首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advanced societies owe their success to an efficient division of labour that, in some social insects, is based on specialized worker phenotypes. The system of caste determination in such species is therefore critical. Here, we examine in a leaf-cutting ant (Acromyrmex echinatior) how a recently discovered genetic influence on caste determination interacts with the social environment. By removing most of one phenotype (large workers; LW) from test colonies, we increased the stimulus for larvae to develop into this caste, while for control colonies we removed a representative sample of all workers so that the stimulus was unchanged. We established the relative tendencies of genotypes to develop into LW by genotyping workers before and after the manipulation. In the control colonies, genotypes were similarly represented in the large worker caste before and after worker removal. In the test colonies, however, this relationship was significantly weaker, demonstrating that the change in environmental stimuli had altered the caste propensity of at least some genotypes. The results indicate that the genetic influence on worker caste determination acts via genotypes differing in their response thresholds to environmental cues and can be conceptualized as a set of overlapping reaction norms. A plastic genetic influence on division of labour has thus evolved convergently in two distantly related polyandrous taxa, the leaf-cutting ants and the honeybees, suggesting that it may be a common, potentially adaptive, property of complex, genetically diverse societies.  相似文献   

2.
Summary. The interplay of genetic and environmental factors in the determination of social insect castes has long intrigued biologists. Though an overwhelming majority of studies establish that factors such as nutrition, pheromones and temperature determine the developmental fate of worker larvae, genetic components have recently been shown to play a role in the determination of morphological worker castes in leaf-cutting ants. Here we demonstrate that the determination of worker castes in the strongly polyandrous Florida harvester ant, Pogonomyrmex badius, has a genetic component. The overall distribution of caste members among patrilines in our study colonies is significantly different from the intracolonial caste ratio. Though this effect was not apparent in all colonies, our results suggest that workers of different patrilines in P. badius differ significantly in their propensities to develop into a certain worker caste. This genetic basis of worker polymorphism may go unnoticed in many social hymenopterans because of their low intracolonial genetic diversity due to monogamous colony structure. The worker polymorphism of P. badius is a taxonomic isolate and presumably a young trait in the genus. Therefore, a common genetic component of the determination of morphological and behavioral worker castes in social insects might be farranging taxonomically and may even be based on a genetic machinery inherent to all hymenopterans, but dormant in most.Received 3 May 2004; revised 27 October 2004; accepted 8 November 2004.  相似文献   

3.
Preliminary optimization models for social insects suggested that efficiency should be promoted by having one specialist worker caste per essential task. However, such extreme specialization would greatly limit the ability of colonies to respond to changing situations and could lead to long periods of recession in a colony's economy. Recent studies show that by using simple behavioural rules social insects can reallocate tasks and form cooperative groups and even assembly lines that have far greater flexibility than would be the case with extremely specialized physical castes.  相似文献   

4.
Individual specialization underpins the division of labour within ant societies, but only in a small minority do morphological specialists, or physical castes, exist in the workforce. The genetic conditions that allow such castes to evolve are well understood, but the ecological pressures that select for them are not. We provide compelling evidence that the task of transporting novel prey selected for an exaggerated transport caste, or 'submajor', in the army ant Eciton burchellii. This species is the only Eciton that preys upon large arthropods as well as ants, the ancestral prey type, and by comparing load-transport among Eciton species and within E. burchellii, we show that this mixed diet significantly constrains transport efficiency. Crucially, however, we also show that E. burchellii submajors are highly specialized on transporting non-ant prey, and we demonstrate experientially that it is specifically this prey type that constrains prey-transport efficiency. Our study also suggests that phylogenetic constraints associated with the Eciton lifestyle intensified selection for the exaggerated submajor of E. burchellii. Thus, we propose that a novel task may only select for a special caste when phylogenetic constraints preclude the evolution of alternative solutions. This identifies a new and potentially general scenario for the evolution of physical castes.  相似文献   

5.
Most of the theory for the evolution of caste specialization in social insects assumes that increased efficiency in worker labor leads to specialization and increased worker efficiency gives colonies with behavioral specialists an advantage. However, there are an increasing number of studies that show that the task specialists within social insect colonies do not have the highest efficiency. Indeed, some studies show that some groups of workers are uniformly better than all other groups at every task. In this note, I adapt the principle of comparative advantage from economics to show that, rather than maximizing the payoff, specialization is advantageous when minimizing opportunity costs. This leads to the prediction that caste specialization should be associated with reduced opportunity costs rather than increased task efficiency.  相似文献   

6.
In most social insects, the brood is totipotent and environmental factors determine whether a female egg will develop into a reproductive queen or a functionally sterile worker. However, genetic factors have been shown to affect the female's caste fate in a few ant species. The desert ant Cataglyphis hispanica reproduces by social hybridogenesis. All populations are characterized by the coexistence of two distinct genetic lineages. Queens are almost always found mated with a male of the alternate lineage than their own. Workers develop from hybrid crosses between the genetic lineages, whereas daughter queens are produced asexually via parthenogenesis. Here, we show that the association between genotype and caste in this species is maintained by a ‘hard‐wired’ genetic caste determination system, whereby nonhybrid genomes have lost the ability to develop as workers. Genetic analyses reveal that, in a rare population with multiple‐queen colonies, a significant proportion of nestmate queens are mated with males of their own lineage. These queens fail to produce worker offspring; they produce only purebred daughter queens by sexual reproduction. We discuss how the production of reproductive queens through sexual, intralineage crosses may favour the stability of social hybridogenesis in this species.  相似文献   

7.
Division of labour is the hallmark of advanced societies, because specialization carries major efficiency benefits in spite of costs owing to reduced individual flexibility [1]. The trade-off between efficiency and flexibility is expressed throughout the social insects, where facultative social species have small colonies and reversible caste roles and advanced eusocial species have permanently fixed queen and worker castes. This usually implies that queens irreversibly specialize on reproductive tasks [2]. Here, we report an exception to this rule by showing that virgin queens (gynes) of the advanced eusocial leaf-cutting ant Acromyrmex echinatior switch to carrying out worker tasks such as brood care and colony defence when they fail to mate and disperse. These behaviours allow them to obtain indirect fitness benefits (through assisting the reproduction of their mother) after their direct fitness options (their own reproduction) have become moot. We hypothesize that this flexibility could (re-)evolve secondarily because these ants only feed on fungal mycelium and thus could not benefit from cannibalising redundant gynes, and because queens have retained behavioural repertoires for foraging, nursing, and defense, which they naturally express during colony founding.  相似文献   

8.
Because it increases relatedness between interacting individuals, population viscosity has been proposed to favour the evolution of altruistic helping. However, because it increases local competition between relatives, population viscosity may also act as a brake for the evolution of helping behaviours. In simple models, the kin selected fecundity benefits of helping are exactly cancelled out by the cost of increased competition between relatives when helping occurs after dispersal. This result has lead to the widespread view, especially among people working with social organisms, that special conditions are required for the evolution of altruism. Here, we re-examine this result by constructing a simple population genetic model where we analyse whether the evolution of a sterile worker caste (i.e. an extreme case of altruism) can be selected for by limited dispersal. We show that a sterile worker caste can be selected for even under the simplest life-cycle assumptions. This has relevant consequences for our understanding of the evolution of altruism in social organisms, as many social insects are characterized by limited dispersal and significant genetic population structure.  相似文献   

9.
Many social insects exhibit morphologically distinct worker and queen castes that perform different functions. These functional differences may generate unique selection regimes operating on body size. For example, queens may be under directional selection for large body size, whereas directional selection on worker body size may be limited. Such contrasting selection pressures may differentially affect levels of genetic variation associated with size variation in the two castes. This study sought to determine if genetic effects underlying phenotypic differences varied between the worker and queen castes of the social wasp Vespula maculifrons. We predicted that directional selection would remove genetic variation associated with size differences in the queen caste, whereas a lack of directional selection would tend to maintain genetic variation associated with size differences in the worker caste. We thus (1) calculated broad and narrow sense heritabilities for several morphological traits, (2) examined whether some paternal genotypes produced more morphologically diverse offspring than others, and (3) determined whether trait size variation was associated with genetic variation within colonies. We found that few morphological traits were significantly heritable, indicating that little genetic variance for those traits existed within our study population. We also found that some patrilines produced more morphologically variable offspring than others, suggesting a role of genotype in phenotypic plasticity. And finally, no significant correlations between genetic diversity arising from multiple mating by queens within colonies and trait variation in either caste were found. Overall, our findings indicate a weak effect of genotype on both worker and queen body size variation and are suggestive of a large environmental influence on morphological trait size. Moreover, our results do not indicate that levels of genetic variation underlying size variation differ substantially between castes in this species.  相似文献   

10.
11.
Morphological diversification of workers is predicted to improve the division of labor within social insect colonies, yet many species have monomorphic workers. Individual-level selection on the reproductive capacities of workers may counter colony-level selection for diversification, and life-history differences between species (timing of caste determination, colony size, genetic variation available) may mediate the strength of this selection. We tested this through phylogenetically independent contrast analyses on a new data set for 35 ant species. Evidence was found that early divergence of queen-worker developmental pathways may facilitate the evolution of worker diversity because queen-worker dimorphism was strongly positively associated with diversity. By contrast, risks for colonies that invest in specialized workers and colony size effects on costs of worker reproduction seem unlikely to strongly affect the evolution of worker diversity because there was no significant association between colony size and diversity when controlling statistically for queen-worker dimorphism. Finally, worker diversity was greater in species with multiple lineages per colony, and it was negatively associated with relatedness in monogynous species. This could be due to high intracolonial genetic variance favoring the expression and evolution of great worker diversity or to diversity evolving more easily when there is selection for repression of worker reproduction (worker policing).  相似文献   

12.
Caste polymorphism, defined as the presence within a colony of two or more morphologically differentiated individuals of the same sex, is an important character of highly eusocial insects both in the Hymenoptera (ants, bees and wasps) and in the Isoptera (termites), the only two groups in the animal kingdom where highly eusocial species occur. Frequently, caste polymorphism extends beyond mere variations in size (although the extent of variations in size can be in the extreme) and is accompanied by allometric variations in certain body parts. How such polymorphism has evolved and why, in its extreme form, it is essentially restricted to the social insects are questions of obvious interest but without satisfactory answers at the present time. I present a hypothesis entitled ‘genetic release followed by diversifying evolution’, that provides potential answers to these questions. I argue that genetic release followed by diversifying evolution is made possible under a number of circumstances. One of them I propose is when some individuals in a species begin to rely on the indirect component of inclusive fitness while others continue to rely largely on the direct component, as workers and queens in social insects are expected to do. Thus when queens begin to rely on workers for most of the foraging, nest building and brood care, and workers begin to rely increasingly on queens to lay eggs—when queen traits and worker traits do not have to be expressed in the same individual—I postulate the relaxation of stabilizing selection and new spurts of directional selection on both queen-trait genes and worker-trait genes (in contrasting directions) leading to caste polymorphism.  相似文献   

13.
14.
Heritable variation is essential for evolution by natural selection. In Neotropical army ants, the ecological role of a given species is linked intimately to the morphological variation within the sterile worker caste. Furthermore, the army ant Eciton burchellii is highly polyandrous, presenting a unique opportunity to explore heritability of morphological traits among related workers sharing the same colonial environment. In order to exploit the features of this organismal system, we generated a large genetic and morphological dataset and applied our new method that employs geometric morphometrics (GM) to detect the heritability of complex morphological traits. After validating our approach with an existing dataset of known heritability, we simulated our ability to detect heritable variation given our sampled genotypes, demonstrating the method can robustly recover heritable variation of small effect size. Using this method, we tested for genetic caste determination and heritable morphological variation using genetic and morphological data on 216 individuals of E. burchellii. Results reveal this ant lineage (1) has the highest mating frequency known in ants, (2) demonstrates no paternal genetic caste determination, and (3) suggests a lack of heritable morphological variation in this complex trait associated with paternal genotype. We recommend this method for leveraging the increased resolution of GM data to explore and understand heritable morphological variation in nonmodel organisms.  相似文献   

15.
The efficiency of social groups is generally optimized by a division of labour, achieved through behavioural or morphological diversity of members. In social insects, colonies may increase the morphological diversity of workers by recruiting standing genetic variance for size and shape via multiply mated queens (polyandry) or multiple‐breeding queens (polygyny). However, greater worker diversity in multi‐lineage species may also have evolved due to mutual worker policing if there is worker reproduction. Such policing reduces the pressure on workers to maintain reproductive morphologies, allowing the evolution of greater developmental plasticity and the maintenance of more genetic variance for worker size and shape in populations. Pheidole ants vary greatly in the diversity of worker castes. Also, their workers lack ovaries and are thus invariably sterile regardless of the queen mating frequency and numbers of queens per colony. This allowed us to perform an across‐species study examining the genetic effects of recruiting more patrilines on the developmental diversity of workers in the absence of confounding effects from worker policing. Using highly variable microsatellite markers, we found that the effective mating frequency of the soldier‐polymorphic P. rhea (avg. meN = 2.65) was significantly higher than that of the dimorphic P. spadonia (avg. meN = 1.06), despite a significant paternity skew in P. rhea (avg. B = 0.10). Our findings support the idea that mating strategies of queens may co‐evolve with selection to increase the diversity of workers. We also detected patriline bias in the production of different worker sizes, which provides direct evidence for a genetic component to worker polymorphism.  相似文献   

16.
In primitively eusocial insects, caste expression is flexible. Even though Polistes species are well known to show social trait variation (e.g., worker vs. gyne) depending on ecological context, loss of worker caste in some populations of a eusocial, worker-containing species has never been documented. We report first data on geographic variation in caste expression in Polistes biglumis. We compared physiological and behavioural traits of the first female offspring from four populations that experience different climatic conditions and social parasite prevalence. We demonstrated that the first female offspring to emerge in cold areas with high parasite prevalence had more abundant, gyne-like fat bodies and exhibited lower foraging effort, in comparison to the first female offspring produced in warm areas with low parasite prevalence. Thus, the populations under severe environmental conditions produced a totipotent female offspring and suppressed worker production, whereas the population living in less extreme environmental conditions produced worker-like females as first female offspring and gyne-like females as offspring that emerged later. The existence of mixed social strategies among populations of primitively eusocial species could have important consequences for the study of social evolution, shedding light on the sequence of steps by which populations evolve between the extremes of solitary state and eusocial state.  相似文献   

17.
Although the caste concept has been central to our understanding of the organization of work in social insect colonies, the concept has been the subject of considerable recent criticism. Theoretically, it has been suggested that temporal castes are too inflexible to allow a colony to rapidly reallocate labour in response to changing conditions. In addition, several authors have suggested that task switching is so prevalent that it precludes even the possibility of a rigidly controlled temporal caste system. This study addresses these two criticisms by presenting and testing a revision of the temporal caste concept that recognizes two categories of tasks: those that require a physiological specialization for their efficient performance, and those that all workers are equally able to perform. Only those tasks requiring a physiological specialization are relevant to the temporal caste concept. Two castes of honeybees were shown to vary in response to increased nectar influx, which requires a physiological specialization, but not to heat stress, which requires no specialization. This work suggests that the organization of work in social insect colonies reflects a compromise between selection for the benefits of division of labour and opposing selection for flexibility in task allocation.  相似文献   

18.
Complex social structure in eusocial insects can involve worker morphological and behavioural differentiation. Neuroanatomical variation may underscore worker division of labour, but the regulatory mechanisms of size-based task specialization in polymorphic species are unknown. The Australian weaver ant, Oecophylla smaragdina, exhibits worker polyphenism: larger major workers aggressively defend arboreal territories, whereas smaller minors nurse brood. Here, we demonstrate that octopamine (OA) modulates worker size-related aggression in O. smaragdina. We found that the brains of majors had significantly higher titres of OA than those of minors and that OA was positively and specifically correlated with the frequency of aggressive responses to non-nestmates, a key component of territorial defence. Pharmacological manipulations that effectively switched OA action in major and minor worker brains reversed levels of aggression characteristic of each worker size class. Results suggest that altering OA action is sufficient to produce differences in aggression characteristic of size-related social roles. Neuromodulators therefore may generate variation in responsiveness to task-related stimuli associated with worker size differentiation and collateral behavioural specializations, a significant component of division of labour in complex social systems.  相似文献   

19.
Social insects display task-related division of labour. In some species, division of labour is related to differences in body size, and worker caste members display morphological adaptations suited for particular tasks. Bumble-bee workers (Bombus spp.) can vary in mass by eight- to tenfold within a single colony, which previous work has linked to division of labour. However, little is known about the proximate mechanism behind the production of this wide range of size variation within the worker caste. Here, we quantify the larval feeding in Bombus impatiens in different nest zones of increasing distance from the centre. There was a significant difference in the number of feedings per larva across zones, with a significant decrease in feeding rates as one moved outwards from the centre of the nest. Likewise, the diameter of the pupae in the peripheral zones was significantly smaller than that of pupae in the centre. Therefore, we conclude that the differential feeding of larvae within a nest, which leads to the size variation within the worker caste, is based on the location of brood clumps. Our work is consistent with the hypothesis that some larvae are ‘forgotten’, providing a possible first mechanism for the creation of size polymorphism in B. impatiens.  相似文献   

20.
The genetic diversity in social insect colonies that is generated by multiple mating or multiple queens has been hypothesized to promote worker task specialization and therefore facilitate division of labour. However, few studies have actually examined the mechanisms by which genotype may influence individual worker behaviour. In this study, we dissect possible genetic effects on worker task performance in the desert leaf-cutter ant. We hypothesize that genotype could affect worker behaviour via (1) the rate of age-related task switching (age polyethism schedule), (2) individual task preference, and/or (3) task performance rates. To discriminate among these possible mechanisms, we generated composite colonies of workers from different genetic sources and followed the behaviour of individually marked workers over their lifetimes. We found significant differences among matrilines (offspring of different queens) in overall task performance. In particular, we found a negative covariance in likelihood of foraging versus tending fungus inside the nest. Workers of different matrilines also varied in the age of transition from inside the nest to foraging, but did not vary in task performance rates. Our results suggest that division of labour in this system is affected by genetic influences on individual task preference and age-related task choice, but not on variation in activity level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号