首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybridization between locally adapted plant populations has been postulated to have significant evolutionary consequences, and, in particular, may influence host-pathogen interactions with respect to resistance and virulence structure. This study investigated patterns of resistance and virulence in a hybrid zone between ”bog” and ”hill” ecotypes of the native Australian flax, Linum marginale, where the host is subject to attack by the rust pathogen, Melampsora lini. Analysis of the resistance structure of adjoining bog, hill and hybrid populations found that bog plants were generally susceptible to pathogen isolates taken from all these sites, but that hybrids exhibited resistance levels similar to the more resistant hill plants. Similarly, the virulence structure of rust isolates collected from the hybrid population was more similar to that of the hill isolates than the bog. Controlled crosses between bog and hill plants showed that crosses in one direction (bog females×hill males) were much more successful than the other. A multi-year reciprocal transplant study further indicated that bog plants had significantly higher survivorship than hill plants, regardless of site. It is suggested that likelihood of differential gene flow and survivorship for bog and hill plants may at least partially explain the maintenance of a relatively narrow hybrid zone. Received: 5 October 1999 / Accepted: 1 July 1999  相似文献   

2.
Populations of wild flax, Linum marginale and its associated rust fungus Melampsora lini growing at Kiandra, New South Wales, Australia, were sampled during the 1986–1987 growing season. Thirteen different races of M. lini were detected in a sample of 96 isolates. The distribution of isolates was uneven: race A comprised 73% of the samples; race N, 8%; and race H, 5%; while the remaining races were represented by only one or two samples. The dominance of race A increased over the course of the growing season, comprising 67% of the early season samples and increasing to 78% for those collected late in the season. The overall diversity of the pathogen population decreased late in the growing season, but this trend was not statistically significant. The average virulence of individual isolates of the pathogen population increased during the growing season. This trend was most pronounced among the minor races, where the mean number of differential hosts infected increased from 4.58 for early season samples to 5.12 and 5.08 for mid and late season samples, respectively. In contrast to the virulence pattern in the pathogen, the L. marginale population displayed a more even distribution of resistance. In a sample of 67 plants 10 resistance phenotypes were detected from their pattern of resistance/susceptibility to seven pathogen isolates. No phenotype had a frequency that exceeded 30%. Resistance phenotypes were randomly distributed on both a population level and on a fine scale.  相似文献   

3.
Summary Random cDNA sequences synthesized from poly A+ RNA extracted from germinated urediospores of the flax rust fungus, Melampsora lini, were used as probes to detect restriction fragment length polymorphisms (RFLPs) in three races of M. lini originating from cultivated flax, Linum usitatissimum, and one race originating from Australian native flax, L. marginale. Fourteen out of 22 probes tested detected RFLPs in the three races from cultivated flax while 19 of the probes detected polymorphisms between these three races and the race from L. marginale. The segregation of seven RFLPs was determined in a family of 19 F2 progeny derived from a cross between two of the rust races. With six of these the inheritance was consistent, in each case, with the segregation of alleles at a single locus. Inheritance of the seventh was unusual and an explanation involving two loci with null alleles at each was proposed. No linkage was detected between any of the RFLP loci and nine unlinked loci specifying avirulence.  相似文献   

4.
We developed and characterized primers for 11 variable microsatellite loci present in the genome of the flax rust, Melampsora lini. The microsatellite loci were identified by sequencing clones from a library of EcoRI DNA fragments enriched for four simple sequence repeat motifs (AAG, AAT, TC and TG). All 11 primer pairs successfully amplified DNA fragments from a sample of 102 M. lini isolates (98 isolated from Linum marginale and four from Linum usitatissimum), revealing a total of 32 alleles. Allelic diversity at the 11 loci ranged from 0.030 to 0.449.  相似文献   

5.
Ecologists have long sought mechanistic explanations for the patterns of plant distribution and endemism associated with serpentine soils. We conducted the first empirical test of the serpentine pathogen refuge hypothesis, which posits that the low levels of calcium found in serpentine soils provide associated plants with a refuge from attack by pathogens. We measured the range of soil calcium concentrations experienced by 16 wild population of California dwarf flax (Hesperolinon californicum) and experimentally recreated part of this range in the greenhouse by soaking serpentine soils in calcium chloride solutions of varying molarity. When flax plants grown in these soils were inoculated with spores of the rust fungus Melampsora lini we found a significant negative relationship between infection rates and soil calcium concentrations. This result refutes the pathogen refuge hypothesis and suggests that serpentine plants, by virtue of their association with low calcium soils, may be highly vulnerable to attack by pathogens. This interaction between plant nutrition and disease may in part explain demographic patterns associated with serpentine plant populations and suggests scenarios for the evolution of life history traits and the distribution of genetic resistance to infection in serpentine plant communities.  相似文献   

6.
The extent and speed at which pathogens adapt to host resistance varies considerably. This presents a challenge for predicting when—and where—pathogen evolution may occur. While gene flow and spatially heterogeneous environments are recognized to be critical for the evolutionary potential of pathogen populations, we lack an understanding of how the two jointly shape coevolutionary trajectories between hosts and pathogens. The rust pathogen Melampsora lini infects two ecotypes of its host plant Linum marginale that occur in close proximity yet in distinct populations and habitats. In this study, we found that within-population epidemics were different between the two habitats. We then tested for pathogen local adaptation at host population and ecotype level in a reciprocal inoculation study. Even after controlling for the effect of spatial structure on infection outcome, we found strong evidence of pathogen adaptation at the host ecotype level. Moreover, sequence analysis of two pathogen infectivity loci revealed strong genetic differentiation by host ecotype but not by distance. Hence, environmental variation can be a key determinant of pathogen population genetic structure and coevolutionary dynamics and can generate strong asymmetry in infection risks through space.  相似文献   

7.
Summary Immunolocalisation studies, using flax leaf material infected with the flax rust fungus,Melampsora lini, and isolated haustorial complexes, have shown that three anti-calmodulin monoclonal antibodies bind to the haustorial wall of the fungus. The epitopes recognised by these antibodies are inserted into the wall during the early stages of haustorium development and remain in the wall throughout the life of the haustorium. The epitopes are present in both compatible and incompatible reactions and are oligosaccharide in nature. The results provide evidence for molecular differentiation within the haustorial complex ofM. lini.Abbreviations BMM butyl-methylmethacrylate - CaM calmodulin - FITC fluorescein isothiocyanate - MAb monoclonal antibody  相似文献   

8.
The cytoskeleton in plant cells is a dynamic structure that can rapidly respond to extracellular stimuli. Alteration of the organization of microtubules and actin microfilaments was examined in mesophyll cells of flax, Linum usitatissimum L., during attempted infection by the flax rust fungus, Melampsora lini (Ehrenb.) Lev. Flax leaves that had been inoculated with either a compatible (yielding a susceptible reaction) or an incompatible (yielding a resistant reaction) strain of M. lini were embedded in butyl-methylmethacrylate resin; sections of this material were immunofluorescently labelled with anti-tubulin or anti-actin and examined using confocal laser scanning microscopy. In uninfected leaves, microtubules in the mesophyll cells formed a transverse array in the cell cortex. Microfilaments radiated through the cytoplasm from the nucleus. In an incompatible interaction, microtubules and microfilaments were extensively reorganized in mesophyll cells that were in contact with fungal infection hyphae or haustorial mother cells before penetration of the cell by the infection peg. After the initiation of haustorium development, microtubules disappeared from the infected cells, and growth of the haustoria ceased. In an incompatible interaction, hypersensitive cell death occurred in more than 70% of infected cells but occurred in less than 20% of cells in compatible interactions. After the infected cell had undergone hypersensitive cell death, the cytoskeleton in neighbouring cells became focused on the walls shared with the necrotic cell. In compatible interactions, reorganization of the cytoskeleton was either not observed at all or was observed much less frequently up to 48 h after inoculation.Abbreviations FITC fluorescein isothiocyanate - WGA wheatgerm agglutinin We thank Dr. G.J. Lawrence for providing valuable discussions and materials.  相似文献   

9.
During infection, plant pathogens secrete effector proteins to facilitate colonization. In comparison with our knowledge of bacterial effectors, the current understanding of how fungal effectors function is limited. In this study, we show that the effector AvrL567-A from the flax rust fungus Melampsora lini interacts with a flax cytosolic cytokinin oxidase, LuCKX1.1, using both yeast two-hybrid and in planta bimolecular fluorescence assays. Purified LuCKX1.1 protein shows catalytic activity against both N6-(Δ2-isopentenyl)-adenine (2iP) and trans-zeatin (tZ) substrates. Incubation of LuCKX1.1 with AvrL567-A results in increased catalytic activity against both substrates. The crystal structure of LuCKX1.1 and docking studies with AvrL567-A indicate that the AvrL567 binding site involves a flexible surface-exposed region that surrounds the cytokinin substrate access site, which may explain its effect in modulating LuCKX1.1 activity. Expression of AvrL567-A in transgenic flax plants gave rise to an epinastic leaf phenotype consistent with hormonal effects, although no difference in overall cytokinin levels was observed. We propose that, during infection, plant pathogens may differentially modify the levels of extracellular and intracellular cytokinins.  相似文献   

10.
Rust fungi cause devastating diseases on many important food crops, with a damaging stem rust epidemic currently affecting wheat production in Africa and the Middle East. These parasitic fungi propagate exclusively on plants, precluding the use of many biotechnological tools available for other culturable fungi. In particular the lack of a stable transformation system has been an impediment to the genetic manipulation required for molecular analysis of rust pathogenicity. We have developed an Agrobacterium‐mediated genetic transformation procedure for the model flax rust fungus Melampsora lini, which infects flax (Linum usitatissimum). Selection of transgenic rust lines is based on silencing of AvrL567, which encodes a rust effector protein that is recognised by the flax L6 immune receptor. The non‐transgenic rust line is unable to infect flax plants expressing L6, while silenced transgenic lines are virulent on these plants, providing an effective selection system. This directly confirms that the cloned AvrL567 gene is responsible for flax rust virulence phenotypes, and demonstrates the utility of this system to probe rust gene function.  相似文献   

11.
Although the dispersal of seeds around individual plants (the seed shadow) has frequently been characterized, the dispersion of seedlings around plants (the seedling shadow) has rarely been examined. We mapped 101 and 149 seedlings of the prairie compass plant (Silphium laciniatum) that appeared in our study area in 1987 and 1990 following mass flowering in 1986 and 1989. We also mapped the locations of flowering stems which appeared in 1986 and 1989 and recorded the number of flowerheads at each stem location. The frequency distributions of distance between a seedling and the nearest flowering stem were identical in the 2 years, with a median distance of 1.0 m. The large size and lack of wind-dispersal structures of compass plant seeds (achenes) are responsible for their limited dispersal. From estimates of the total seed production in the study area in 1986 and 1989, we calculated that about 1% of seeds became seedlings in each year. Flowering stem locations with a higher number of flowerheads had a significantly higher density of seedlings around them. This indicates that recruitment to compass plant populations is not a “lottery”; individual plants that produce more seeds produce, on average, more seedlings.  相似文献   

12.
Mitchell HJ  Ayliffe MA  Rashid KY  Pryor AJ 《Planta》2006,223(2):213-222
A gene fis1 from flax (Linum usitatissimum), which is induced in mesophyll cells at the site of rust (Melampsora lini) infection, is also expressed in vascular tissue, particularly in floral structures of healthy plants. This paper reports that the promoter controlling this expression is contained within 282 bp 5′ to the coding region and that fis1 gene induction is specifically by the rust pathogen and not by other fungal pathogens or by wounding. The fis1 gene has 73% homology with an Arabidopsis gene which encodes delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDH) which is a part of the proline degradation pathway. Transgenic flax plants that either over-express fis1 or show reduced fis1 expression due to RNA-mediated gene silencing have an unaltered morphology. However, plants with reduced fis1 expression have markedly increased sensitivity to exogenous proline and show alteration in epidermal cell morphology, callose deposition and the production of hydrogen peroxide during proline-induced death. These lines, which show a biologically significant level of fis1 suppression, have an unaltered reaction to either virulent or avirulent rust infections, as do fis1 over-expression lines. These data indicate that the fis1 gene plays a role in proline metabolism and most likely encodes for a P5CDH enzyme. However, the precise role of fis1 and P5C catabolism in the development of rust disease remains unclear.  相似文献   

13.
Translocation of pathogen effector proteins into the host cell cytoplasm is a key determinant for the pathogenicity of many bacterial and oomycete plant pathogens. A number of secreted fungal avirulence (Avr) proteins are also inferred to be delivered into host cells, based on their intracellular recognition by host resistance proteins, including those of flax rust (Melampsora lini). Here, we show by immunolocalization that the flax rust AvrM protein is secreted from haustoria during infection and accumulates in the haustorial wall. Five days after inoculation, the AvrM protein was also detected within the cytoplasm of a proportion of plant cells containing haustoria, confirming its delivery into host cells during infection. Transient expression of secreted AvrL567 and AvrM proteins fused to cerulean fluorescent protein in tobacco (Nicotiana tabacum) and flax cells resulted in intracellular accumulation of the fusion proteins. The rust Avr protein signal peptides were functional in plants and efficiently directed fused cerulean into the secretory pathway. Thus, these secreted effectors are internalized into the plant cell cytosol in the absence of the pathogen, suggesting that they do not require a pathogen-encoded transport mechanism. Uptake of these proteins is dependent on signals in their N-terminal regions, but the primary sequence features of these uptake regions are not conserved between different rust effectors.  相似文献   

14.
Willows are often attacked by both herbivorous insects and rust fungi. Little is known about interactions between these two willow enemies. We studied whether feeding and oviposition behavior of the willow leaf beetle Plagiodera versicolora upon the willow hybrid Salix x cuspidata is affected when the rust fungus Melampsora allii-fragilis has attacked the plant. Laboratory bioassays revealed that adult willow leaf beetles significantly avoided feeding and oviposition on rust-infected leaves when compared to healthy leaves. Further bioassays aimed to elucidate the temporal and spatial scale of effects of rust infection on feeding behavior of adults. While infected parts of leaves were avoided at all times past infection tested (8, 12, and 16 days), symptom-free parts of infected leaves were only avoided 16 days past infection. Systemic effects extended only one leaf position up and two leaf positions down from the infection site.  相似文献   

15.
Spatial variation in the resistance structure of Linum marginale (wild flax) populations to the rust fungus Melampsora lini, and in the racial structure of this pathogen, was investigated by sampling 10 populations distributed throughout the Kosciusko National Park, New South Wales, Australia. Considerable differences were found among populations in the structure of both host and pathogen. Host populations were divided into three broad categories: (1) populations susceptible to all testing races; (2) populations containing a strictly limited number of resistant phenotypes; and (3) populations with a considerable diversity of resistant phenotypes. The pathogen populations also showed a range of diversity. The major differences between these populations were determined by the occurrence and frequency of four common races of pathogen (races A, E, K, and N). These differences were apparent both at a regional spatial scale (over the 100 km separation of the most distant populations) and at a local scale where major differences were detected between two populations only 300 m apart. The distribution of the four common races of M. lini was consistent with the hypothesis that a fitness cost was associated with unnecessary virulence. In general, however, differences in the structure of pathogen populations from genetically very similar host populations implied that, in addition to host resistance genes, other evolutionary forces are also important in determining the genetic structure of individual pathogen populations.  相似文献   

16.
Plants of two genotypes of Chondrilla juncea (skeleton weed), one susceptible to and the other resistant to one isolate of the rust Puccinia chondrillina, were grown as pure and mixed populations both in the presence and absence of rust. Weights of individual plants were obtained at two harvests, one when the plants were rosettes and the other when flowering had begun. Distributions of plant weights of each genotype became progressively more positively skewed with time, with rust infection of plants of the susceptible genotype and with increasing competition between plants of both genotypes. The results show that genetic differences may be an important factor in determining which individuals become dominant or are suppressed in competing mixtures, and that differential disease pressure may alter dominance of individuals in plant populations.  相似文献   

17.
Effects of arbuscular mycorrhizal (AM) symbiosis on health ofLinum usitatissimum infected by fungal pathogens were investigated exemplarily. Physiological and biochemical analyses were done to explain the mechanisms underlying the AM effects. AM plants showed increased resistance against the wilt pathogen (Fusarium oxysporum f. sp.lini), the level of this effects depended on the plant cultivars which all showed the same level of root colonization by arbuscular mycorrhizal fungi (AMF). In contrary to that, AM plants were highly susceptible against the shoot pathogenOidium lini, but they suffered less than non-AM plants in terms of shoot fresh weight, CO2 assimilation and content of sucrose in shoot apex. This indicates that AM not only activates resistance mechanisms but also can induce tolerance against pathogens. The concentration of phytohormones such as auxin- and gibberellin-like substances were increased in shoots of AM plants. In roots the ethylene production was increased, too. Furthermore the content and composition of free sterols were highly altered in leaves of AM plants. Root infection by AMF caused an increased respiratory activity and a reduced degree of DNA methylation, but both modifications only occurred in infected root parts indicating an increasing gene activity. The presented results suggest that nearly all parts of a plant are influenced by AM but not in the same manner. In the case of mildewed linseed the effect of AM on plant health was impressing, it indicates that AM has an ability to induce tolerance.  相似文献   

18.
The genetic basis of resistance in wild flax (Linum marginale) to its host-specific pathogen Melampsora lini was investigated in seven lines collected from a single population growing at Kiandra, New South Wales and in an additional ten lines collected more widely across southeastern Australia. All lines showed different phenotypic patterns of resistance and susceptibility. Genetic analyses indicated the presence of single dominant genes for race-specific resistance in all but one of these lines. That particular line appeared to carry two linked dominant genes for resistance. Intercrosses between lines in each of these groups of L. marginale detected substantially more linkage between the resistance genes in the Kiandra population sample than between those in the broader geographic collection. This result is interpreted to indicate a possible mechanism whereby resistance genes are generated in natural populations.  相似文献   

19.
We investigated the functional significance of plant performance (dry mass, photosynthesis) in plant defence (resistance and tolerance) against pathogen infection, and potential negative cross-resistance between herbicide resistance and plant defence against disease. We compared isonuclear triazine-herbicide-resistant (TR) and -susceptible (TS) biotypes of Senecio vulgaris, in the presence and absence of infection by the rust Puccinia lagenophorae. In a growth chamber study with two reduced irradiance levels, rust infection had a severe effect on plant performance with infected plants having 55% less dry mass and 54% reduced whole-plant photosynthesis than non-infected plants. The TR biotype was more susceptible (reduced resistance) to the pathogen, but the biotypes did not differ in their ability to compensate for rust infection (tolerance). TR plants were less productive than TS plants when grown non-shaded (ca. 10% full sunlight) but not when shaded (ca. 5% full sunlight). This is especially important for situations, where S. vulgaris grows under the crop canopy (e.g. in maize). Here, very low light levels might contribute to a numerical increase of TR relative to TS plants even when only occasionally treated with triazine. Whole-plant photosynthesis was reduced by 21% in TR plants as compared to the TS biotype, and by 59% in plants grown in the shaded as compared to the non-shaded treatment. When whole-plant photosynthesis values were corrected for the estimated leaf area of plants, we found no significant variation between biotypes, shade treatments or rust treatments. In experimental mixed TR:TS field populations, the proportion of TR plants decreased more rapidly in rust-infected populations than uninfected. This finding, together with the lower resistance in the TR than the TS biotype to the rust fungus observed in the growth chamber experiment, may indicate negative cross-resistance, which is a potential tool in the management of herbicide-resistant weeds.  相似文献   

20.
Plants are regularly colonised by fungi and bacteria, but plant‐inhabiting microbes are rarely considered in studies on plant–herbivore interactions. Here we show that young gypsy moth (Lymantria dispar) caterpillars prefer to feed on black poplar (Populus nigra) foliage infected by the rust fungus Melampsora larici‐populina instead of uninfected control foliage, and selectively consume fungal spores. This consumption, also observed in a related lepidopteran species, is stimulated by the sugar alcohol mannitol, found in much higher concentration in fungal tissue and infected leaves than uninfected plant foliage. Gypsy moth larvae developed more rapidly on rust‐infected leaves, which cannot be attributed to mannitol but rather to greater levels of total nitrogen, essential amino acids and B vitamins in fungal tissue and fungus‐infected leaves. Herbivore consumption of fungi and other microbes may be much more widespread than commonly believed with important consequences for the ecology and evolution of plant–herbivore interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号