首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interspersed repeats have emerged as a valuable tool for studying neutral patterns of molecular evolution. Here we analyze variation in the rate and pattern of nucleotide substitution across all autosomes in the chicken genome by comparing the present-day CR1 repeat sequences with their ancestral copies and reconstructing nucleotide substitutions with a maximum likelihood model. The results shed light on the origin and evolution of large-scale heterogeneity in GC content found in the genomes of birds and mammals--the isochore structure. In contrast to mammals, where GC content is becoming homogenized, heterogeneity in GC content is being reinforced in the chicken genome. This is also supported by patterns of substitution inferred from alignments of introns in chicken, turkey, and quail. Analysis of individual substitution frequencies is consistent with the biased gene conversion (BGC) model of isochore evolution, and it is likely that patterns of evolution in the chicken genome closely resemble those in the ancestral amniote genome, when it is inferred that isochores originated. Microchromosomes and distal regions of macrochromosomes are found to have elevated substitution rates and a more GC-biased pattern of nucleotide substitution. This can largely be accounted for by a strong correlation between GC content and the rate and pattern of substitution. The results suggest that an interaction between increased mutability at CpG motifs and fixation biases due to BGC could explain increased levels of divergence in GC-rich regions.  相似文献   

2.
We studied the substitution patterns in 7661 well-conserved human–mouse alignments corresponding to the intergenic regions of human chromosome 22. Alignments with a high average GC content tend to have a higher human GC content than mouse GC content, indicating a lack of stationarity. Segmenting the alignments into four groups of GC content and fitting the general reversible substitution model (REV) separately gave significantly better fits than the overall fit and the levels of fit are close to that expected under an REV model. In addition, most of the fitted rate matrices are not of the HKY type but are remarkably strand-symmetric, and we constructed a number of substitution matrices that should be useful for genomic DNA sequence alignment. We did not find obvious signs of temporal inhomogeneity in the substitution rates and concluded that the conserved intergenic regions in human chromosome 22 and mouse appear to have evolved from their common ancestors via a process that is approximately reversible and strand-symmetric, assuming site homogeneity and independence.  相似文献   

3.
Haiminen N  Mannila H 《Gene》2007,394(1-2):53-60
The isochore structure of a genome is observable by variation in the G+C (guanine and cytosine) content within and between the chromosomes. Describing the isochore structure of vertebrate genomes is a challenging task, and many computational methods have been developed and applied to it. Here we apply a well-known least-squares optimal segmentation algorithm to isochore discovery. The algorithm finds the best division of the sequence into k pieces, such that the segments are internally as homogeneous as possible. We show how this simple segmentation method can be applied to isochore discovery using as input the G+C content of sliding windows on the sequence. To evaluate the performance of this segmentation technique on isochore detection, we present results from segmenting previously studied isochore regions of the human genome. Detailed results on the MHC locus, on parts of chromosomes 21 and 22, and on a 100 Mb region from chromosome 1 are similar to previously suggested isochore structures. We also give results on segmenting all 22 autosomal human chromosomes. An advantage of this technique is that oversegmentation of G+C rich regions can generally be avoided. This is because the technique concentrates on greater global, instead of smaller local, differences in the sequence composition. The effect is further emphasized by a log-transformation of the data that lowers the high variance that is observed in G+C rich regions. We conclude that the least-squares optimal segmentation method is computationally efficient and yields results close to previous biologically motivated isochore structures.  相似文献   

4.
T Bettecken  B Aissani  C R Müller  G Bernardi 《Gene》1992,122(2):329-335
The genomes of warm-blooded vertebrates are mosaics of long DNA segments (> 300 kb, on the average), the isochores, homogeneous in GC levels, which belong to a small number of compositional families. In the present work, the human dystrophin-encoding gene, spanning more than 2.3 Mb in Giemsa band Xp21 (on the short arm of the X chromosome), was analyzed in its isochore organization by hybridizing cDNA probes, corresponding to eight contiguous segments of the coding sequence, on compositional fractions from human DNA. Five DNA regions of uniform (+/- 0.5%) GC content, separated by compositional discontinuities of about 2% GC, were found, so providing the first high-resolution compositional map obtained for a human genome locus and the first direct estimate of isochore size (360 kb to more than 770 kb, in the locus under consideration). One of the isochores contains 71% and another one 21% of deletion breakpoints found in patients suffering from Duchenne's and Becker's muscular dystrophies.  相似文献   

5.
Isochore patterns and gene distributions in fish genomes   总被引:2,自引:0,他引:2  
The compositional approach developed in our laboratory many years ago revealed a large-scale compositional heterogeneity in vertebrate genomes, in which GC-rich and GC-poor regions, the isochores, were found to be characterized by high and low gene densities, respectively. Here we mapped isochores on fish chromosomes and assessed gene densities in isochore families. Because of the availability of sequence data, we have concentrated our investigations on four species, zebrafish (Brachydanio rerio), medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), and pufferfish (Tetraodon nigroviridis), which belong to four distant orders and cover almost the entire GC range of fish genomes. These investigations produced isochore maps that were drastically different not only from those of mammals (in that only two major isochore families were essentially present in each genome vs five in the human genome) but also from each other (in that different isochore families were represented in different genomes). Gene density distributions for these fish genomes were also obtained and shown to follow the expected increase with increasing isochore GC. Finally, we discovered a remarkable conservation of the average size of the isochores (which match replicon clusters in the case of human chromosomes) and of the average GC levels of isochore families in both fish and human genomes. Moreover, in each genome the GC-poorest isochore families comprised a group of "long isochores" (2-20 Mb in size), which were the lowest in GC and varied in size distribution and relative amount from one genome to the other.  相似文献   

6.
The human genome is composed of large sequence segments with fairly homogeneous GC content, namely isochores, which have been linked to many important functions; biological implications of most isochore boundaries, however, remain elusive, partly due to the difficulty in determining these boundaries at high resolution. Using the segmentation algorithm based on the quadratic divergence, we re-determined all 79 boundaries of previously identified human isochores at single-nucleotide resolution, and then compared the boundary coordinates with other genome features. We found that 55.7% of isochore boundaries coincide with termini of repeat elements; 45.6% of isochore boundaries coincide with termini of highly conserved sequences based on alignment of 17 vertebrate genomes, i.e., the highly conserved genome sequence switches to a less or non-conserved one at the isochore boundary; some isochore boundaries coincide with abrupt change of CpG island distribution (note that one boundary can associate with more than one genome feature). In addition, sequences around isochore boundaries are highly conserved. It seems reasonable to deduce that the boundaries of all the isochores studied here would be replication timing sites in the human genome. These results suggest possible key roles of the isochore boundaries and may further our understanding of the human genome organization.  相似文献   

7.
8.
Abstract

The human genome is composed of large sequence segments with fairly homogeneous GC content, namely isochores, which have been linked to many important functions; biological implications of most isochore boundaries, however, remain elusive, partly due to the difficulty in determining these boundaries at high resolution. Using the segmentation algorithm based on the quadratic divergence, we re-determined all 79 boundaries of previously identified human isochores at single-nucleotide resolution, and then compared the boundary coordinates with other genome features. We found that 55.7% of isochore boundaries coincide with termini of repeat elements; 45.6% of isochore boundaries coincide with termini of highly conserved sequences based on alignment of 17 vertebrate genomes, i.e., the highly conserved genome sequence switches to a less or non-conserved one at the isochore boundary; some isochore boundaries coincide with abrupt change of CpG island distribution (note that one boundary can associate with more than one genome feature). In addition, sequences around isochore boundaries are highly conserved. It seems reasonable to deduce that the boundaries of all the isochores studied here would be replication timing sites in the human genome. These results suggest possible key roles of the isochore boundaries and may further our understanding of the human genome organization.  相似文献   

9.
The genomes of birds are much smaller than mammalian genomes, and transposable elements (TEs) make up only 10% of the chicken genome, compared with the 45% of the human genome. To study the mechanisms that constrain the copy numbers of TEs, and as a consequence the genome size of birds, we analyzed the distributions of LINEs (CR1's) and SINEs (MIRs) on the chicken autosomes and Z chromosome. We show that (1) CR1 repeats are longest on the Z chromosome and their length is negatively correlated with the local GC content; (2) the decay of CR1 elements is highly biased, and the 5'-ends of the insertions are lost much faster than their 3'-ends; (3) the GC distribution of CR1 repeats shows a bimodal pattern with repeats enriched in both AT-rich and GC-rich regions of the genome, but the CR1 families show large differences in their GC distribution; and (4) the few MIRs in the chicken are most abundant in regions with intermediate GC content. Our results indicate that the primary mechanism that removes repeats from the chicken genome is ectopic exchange and that the low abundance of repeats in avian genomes is likely to be the consequence of their high recombination rates.  相似文献   

10.
Vertebrate genomes are comprised of isochores that are relatively long (>100 kb) regions with a relatively homogenous (either GC-rich or AT-rich) base composition and with rather sharp boundaries with neighboring isochores. Mammals and living archosaurs (birds and crocodilians) have heterogeneous genomes that include very GC-rich isochores. In sharp contrast, the genomes of amphibians and fishes are more homogeneous and they have a lower overall GC content. Because DNA with higher GC content is more thermostable, the elevated GC content of mammalian and archosaurian DNA has been hypothesized to be an adaptation to higher body temperatures. This hypothesis can be tested by examining structure of isochores across the reptilian clade, which includes the archosaurs, testudines (turtles), and lepidosaurs (lizards and snakes), because reptiles exhibit diverse body sizes, metabolic rates, and patterns of thermoregulation. This study focuses on a comparative analysis of a new set of expressed genes of the red-eared slider turtle and orthologs of the turtle genes in mammalian (human, mouse, dog, and opossum), archosaurian (chicken and alligator), and amphibian (western clawed frog) genomes. EST (expressed sequence tag) data from a turtle cDNA library enriched for genes that have specialized functions (developmental genes) revealed using the GC content of the third-codon-position to examine isochore structure requires careful consideration of the types of genes examined. The more highly expressed genes (e.g., housekeeping genes) are more likely to be GC-rich than are genes with specialized functions. However, the set of highly expressed turtle genes demonstrated that the turtle genome has a GC content that is intermediate between the GC-poor amphibians and the GC-rich mammals and archosaurs. There was a strong correlation between the GC content of all turtle genes and the GC content of other vertebrate genes, with the slope of the line describing this relationship also indicating that the isochore structure of turtles is intermediate between that of amphibians and other amniotes. These data are consistent with some thermal hypotheses of isochore evolution, but we believe that the credible set of models for isochore evolution still includes a variety of models. These data expand the amount of genomic data available from reptiles upon which future studies of reptilian genomics can build.  相似文献   

11.
SINEs, evolution and genome structure in the opossum   总被引:3,自引:0,他引:3  
Short INterspersed Elements (SINEs) are non-autonomous retrotransposons, usually between 100 and 500 base pairs (bp) in length, which are ubiquitous components of eukaryotic genomes. Their activity, distribution, and evolution can be highly informative on genomic structure and evolutionary processes. To determine recent activity, we amplified more than one hundred SINE1 loci in a panel of 43 M. domestica individuals derived from five diverse geographic locations. The SINE1 family has expanded recently enough that many loci were polymorphic, and the SINE1 insertion-based genetic distances among populations reflected geographic distance. Genome-wide comparisons of SINE1 densities and GC content revealed that high SINE1 density is associated with high GC content in a few long and many short spans. Young SINE1s, whether fixed or polymorphic, showed an unbiased GC content preference for insertion, indicating that the GC preference accumulates over long time periods, possibly in periodic bursts. SINE1 evolution is thus broadly similar to human Alu evolution, although it has an independent origin. High GC content adjacent to SINE1s is strongly correlated with bias towards higher AT to GC substitutions and lower GC to AT substitutions. This is consistent with biased gene conversion, and also indicates that like chickens, but unlike eutherian mammals, GC content heterogeneity (isochore structure) is reinforced by substitution processes in the M. domestica genome. Nevertheless, both high and low GC content regions are apparently headed towards lower GC content equilibria, possibly due to a relative shift to lower recombination rates in the recent Monodelphis ancestral lineage. Like eutherians, metatherian (marsupial) mammals have evolved high CpG substitution rates, but this is apparently a convergence in process rather than a shared ancestral state.  相似文献   

12.
Analytical DNA ultracentrifugation revealed that eukaryotic genomes are mosaics of isochores: long DNA segments (>300 kb on average) relatively homogeneous in G+C. Important genome features are dependent on this isochore structure, e.g. genes are found predominantly in the GC-richest isochore classes. However, no reliable method is available to rigorously partition the genome sequence into relatively homogeneous regions of different composition, thereby revealing the isochore structure of chromosomes at the sequence level. Homogeneous regions are currently ascertained by plain statistics on moving windows of arbitrary length, or simply by eye on G+C plots. On the contrary, the entropic segmentation method is able to divide a DNA sequence into relatively homogeneous, statistically significant domains. An early version of this algorithm only produced domains having an average length far below the typical isochore size. Here we show that an improved segmentation method, specifically intended to determine the most statistically significant partition of the sequence at each scale, is able to identify the boundaries between long homogeneous genome regions displaying the typical features of isochores. The algorithm precisely locates classes II and III of the human major histocompatibility complex region, two well-characterized isochores at the sequence level, the boundary between them being the first isochore boundary experimentally characterized at the sequence level. The analysis is then extended to a collection of human large contigs. The relatively homogeneous regions we find show many of the features (G+C range, relative proportion of isochore classes, size distribution, and relationship with gene density) of the isochores identified through DNA centrifugation. Isochore chromosome maps, with many potential applications in genomics, are then drawn for all the completely sequenced eukaryotic genomes available.  相似文献   

13.
14.
The relationship between the silent substitution rate (K s) and the GC content along the genome is a focal point of the debate about the origin of the isochore structure in vertebrates. Recent estimation of the silent substitution rate showed a positive correlation between K s and GC content, in contradiction with the predictions of both the regional mutation bias model and the selection or biased gene conversion model. The aim of this paper is to help resolve this contradiction between theoretical studies and data. We analyzed the relationship between K s and GC content under (1) uniform mutation bias, (2) a regional mutation bias, and (3) mutation bias and selection. We report that an increase in K s with GC content is expected under mutation bias because of either nonequilibrium of the isochore structure or an increasing mutation rate from AT toward GC nucleotides in GC-richer isochores. We show by simulations that CpG deamination tends to increase the mutation rate with GC content in a regional mutation bias model. We also demonstrate that the relationship between K s and GC under the selectionist or biased gene conversion model is positive under weak selection if the mutation selection equilibrium GC frequency is less than 0.5. Received: 28 March 2001 / Accepted: 16 May 2001  相似文献   

15.
BACKGROUND: Nucleotide substitution rates and G + C content vary considerably among mammalian genes. It has been proposed that the mammalian genome comprises a mosaic of regions - termed isochores - with differing G + C content. The regional variation in gene G + C content might therefore be a reflection of the isochore structure of chromosomes, but the factors influencing the variation of nucleotide substitution rate are still open to question. RESULTS: To examine whether nucleotide substitution rates and gene G + C content are influenced by the chromosomal location of genes, we compared human and murid (mouse or rat) orthologues known to belong to one of the chromosomal (autosomal) segments conserved between these species. Multiple members of gene families were excluded from the dataset. Sets of neighbouring genes were defined as those lying within 1 centiMorgan (cM) of each other on the mouse genetic map. For both synonymous substitution rates and G + C content at silent sites, neighbouring genes were found to be significantly more similar to each other than sets of genes randomly drawn from the dataset. Moreover, we demonstrated that the regional similarities in G + C content (isochores) and synonymous substitution rate were independent of each other. CONCLUSIONS: Our results provide the first substantial statistical evidence for the existence of a regional variation in the synonymous substitution rate within the mammalian genome, indicating that different chromosomal regions evolve at different rates. This regional phenomenon which shapes gene evolution could reflect the existence of 'evolutionary rate units' along the chromosome.  相似文献   

16.
Chen LL  Gao F 《The FEBS journal》2005,272(13):3328-3336
Eukaryotic genomes are composed of isochores, i.e. long sequences relatively homogeneous in GC content. In this paper, the isochore structure of Arabidopsis thaliana genome has been studied using a windowless technique based on the Z curve method and intuitive curves are drawn for all the five chromosomes. Using these curves, we can calculate the GC content at any resolution, even at the base level. It is observed that all the five chromosomes are composed of several GC-rich and AT-rich regions alternatively. Usually, these regions, named 'isochore-like regions', have large fluctuations in the GC content. Five isochores with little fluctuations are also observed. Detailed analyses have been performed for these isochores. A GC-rich 'isochore-like region' and a GC-isochore in chromosome II and IV, respectively, are the nucleolar organizer regions (NORs), and genes located in the two regions prefer to use GC-ending codons. Another GC-isochore located in chromosome II is a mitochondrial DNA insertion region, the position and size of this region is precisely predicted by the current method. The amino acid usage and codon preference of genes in this organellar-to-nuclear transfer region show significant difference from other regions. Moreover, the centromeres are located in GC-rich 'isochore-like regions' in all the five chromosomes. The current method can provide a useful tool for analyzing whole genomic sequences of eukaryotes.  相似文献   

17.
18.
In meiotic prophase I, chromatin fibrils attached to the lateral elements of the synaptonemal complexes (SC) form loops. SCAR DNA (synaptonemal complex associated regions of DNA) is a family of genomic DNA tightly associated with the SC and located at the chromatin loop basements. Using the hybridization technique, it was demonstrated that localization of SCAR DNA was evolutionarily conserved in the isochore compositional fractions of the three examined genomes of warm-blooded vertebrates—human, chicken, and golden hamster. The introduction of the concept of the comparative loops (CL) of DNA that form of chromatin attach to SC in the isochore compositional fractions provided the calculation of their length. An inverse proportional relationship between the length of CL DNA and the GC level in the isochore compartments of the studied warm-blooded vertebrate genomes was revealed. An exception was the GCpoorest L1 isochore family. For different compositional isochores of the human and chicken genomes, the number of genes in the CL DNA was evaluated. A model of the formation of GC-rich isochores in vertebrate genomes, according to which there was not only an increase in the GC level but also the elimination of functionally insignificant noncoding DNA regions, as well as joining of isochores decreasing in size, was suggested.  相似文献   

19.
Jiang C  Zhao Z 《Genomics》2006,88(5):527-534
So far, there is no genome-wide estimation of the mutational spectrum in humans. In this study, we systematically examined the directionality of the point mutations and maintenance of GC content in the human genome using approximately 1.8 million high-quality human single nucleotide polymorphisms and their ancestral sequences in chimpanzees. The frequency of C-->T (G-->A) changes was the highest among all mutation types and the frequency of each type of transition was approximately fourfold that of each type of transversion. In intergenic regions, when the GC content increased, the frequency of changes from G or C increased. In exons, the frequency of G:C-->A:T was the highest among the genomic categories and contributed mainly by the frequent mutations at the CpG sites. In contrast, mutations at the CpG sites, or CpG-->TpG/CpA mutations, occurred less frequently in the CpG islands relative to intergenic regions with similar GC content. Our results suggest that the GC content is overall not in equilibrium in the human genome, with a trend toward shifting the human genome to be AT rich and shifting the GC content of a region to approach the genome average. Our results, which differ from previous estimates based on limited loci or on the rodent lineage, provide the first representative and reliable mutational spectrum in the recent human genome and categorized genomic regions.  相似文献   

20.
Comparative genomics is a superior way to identify phylogenetically conserved features like genes or regions involved in gene regulation. The comparison of extended orthologous chromosomal regions should also reveal other characteristic traits essential for chromosome or gene function. In the present study we have sequenced and compared a region of conserved synteny from human chromosome 11p15.3 and mouse chromosome 7. In human, this region is known to contain several genes involved in the development of various disorders like Beckwith-Wiedemann overgrowth syndrome and other tumor diseases. Furthermore, in the neighboring chromosome region 11p15.5 extensive imprinting of genes has been reported which might extend to region 11p15.3. The analysis of approximately 730 kb in human and 620 kb in mouse led to the identification of eleven genes. All putative genes found in the mouse DNA were also present in the same order and orientation in the human chromosome. However, in the human DNA one putative gene of unknown function could be identified which is not present in the orthologous position of the mouse chromosome. The sequence similarity between human and mouse is higher in transcribed and exon regions than in non-transcribed segments. Dot plot analysis, however, reveals a surprisingly well-conserved sequence similarity over the entire analyzed region. In particular, the positions of CpG islands, short regions of very high GC content in the 5' region of putative genes, are similar in human and mouse. With respect to base composition, two distinct segments of significantly different GC content exist as well in human as in the mouse. With a GC content of 45% the one segment would correspond to "isochore H1" and the other segment (39% GC in human, 40% GC in mouse) to "isochore L1/L2". The gene density (one gene per 66 kb) is slightly higher than the average calculated for the complete human genome (one gene per 90 kb). The comparison of the number and distribution of repetitive elements shows that the proportion of human DNA made up by interspersed repeats (43.8%) is significantly higher than in the corresponding mouse DNA (30.1%). This partly explains why the human DNA is longer between the landmark genes used to define the orthologous positions in human and mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号