized Ca(2+) transients in groups of cells in the ectoderm. These transients resulted from the activation of L-type Ca(2+) channels. The accumulated Ca(2+) pattern correlated with the expression of the early neural precursor gene, Zic3. When the transients were blocked with pharmacological agents, the level of Zic3 expression was dramatically reduced. These data indicate that, in open-face explants, planar signals reproduce Ca(2+) -signaling patterns similar to those observed in the dorsal ectoderm of intact embryos and that the accumulated effect of the localized Ca(2+) transients over time may play a role in controlling the expression pattern of Zic3.  相似文献   

8.
Homoiogenetic Neural Induction in Xenopus Chimeric Explants   总被引:1,自引:1,他引:0  
We previously raised monoclonal antibodies specific for epidermis (7) and neural tissue (8) of Xenopus for use as markers of tissue differentiation in induction experiments (8). Here we have used these monoclonal antibodies to examine homoiogenetic neural induction, by which cells induced to differentiate to neural tissues can in turn induce competent ectoderm to do the same. Presumptive anterior neural plate excised from late gastrulae of Xenopus laevis was conjugated with competent ectoderm from the initial gastrula of Xenopus borealis , either side by side or with their inner surfaces together. The chimeric explants enabled us to distinguish induced neural tissues from inducing neural tissues. In both types of explant, neural tissues identified by the neural tissue-specific antibody, NEU-1, were induced in the competent ectoderm by the presumptive anterior neural plate. The results suggest that homoiogenetic neural induction does occur in Xenopus embryos.  相似文献   

9.
The Xenopus laevis nuclear receptor BXR has recently been shown to be activated by a class of endogenous benzoate metabolites, indicating the presence of a novel and unsuspected benzoate ligand-dependent signalling pathway. The receptor is expressed ubiquitously in blastula and gastrula stage embryos, and its expression declines during neurula stages. In order to examine further this novel vertebrate signalling system, we have examined the expression of the BXR gene in tailbud stage embryos and adults. We show here that in Xenopus tailbud stage embryos expression is restricted to the hatching gland, suggesting a role in hatching gland function. Neither BXR nor a BXR-VP16 fusion is sufficient to specify hatching gland in neurally-induced tissue. In adults, BXR expression is abundant in the brain and gonads. This expression pattern in adults is distinct from any of the putative mammalian homologues. A nuclear receptor that mediates benzoate signalling has yet to be found in mammals.  相似文献   

10.
《Developmental biology》1997,189(2):256-269
In this study we investigate the induction of the cell behaviors underlying neurulation in the frog,Xenopus laevis.Although planar signals from the organizer can induce convergent extension movements of the posterior neural tissue in explants, the remaining morphogenic processes of neurulation do not appear to occur in absence of vertical interactions with the organizer (R. Kelleret al.,1992,Dev. Dyn.193, 218–234). These processes include: (1) cell elongation perpendicular to the plane of the epithelium, forming the neural plate; (2) cell wedging, which rolls the neural plate into a trough; (3) intercalation of two layers of neural plate cells to form one layer; and (4) fusion of the neural folds. To allow planar signaling between all the inducing tissues of the involuting marginal zone and the responding prospective ectoderm, we have designed a “giant sandwich” explant. In these explants, cell elongation and wedging are induced in the superficial neural layer by planar signals without persistent vertical interactions with underlying, involuted mesoderm. A neural trough forms, and neural folds form and approach one another. However, the neural folds do not fuse with one another, and the deep cells of these explants do not undergo their normal behaviors of elongation, wedging, and intercalation between the superficial neural cells, even when planar signals are supplemented with vertical signaling until the late midgastrula (stage 11.5). Vertical interactions with mesoderm during and beyond the late gastrula stage were required for expression of these deep cell behaviors and for neural fold fusion. These explants offer a way to regulate deep and superficial cell behaviors and thus make possible the analysis of the relative roles of these behaviors in closing the neural tube.  相似文献   

11.
12.
The amphibian Xenopus laevis has been successfully used for many years as a model system for studying vertebrate development. Because of technical limitations, however, molecular investigations have mainly concentrated on early stages. We have developed a straightforward method for stage-specific induction of gene expression in transgenic Xenopus embryos [1] [2]. This method is based on the Xenopus heat shock protein 70 (Xhsp70 [3]) promoter driving the expression of desired gene products. We found that ubiquitous expression of the transgene is induced upon relatively mild heat treatment. Green fluorescent protein (GFP) was used as a marker to monitor successful induction of gene expression in transgenic embryos. We used this method to study the stage specificity of Wnt signalling function. Transient ectopic Wnt-8 expression during early neurulation was sufficient to repress anterior head development and this capacity was restricted to early stages of neurulation. By transient over-expression at different stages of development, we show that frizzled-7 disrupted morphogenesis sequentially from anterior to posterior along the dorsal axis as development proceeds. These results demonstrate that this method for inducible gene expression in transgenic Xenopus embryos will be a very powerful tool for temporal analysis of gene function and for studying molecular mechanisms of vertebrate organogenesis.  相似文献   

13.
Mature spermatozoa belonging to four salamander species, Salamandrina terdigitata, Triturus alpestris, Triturus carnifex and Triturus vulgaris, have been investigated by electron microscopy. The sperm ultrastructure of these species was compared with that of previously examined urodeles (36 species and 20 genera) and with that of anurans and caecilians. Many phylogenetic considerations may be inferred as a consequence of comparative spermatology. Urodela appears to be a monophyletic order characterized by three sperm synapomorphies: the acrosomal barb, nuclear ridge and marginal filament. Cryptobranchoidea are confirmed to form a monophyletic suborder having two synapomorphic characters: absence of mitochondria in the tail, and cylindrical shape of the tail axial rod. Within the family Salamandridae, sperm morphology confirms the phylogenetic distance between Salamandrina and Triturus, as already pointed out on the basis of molecular and morphological characters. The very complex ultrastructure of spermatozoa confirms a previous opinion that internal fertilization is the ancestral condition of the Amphibia.  相似文献   

14.
15.
C R Sharpe 《Neuron》1991,7(2):239-247
In the frog Xenopus laevis, signals from the mesoderm divert part of the ectoderm from an epidermal to a neural fate. In the course of neural induction, the neurectoderm also acquires anterior-posterior polarity. In this report, the early expression of two genes, XlHbox6 and the neurofilament gene XIF6, is examined. The pattern of expression of the two genes seen in the tailbud embryo develops progressively over a 4 hr period following gastrulation. Physiological concentrations of retinoic acid can mimic this effect in isolated embryonic explants, consistent with the involvement of retinoic acid, or a closely related molecule, in localizing gene expression along the anterior-posterior axis of the neural tube.  相似文献   

16.
Early regulatory events in respect to the embryonic development of the vertebrate liver are only poorly defined. A better understanding of the gene network that mediates the formation of hepatocytes from pluripotent embryonic precursor cells may help to establish in vitro protocols for hepatocyte differentiation. Here, we describe our first attempts to make use of early embryonic explants from the amphibian Xenopus laevis in order to address these questions. We have identified several novel embryonic liver and intestine marker genes in a random expression pattern screen with cDNA libraries derived from the embryonic liver anlage and from the adult liver of Xenopus laevis. Based on their embryonic expression characteristics, these genes, together with the previously known ones, can be categorized into four different groups: the liver specific group (LS), the liver and intestine group A (LIA), the liver and intestine group B (LIB), and the intestine specific group (IS). Dissociation of endodermal explants isolated from early neurula stage embryos reveals that all genes in the LIB and IS groups are expressed in a cell-autonomous manner. In contrast, expression of genes in the LS and LIA groups requires cell-cell interactions. The regular temporal expression profile of genes in all four groups is mimicked in ectodermal explants from early embryos, reprogrammed by co-injection of VegT and beta-catenin mRNAs. FGF signaling is found to be required for the induction of liver specific marker (LS group) gene expression in the same system.  相似文献   

17.
18.
19.
We have used a monoclonal antibody directed against the C-terminus of the Drosophila invected homeodomain to detect a nuclear protein in brain cells of Xenopus laevis embryos. We refer to this antigen as the Xenopus EN protein. The EN protein is localized at midneurula stage to a band of cells in the anterior portion of the neural plate, on each side of the neural groove. Later in development, the expression coincides with the boundary of the midbrain and hindbrain, and persists at least to the swimming tadpole stage. These properties make the EN protein an excellent molecular marker for anterior neural structures. In embryos where inductive interactions between mesodermal and ectodermal tissues have been perturbed, the expression of the EN protein is altered; in embryos that have been anterodorsalized by LiCl treatment, the region that expresses the EN protein is expanded, but still well organized. In ventralized UV-irradiated embryos, the absence of the protein is correlated with the absence of anterior neural structures. In extreme exogastrulae, where the contacts between head mesoderm and prospective neurectoderm are lost, the EN protein is not expressed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号