首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four sublines of Chinese hamster ovary (CHO) cells were selected or cloned on a 10% fetal calf serum supplemented MEM-alpha medium. Three of them were monolayer cultures and could proliferate by 2000 times a week (mu = 1.1 d 1) in T-flasks. The other subline, S1, could grow in suspension even in static T-flask cultures. The stability in chromosome number of these cell lines was investigated. By evaluating the kinetic growth parameters, i.e. the specific rates of growth, glucose consumption and lactic acid production, and the yields of cells and lactic acid from glucose, the S1 cells were considered to be the most suitable subline for the bioreactor suspension culture. The S1 cells reached the greatest maximum of cell concentration among all cell lines tested because of their efficient glucose utilization. Observed nutrient limitations in the S1 cell culture was overcome by modification of the medium composition, that is addition of 10 mg l-1 hypoxanthine, 1 mg l-1 FeSO4.7H2O, and 0.1 mg l-1 sodium putrescine, elimination of glutamine, supplementation of 6 mM asparagine and double amount of isoleucine, leucine, methionine and vitamins other than ascorbic acid, cyanocobalamin and biotin, increase of NaHCO3 concentration from 26 to 40 mM, and finally decrease of NaCl concentration from 122 to 100 mM. With this modified medium, 7.2 X 10(6) ml-1 of the maximum cell concentration was observed in a glucose fed-batch culture, the cell concentration which was twice as much as in batch cultures with the original medium.  相似文献   

2.
以离心换液的批培养为例,通过设计谷氨酰胺和天冬酰胺不同的添加方式来考察两者对CHO细胞生长,代谢及产物表达的影响。结果表明:基础培养基中谷氨酰胺和天冬酰胺不能简单地相互替换,缺失谷氨酰胺或天冬酰胺的基础培养基均不能支持dhfr-CHO细胞的正常生长和产物表达,仅谷氨酰胺和天冬酰胺的浓度同时达到4mmol/L,才能满足细胞生长所需。另外,代谢副产物氨的生成仅与谷氨酰胺和天冬酰胺的加和线性相关,与两者添加比例无关。但适当提高天冬酰胺与谷氨酰胺的比例可提高抗体表达水平,同时减少乳酸的生成。因此,为培养基开发与优化过程中谷氨酰胺和天冬酰胺的添加策略提供了依据,为建立高效的流加培养过程奠定了基础。  相似文献   

3.
以产尿激酶原CHO工程细胞CL-11G的细胞生长和目的产物的表达为观察指标,对用天冬酰胺替代培养基中谷氨酰胺的可行性进行研究。结果表明,溶液中游离态的天冬酰胺的自发分解速度明显低于谷氨酰胺,用天冬酰胺替代培基中的谷氨酰胺培养11G细胞不影响细胞的生长和目的产物的表达,有助于克服因谷氨酰胺的自行分解而造成的培养基氨的过度积聚对细胞代谢的不利影响。  相似文献   

4.
Ammonia has been identified as one of the most inhibitory substances for mammalian cells. We have attempted to develop a less-ammoniagenic medium for the growth of Vero cells by substitution of glutamine with glutamate. In spite of reduced ammonia formation, Vero cells cultured in glutamate-based medium (DMEM-glu) could not grow normally as in glutamine-based medium (DMEM-gln). After Vero cells adapted to DMEM-glu, alanine was consumed instead of accumulated and both asparagine and glutamine were almost undetectable, indicating the lacking for aminonitrogen. By supplementing NH4Cl, the growth was significantly improved and the cellular uptake of glutamate from medium was greatly increased. However the growth was still not restored to the level in DMEM-gln, likely due to ammonia toxicity. Asparagine was chosen to support the growth of Vero cells in DMEM-glu, formulating DMEM-glu-asn. This replacement reduced ammonia formation by 79% and increased cell yields by 34% compared with DMEM-gln. After Vero cells adapted to DMEM-glu-asn, glutamine synthetase (GS) activity was elevated by 3.8 folds compared with control in DMEM-gln. In DMEM-glu-asn Vero cell growth was arrested by the specific GS inhibitor, methionine sulphoximine. This arrest affirmed the essential role of GS in glutamine synthesis and disconfirmed the potential role of asparagine synthase (AS) in glutamine formulation (also asparagine utilization).  相似文献   

5.
When a transfected CHO cell, that produces tissue-type Plasminogen Activator, t-PA, was transferred from a medium based on 5% Fetal Calf Serum, FCS, to a medium based on 0.8% casein peptone with variable glutamine and asparagine content, it was observed, that the growth of the cells changed from anchorage dependant to suspension culture giving more reproducible cultivations. In the FCS culture t-PA was unstable, observed as a decline in t-PA concentration after 250 h. This decline in t-PA concentration was not observed in the serum free culture, although there was a decline in productivity after 200 h. This change in production profile may be attributed to either no proteolytic attack from serum or by scavenging of proteolytic activities produced by the cells from the peptone peptides. Increasing amounts of glutamine/asparagine gave higher production of t-PA in synchrony with an increasing production of ammonia/ammonium ions. Ammonia inhibition does not seem to be a key factor for this cell line as seen with many others.  相似文献   

6.
Adherent and suspension Baby Hamster Kidney (BHK) 21c13 cells were cultivated in a 2.5-1 stirred-tank reactor with indirect aeration. Cell concentration and viability as well as glucose, lactate, ammonia, and protein concentrations in the medium and intracellular and extracellular activities of the intracellular enzymes were determined off-line. The concentrations of glucose, lactate, ammonia, and the activity of lactate dehydrogenase in the culture medium were monitored on-line. The cell/cell fragment size distribution was determined by laser flow cytometer off-line. In several runs, the size distributions were ascertained on-line by a laser flow cytometer. The influence of lactate, ammonia, and osmotic pressure on the viability and biological parameters of the suspension cells was evaluated. In Roux flasks, lactate and ammonia had considerable influence on the cell properties; in stirred tank reactors, these influences were negligible up to 9.5 g l-1 lactate and 150 mg l-1 NH+4 ion concentrations. The influence of high osmolarity on the biological parameters of the cells was much less in the stirred-tank than in the Roux flasks. The adhesion of adherent cells on a surface was impeded neither by the lactate (up to 6 g l-1) nor by the ammonia concentration (up to 150 mg l-1). However, with increasing osmolarity, the fraction of the cells adhered to a surface reduced to below 5% (at 680 mOsmol l-1).  相似文献   

7.
Although glutamine is a major carbon source for mammalian cells in culture, its chemical decomposition or cellular metabolism leads to an undesirable excess of ammonia. This limits the shelf-life of glutamine-supplemented media and may reduce the cell yield under certain conditions. We have attempted to develop a less ammoniagenic medium for the growth of BHK-21 cells by a mole-to-mole substitution of glutamine by glutamate. This results in a medium that is thermally stable but unable to support an equivalent growth yield. However, supplementation of the glutamate-based medium with asparagine (3 mM) and a minimal level of glutamine (0.5 mM) restored the original growth capacity of the cultures. Substitution of the low level of glutamine with the glutamine dipeptides, ala-gln (1 mM), or gly-gln (3 mM) resulted in an equivalent cell yield and in a thermally stable medium. The ammonia accumulation in cultures with glutamate-based medium was reduced significantly (>60%). Factors mediating growth and adaptation in medium substituted with glutamate were also investigated. The maximum growth capacity of the BHK-21 cells in glutamate-based medium (without glutamine) was achieved after a period of adaptation of 5 culture passages from growth in glutamine-based cultures. Adaptation was not influenced by increases in glutamate uptake which was constitutively high in BHK cells. Adaptation was associated with changes in the activities of enzymes involved in glutamate or glutamine metabolism. The activities of glutamine synthetase (GS) and alanine aminotransferase (ALT) increased significantly and the activity of phosphate-activated glutaminase (PAG) decreased significantly. The activity of glutamate dehydrogenase (GDH) showed no significant change after adaptation to glutamate. These changes resulted in an altered metabolic profile which included a reduced ammonia production but an increased alanine production. Alanine production is suspected of being an alternative route for removal of excess nitrogen.  相似文献   

8.
For most cultivated mammalian cells, glutamine is an essential medium component. However, glutamine consumption results in the production of ammonia, a cytotoxic byproduct. Here we investigated the effect of glutamine reduction on recombinant protein production and ammonia accumulation in transiently transfected CHO and HEK-293E cells maintained under conditions of growth arrest. Maximum transient recombinant protein yields were observed in HEK-293E cultures without glutamine and in CHO cultures with 2 mM glutamine. The initial concentration of glutamine correlated with the level of ammonia accumulation in each culture. For both a stable CHO-derived cell line and a polyclonal population of recombinant CHO cells grown under conditions of mild hypothermia, the highest volumetric protein productivity was observed in cultures without glutamine. Here, the level of ammonia accumulation also corresponded to the initial glutamine concentration. Our data demonstrate that reduction of glutamine in the medium is an effective approach to improve protein production in both transiently and stably transfected mammalian cells when applying conditions that reduce or arrest the growth of these cells.  相似文献   

9.
A photoautotrophic soybean suspension culture was used to study free amino acid pools during a subculture cycle. Free amino acid analysis showed that the intracellular concentrations of asparagine, serine, glutamine, and alanine reached peaks of 200, 10, 9 and 7 mM, respectively, at specific times in the 14-day subculture cycle. Asparagine and serine levels peaked at day 14 but glutamine level rose quickly after subculture, peaking at day three and then declined gradually. Roughly similar patterns were found in the conditioned culture medium although the levels were 1000-fold lower than those found in cells. Photoautotrophic (SB-P) and photomixotrophic (SB-M) cultures were quantitatively similar with regard to free asparagine and serine but not glutamine or free ammonia. Heterotrophic (SB-H) cells had 81–85% less free asparagine on day seven than did SB-M or SB-P cells. Hence, similar to the phloem sap of a soybean plant, asparagine, glutamine, alanine and serine were the predominant amino acids in photoautotrophic soybean cell cultures. Varying the amount of total nitrogen in culture medium for two subcultures at 10, 25, 50, and 100% Of normal levels showed that growth was inhibited only at the 10 and 25% levels but that growth on medium containing 50% of the normal nitrogen was as good as that on 100% nitrogen. Moreover, cellular chlorophyll content correlated exceptionally well with initial nitrogen content of the medium. Thus, the photosynthesis of SB-P cells was not limited by chlorophyll content. SB-P cells grown for two subcultures on 10% nitrogen contained very low free amino acid levels and only 1% of the free ammonia levels found in cells growing on a full nitrogen complement.Abbreviations SB-P photoautotrophic soybean cells (no sucrose, high CO2, high light) - SB-M photomixotrophic soybean cells (1% w/v sucrose, high light) - SB-H heterotrophic soybean cells (3% sucrose, dark)  相似文献   

10.
In mammalian cell culture technology glutamine is required for biomass synthesis and as a major energy source together with glucose. Different pathways for glutamine metabolism are possible, resulting in different energy output and ammonia release. The accumulation of ammonia in the medium can limit cell growth and product formation. Therefore, numerous ideas to reduce ammonia concentration in cultivation broths have been developed. Here we present new aspects on the energy metabolism of mammalian cells. The replacement of glutamine (2 mM) by pyruvate (10 mM) supported cell growth without adaptation for at least 19 passages without reduction in growth rate of different adherent commercial cell lines (MDCK, BHK21, CHO-K1) in serum-containing and serum-free media. The changes in metabolism of MDCK cells due to pyruvate uptake instead of glutamine were investigated in detail (on the amino acid level) for an influenza vaccine production process in large-scale microcarrier culture. In addition, metabolite profiles from variations of this new medium formulation (1-10 mM pyruvate) were compared for MDCK cell growth in roller bottles. Even at very low levels of pyruvate (1 mM) MDCK cells grew to confluency without glutamine and accumulation of ammonia. Also glucose uptake was reduced, which resulted in lower lactate production. However, pyruvate and glutamine were both metabolized when present together. Amino acid profiles from the cell growth phase for pyruvate medium showed a reduced uptake of serine, cysteine, and methionine, an increased uptake of leucine and isoleucine and a higher release of glycine compared to glutamine medium. After virus infection completely different profiles were found for essential and nonessential amino acids.  相似文献   

11.
Aims:  To develop a defined medium for Clostridium scatologenes ATCC 25775, which produces the malodorants 3-methylindole (skatole) and 4-methylphenol ( p- cresol).
Methods and Results:  Clostridium scatologenes was cultured in anaerobic broth medium (pH 6·3) at 37°C containing ammonia, minerals and a commercial vitamin solution. Data indicate α-ketoglutarate, l- glutamate or l- glutamine is a required nutrient that can also serve as a primary carbon and energy source. When cultured in defined medium containing glutamate; glucose, fructose and betaine served as primary carbon and energy sources. l- Tryptophan, l- tyrosine, sorbitol and indole acetic acid did not enhance growth. In the absence of tryptophan, cells produced indole when grown using glucose or fructose. 4-Methylphenol was produced when growing cells were supplied with tyrosine. When supplied with tryptophan, 3-methylindole was produced by glucose- or fructose-growing cells but not from glutamate-growing cells. Cells grown in the presence of pyruvate produced indole, 3-methylindole and 4-methylphenol.
Conclusions:  Clostridium scatologenes requires α-ketoglutarate, l- glutamate, or l- glutamine for growth in defined medium. Cells produce indole when glucose or fructose is included in defined medium.
Significance and Impact of the Study:  The development of a defined medium will assist in physiology studies and genetic analysis of this strain.  相似文献   

12.
A significant percentage of excreted ammonium is added to tubular fluid along the medullary collecting duct. However, it is not clear whether this ammonia is produced in the cortex and delivered into the medulla or is produced directly by medullary cells. To address this issue, rat epithelial cells derived from the renal papilla were grown in continuous culture and their ability to generate ammonia was examined. When grown in Dulbecco's modified Eagle's medium with 4 mM glutamine, these cells produced ammonia at a rate of approximately 27 nmol/10(6) cells/h. When these cells were grown in minimum essential medium without glutamine, ammonia production fell to 7 nmol/10(6) cells/ h. Increasing the glutamine concentrations of minimum essential medium to 4 mM increased ammonia production to slightly greater than 30 nmol/10(6) cells/ h. Increasing the media concentration of glutamate, glycine, or asparagine resulted in no significant increase in ammoniagenesis. Analysis of media amino acid concentration revealed that glutamine was the main amino acid consumed while alanine was the predominant amino acid produced. The glutaminase activity of these cells appears to be primarily phosphate-dependent, similar to that observed in vitro in papillary tubules. Alterations of K+ or H+ ion concentration did not alter ammoniagenesis, but addition of 2.5 mM ammonium chloride significantly reduced net ammonia production. It is concluded that rat papillary epithelial cells have the intrinsic ability to utilize glutamine to generate ammonia and alanine. In vivo ammonia produced locally in the medulla may contribute to final urinary ammonium excretion.  相似文献   

13.
何敬琦  张思雅  李明  杨栋  李术 《生物磁学》2014,(9):1627-1632
目的:考察培养基中葡萄糖、谷氨酰胺、血清、碳酸氢钠含量对CHO细胞生长繁殖的影响。方法:在CHO细胞培养基中添加不同成分的葡萄糖、谷氨酰胺、血清、碳酸氢钠,通过单因素实验结果结合Box-Behnken效应面法,根据二次回归模型的分析结果,以细胞表达蛋白体外活性为指标进行实验,考察培养基中葡萄糖、谷氨酰胺、血清、碳酸氢钠含量对细胞生长繁殖的影响。结果:根据回归方程分析结果,作出相应的曲面图和等高线图,优选出培养基中各组分的最佳配比为:葡萄糖2.54g/L、谷氨酰胺O.59g/L、血清8.3%,碳酸氢钠2.96g/L。结论:Box—Behnken实验设计法用于细胞培养过程中考察培养基中各组分的优选是可行的,数学模型的预测值与实验观察值相符。通过对CHO细胞培养基成分的优化,使CHO细胞蛋白表达量高,有利于提高产品质量和降低生产成本。  相似文献   

14.
Insect cell cultures have been extensively utilised for means of production for heterologous proteins and biopesticides. Spodoptera frugiperda (Sf9) and Trichoplusia ni (High Five™) cell lines have been widely used for the production of recombinant proteins, thus metabolism of these cell lines have been investigated thoroughly over recent years. The Helicoverpa zea cell line has potential use for the production of a biopesticide, specifically the Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus (HaSNPV). The growth, virus production, nutrient consumption and waste production of this cell line was investigated under serum-free culture conditions, using SF900II and a low cost medium prototype (LCM). The cell growth (growth rates and population doubling time) was comparable in SF900II and LCM, however, lower biomass and cell specific virus yields were obtained in LCM. H. zea cells showed a preference for asparagine over glutamine, similar to the High Five™ cells. Ammonia was accumulated to significantly high levels (16 mM) in SF900II, which is an asparagine and glutamine rich medium. However, given the absence of asparagine and glutamine in the medium (LCM), H. zea cells adapted and grew well in the absence of these substrates and no accumulation of ammonia was observed. The adverse effect of ammonia on H. zea cells is unknown since good production of biologically active HaSNPV was achieved in the presence of high ammonia levels. H. zea cells showed a preference for maltose even given an abundance supply of free glucose. Accumulation of lactate was observed in H. zea cell cultures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Amino acid availability is a key factor that can be controlled to optimize the productivity of fed-batch cultures. To study amino acid limitation effects, a serum-free chemically defined basal medium was formulated to exclude the amino acids that became depleted in batch culture. The effect of limiting glutamine, asparagine, and cysteine on the cell growth, metabolism, antibody productivity, and product glycosylation was investigated in three Chinese hamster ovary (CHO) cell lines (CHO-DXB11, CHO-K1SV, and CHO-S). Cysteine limitation was detrimental to both cell proliferation and productivity for all three CHO cell lines. Glutamine limitation reduced growth but not cell specific productivity, whereas asparagine limitation had no significant effect on either growth or cell specific productivity. Neither glutamine nor asparagine limitation significantly affected antibody glycosylation. Replenishing the CHO-DXB11 culture with cysteine after 1 day of cysteine limitation allowed the cells to partially recover their growth and productivity. This recovery was not observed after 2 days of cysteine limitation. Based on these findings, a fed-batch protocol was developed using single or mixed amino acid supplementation. Although cell density and antibody concentration were lower compared to a commercial feed, the feeds based on cysteine supplementation yielded comparable cell specific productivity. Overall, this study showed that different amino acid limitations have varied effects on the performance of CHO cell cultures and that maintaining cysteine availability is a critical process parameter for the three cell lines investigated.  相似文献   

16.
Cephalosporin production by a highly productive Cephalosporium acremonium strain was carried out and optimized by fed-batch operation in a 40 l stirred tank reactor using a complex medium containing 30-120 g l-1 peanut flour. The concentrations of cephalosporin C (CPC) and its precursors: penicillin N (PEN N), deacetoxy cephalosporin C (DAOC), and deacetyl cephalosporin C (DAC) were monitored with an on-line HPLC. The concentrations of amino acids valine (VAL), cysteine (CYS), alpha-amino adipic acid (alpha-AAA), the dipeptide alpha-amino-adipyl-cysteine (AC), and the tripeptide alpha-amino-adipyl-cysteinyl-valine (ACV), were determined off-line by HPLC. The RNA content and dry weight of the sediment as well as the oxygen transfer rate (OTR) and the CO2 production rate (CPR) were used to calculate the cell mass concentration (X). The influences of peanut flour (PF) and the on-line monitored and controlled medium components: glucose (GLU), phosphate, methionine (MET) as well as the dissolved oxygen (DOC) on the cell growth, the product formation, and the pathway of cephalosporin C biosynthesis were investigated and evaluated. When the glucose fed-batch cycle was optimized and oxygen transfer limitation was avoided (DOC greater than 20% of the saturation value), high process performance (103.5 g l-1 X, 11.84 g l-1 CPC, a maximum CPC productivity of 118 mg l-1 h-1, and the whole concentration of the beta-lactam antibiotics CPC, DAC, DAOC, PEN N 17.34 g l-1) was achieved by using 100 g l-1 PF in the medium with the optimum concentration of phosphate (260-270 mg l-1) and a low glucose concentration (less than 0.5 g l-1). The cultivations with different medium concentrations demonstrated that the product formation was directly proportional to the cell mass concentration. On the average, the cell mass-based yield coefficient of CPC: YCPC/X amounted to 0.115 g CPC per g cell mass.  相似文献   

17.
目的:考察培养基中葡萄糖、谷氨酰胺、血清、碳酸氢钠含量对CHO细胞生长繁殖的影响。方法:在CHO细胞培养基中添加不同成分的葡萄糖、谷氨酰胺、血清、碳酸氢钠,通过单因素实验结果结合Box-Behnken效应面法,根据二次回归模型的分析结果,以细胞表达蛋白体外活性为指标进行实验,考察培养基中葡萄糖、谷氨酰胺、血清、碳酸氢钠含量对细胞生长繁殖的影响。结果:根据回归方程分析结果,作出相应的曲面图和等高线图,优选出培养基中各组分的最佳配比为:葡萄糖2.54 g/L、谷氨酰胺0.59 g/L、血清8.3%,碳酸氢钠2.96 g/L。结论:Box-Behnken实验设计法用于细胞培养过程中考察培养基中各组分的优选是可行的,数学模型的预测值与实验观察值相符。通过对CHO细胞培养基成分的优化,使CHO细胞蛋白表达量高,有利于提高产品质量和降低生产成本。  相似文献   

18.
Industrial therapeutic protein production has been greatly improved through fed‐batch development. In this study, improvement to the productivity of a tissue‐plasminogen activator (t‐PA) expressing Chinese hamster ovary (CHO) cell line was investigated in shake flask culture through the optimization of the fed‐batch feed and the reduction of ammonia generation by glutamine replacement. The t‐PA titer was increased from 33 mg/L under batch conditions to 250 mg/L with daily feeding starting after three days of culture. A commercially available fed‐batch feed was supplemented with cotton seed hydrolysate and the four depleted amino acids, aspartic acid, asparagine, cysteine, and tyrosine. The fed‐batch operation increased the generation of by‐products such as lactate and ammonia that can adversely affect the fed‐batch performance. To reduce the ammonia production, a glutamine‐containing dipeptide, pyruvate, glutamate, and wheat gluten hydrolysate, were investigated as glutamine substitutes. To minimize the lag phase as the cells adjusted to the new energy source, a feed glutamine replacement process was developed where the cells were initially cultured with a glutamine containing basal medium to establish cell growth followed by feeding with a feed containing the glutamine substitutes. This two‐step feed glutamine replacement process not only reduced the ammonia levels by over 45% but, in the case of using wheat gluten hydrolysate, almost doubled the t‐PA titer to over 420 mg/L without compromising the t‐PA product quality or glycosylation pattern. The feed glutamine replacement process combined with optimizing other feed medium components provided a simple, practical, and effective fed‐batch strategy that could be applied to the production of other recombinant therapeutic proteins. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

19.
Metabolic flux analysis is a useful tool to analyze cell metabolism. In this study, we report the use of a metabolic model with 34 fluxes to study the 293 cell, in order to improve its growth capacity in a DMEM/F12 medium. A batch, fed-batch with glutamine feeding, fed-batch with essential amino acids, and finally a fed-batch experiment with both essential and nonessential amino acids were compared. The fed-batch with glutamine led to a maximum cell density of 2.4x10(6) cells/ml compared to 1.8x10(6) cells/ml achieved in a batch mode. In this fed-batch with glutamine, it was also found that 2.5 mM ammonia was produced compared to the batch which had a final ammonia concentration of 1 mM. Ammonia was found to be growth inhibiting for this cell line at a concentration starting at 1 mM. During the fed-batch with glutamine, the flux analysis shows that a majority of amino acid fluxes and Kreb's cycle fluxes, except for glutamine flux, are decreased. This observation led to the conclusion that the main nutrient used is glutamine and that during the batch there is an overflow in the Kreb's cycle. Thus, a fed-batch with glutamine permits a better utilization of this nutrient. A fed-batch with essential amino acid without glutamine was also assayed in order to reduce ammonia production. The maximum cell density was increased further to 3x10(6) cells/ml and ammonia production was reduced below 1 mM. Flux analysis shows that the cells could adapt to a medium with low glutamine by increasing the amino acid fluxes toward the Kreb's cycle. Adding nonessential amino acids during this feeding strategy did not improve growth further and the nonessential amino acids accumulated in the medium.  相似文献   

20.
Fed-batch cultures were implemented to study the metabolism of HEK-293 cells. Glucose, measured every 30 min by a FIA biosensor system, was maintained at 1 mM throughout the culture using an adaptive nonlinear controller based on minimal process modeling. The controller performed satisfactorily at both low and high cell concentrations without the need for retuning between different culture phases. Overall, lactate production was significantly reduced by maintaining a low glucose concentration, thus decreasing the rate of glycolysis. The rates of glucose and glutamine uptake as well as the lactate and ammonia production were compared to those obtained in batch mode with an initial glucose concentration of 21 mM. Basically, three phases were observed in both culture modes. The metabolic shift from the first to the second phase was characterized by a significant reduction in glucose consumption and lactate production while maximum growth rate was maintained. The specific respiration rate appeared unchanged during the first two phases, suggesting that no change occurred in the oxidative pathway capacity. In the third phase, cell growth became slower very likely due to glutamine limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号