首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Films and coatings were produced from a noncellulosic polysaccharide-rich wood hydrolysate (WH), and the resulting oxygen barrier performance was improved by a selective choice of upgrading conditions. The WH was obtained from process water in the hydrothermal treatment of hardwood and subjected to one of three alternative upgrading treatments, resulting in xylan-rich fractions with significant differences in structure, composition, and properties of the recovered WH fractions, which in turn had a major impact on their performance with respect to tensile and oxygen barrier properties. The WH in the least upgraded state, the crudest fraction, produced films with the best performance in terms of oxygen permeability and was superior to corresponding films based on highly purified hemicellulose.  相似文献   

2.
Hemicelluloses are heteropolysaccharides existing in plant cell wall and seed, and they can be extracted or separated from plants as byproducts during the biomass pretreatment in biorefineries and the pulping in paper industry. The hemicelluloses have many applications such as in biofuels, platform chemicals, and materials. Producing packaging materials (films) is a potential high-value application of the hemicelluloses. However, native hemicelluloses are usually unable to form strong and durable films due to their short chain (low molecular weight), high hydrophilicity, and heterogeneous nature. Chemical and biological modifications could change the physicochemical properties of the hemicelluloses and thereby improve the strength and performance of the hemicellulose-based films. The present review extensively summarized and discussed the recent development and progress in hemicellulose modification strategies and methods for improving the formability and properties of the hemicellulose-based packaging films such as mechanical strength, processability, thermal stability, hydrophobicity, and oxygen and water vapor permeability, which include enzymatic treatment, esterification, etherification, oxidation, coupling, and crosslinking. The challenges and opportunities of hemicellulose as packaging materials were addresses.  相似文献   

3.
Cellulose and starch nanocrystals obtained from the acid hydrolysis of ramie fibers and waxy maize starch granules, respectively, were subjected to isocyanate-mediated reaction to graft polycaprolactone (PCL) chains with various molecular weights on their surface. Grafted nanoparticles were characterized by X-ray diffraction analysis and contact angle measurements. We observed that the nanoparticles kept their initial morphological integrity and native crystallinity. Nanocomposite films were processed from both unmodified and PCL-grafted nanoparticles and PCL as matrix using a casting/evaporation technique. We showed that mechanical properties of resulting films were notably different. Compared to unmodified nanoparticles, the grafting of PCL chains on the surface results in lower modulus values but significantly higher strain at break. This unusual behavior clearly reflects the originality of the reinforcing phenomenon of polysaccharide nanocrystals resulting from the formation of a percolating network thanks to chain entanglements and cocrystallization.  相似文献   

4.
Whey and zein protein are byproducts of the food industries and have good film making properties. Single and laminated films were produced from zein protein and whey protein and their film properties were studied. Glycerol and olive oil were used as plasticizer for the single and laminated films. The laminated films exhibited higher ultimate tensile strength (UTS) than the single whey protein films (260% and 200% in the whey-zein-glycerol and whey-zein-olive oil films, respectively). The UTS of the whey protein films increased 2-3-fold after lamination. The laminated films showed higher barrier properties than the single whey protein films (180% in the whey protein-zein-glycerol films and 200% in the whey protein-zein-olive oil films in comparison to single whey protein films) and lower than the single zein films.  相似文献   

5.
Preparation and characterization of surface crosslinked TPS/PVA blend films   总被引:1,自引:0,他引:1  
Surface crosslinked thermoplastic starch (TPS)/PVA blend films were prepared by applying ultra violet (UV) irradiation. Sodium benzoate was used as photosensitizer and induced onto film surface layer by soaking the TPS/PVA films in the photosensitizer aqueous solution. The effects of concentration of photosensitizer aqueous solution, soaking time and UV irradiation dose on the surface photocrosslinking reaction were investigated. Physical properties, such as water contact angle, moisture absorption, swelling degree and solubility in water as well as mechanical properties of the films were measured to characterize the influence of the surface photocrosslinking modification. The obtained results showed that the surface modification considerably reduced the surface hydrophilic character of the TPS/PVA films, enhanced the film’s water resistance and also increased tensile strength and Young’s modulus but decreased elongation at break of the films.  相似文献   

6.
We investigated oxygen equilibrium properties of highly purified human adult hemoglobin cross-linked between lysine-82 beta 1 and lysine-82 beta 2 by a fumaryl group, which is prepared by reaction of the CO form with bis(3,5-dibromosalicyl) fumarate. The cross-linked hemoglobin preparation isolated by the previous purification method, namely, gel filtration in the presence of 1 M MgCl2 followed by ion-exchange chromatography, was found to be contaminated with about 20% of an electrophoretically silent impurity that shows remarkably high affinity for oxygen. This impurity was separated from the desired cross-linked hemoglobin by a newly developed purification method, which utilizes a difference between the authentic hemoglobin and the impurity in reactivity of the sulfhydryl groups of cysteine-93 beta toward N-ethylmaleimide under a deoxygenated condition. After this purification procedure, the oxygen equilibrium properties of purified cross-linked hemoglobin in the absence of organic phosphate became very similar to those of unmodified hemoglobin with respect to oxygen affinity, cooperativity, and the alkaline Bohr effect. The functional similarity between the cross-linked hemoglobin and unmodified hemoglobin allows us to utilize this cross-linking for preparing asymmetric hybrid hemoglobin tetramers, which are particularly useful as intermediately liganded models. Previous studies on this type of cross-linked hemoglobin should be subject to reexamination due to the considerable amount of the impurity.  相似文献   

7.
The objective of this work was to investigate the effect of microbial transglutaminase (MTGase) treatment on the properties and microstructures of soy protein isolate (SPI) films cast with 0.6 plasticizer per SPI (gg(-1)) of glycerol, sorbitol and 1:1 mixture of glycerol and sorbitol, respectively. Tensile strength (TS), elongation at break (EB), water vapor transmission rate (WVTR) or water vapor permeability (WVP), moisture content (MC), total soluble matter (TSM), lipid barrier property and surface hydrophobicity of control and MTGase-treated films were evaluated after conditioning film specimens at 25 degrees C and 50% relative humidity (RH) for 48 h. The treatment by 4 units per SPI (Ug(-1)) of MTGase increased the TS and surface hydrophobicity by 10-20% and 17-56%, respectively, and simultaneously significantly (P< or =0.05) decreased the E, MC and transparency. The WVTR or TSM of SPI films seemed to be not significantly affected by enzymatic treatment (P>0.05). The MTGase treatment also slowed down the moisture loss rate of film-forming solutions with various plasticizers during the drying process, which was consistent with the increase of surface hydrophobicity of SPI films. Microstructural analyses indicated that the MTGase-treated films of SPI had a rougher surface and more homogeneous or compact cross-section compared to the controls. These results suggested that the MTGase treatment of film-forming solutions of SPI prior to casting could greatly modify the properties and microstructures of SPI films.  相似文献   

8.
Transparent and bendable regenerated cellulose films prepared from aqueous alkali (NaOH or LiOH)/urea (AU) solutions exhibit high oxygen barrier properties, which are superior to those of conventional cellophane, poly(vinylidene chloride), and poly(vinyl alcohol). Series of AU cellulose films are prepared from different cellulose sources (cotton linters, microcrystalline cellulose powder, and softwood bleached kraft pulp) for different dissolution and regeneration conditions. The oxygen permeabilities of these AU cellulose films vary widely from 0.003 to 0.03 mL μm m(-2) day(-1) kPa(-1) at 0% relative humidity depending on the conditions used to prepare the films. The lowest oxygen permeability is achieved for the AU film prepared from 6 wt % cellulose solution by regeneration with acetone at 0 °C. The oxygen permeabilities of the AU cellulose films are negatively correlated with their densities, and AU films prepared from solutions with high cellulose concentrations by regeneration in a solvent at low temperatures generally have low oxygen permeabilities. The AU cellulose films are, therefore, promising biobased packaging materials with high-oxygen barrier properties.  相似文献   

9.
Hemicellulose from aspen (Populus tremula) was isolated by an alkali extraction method, which was followed by hydrogen peroxide treatment, ultrafiltration and recovery by spray drying. The sugar composition and lignin content were monitored with HPLC at each step of the separation procedure. Size-exclusion chromatography showed a polymeric hemicellulose of relatively high molar mass. The product was characterized by 1H and 13C NMR spectroscopy and was found to be composed of a linear (1→4)-β-linked -xylose main chain with a 4-O-methyl-- -glucuronic acid substituting the 2-position of approximately every eighth xylose unit. Lignin and O-acetyl groups had largely been removed in the separation process. The xylan was soluble in hot water, and the film forming properties were examined at various mixtures of the hemicellulose and chitosan. These films formed hydrogels with a high swelling capacity at certain compositions. The morphologies of the films were examined with wide angle X-ray spectroscopy, and a pure xylan film was found to be crystalline, which was suggested to be a consequence of the lack of O-acetyl groups. The crystallinity of the films was found to decrease with an increasing amount of chitosan, and the film of chitosan alone showed no crystallinity. The cohesive forces of the hydrogels are suggested to be the result of the crystalline arrangement of the polymers and of electrostatic interactions between acidic groups in the hemicellulose and amine groups in the chitosan.  相似文献   

10.
Surface of corn starch films was modified through esterification using dodecenyl succinic anhydride (DDSA) as reactant. The effects of reaction temperature and time, concentration of alkaline aqueous solution for activating starch, concentration of ethanol diluted DDSA, and time of alkaline aqueous solution treatment on the physical properties related to material’s hydrophilic nature, such as moisture absorption and surface water contact angle, were investigated. It was found that the surface esterification modification significantly reduced the moisture sensitivity and surface hydrophilic character of starch film. Due to the hydroxyl groups in the film surface layer were reacted with DDSA, the equilibrium moisture content of the starch film under 95% RH declined 22% and the surface water contact angle increased up to 82% after surface esterification modification.  相似文献   

11.
Multi-layered films based on tilapia skin gelatin and poly(lactic acid) (PLA) were characterized, in comparison with the control gelatin and PLA films. Three different layers of multi-layered films (PLA/Gelatin/PLA) were visualized by scanning electron microscopic (SEM) analysis. The synergetic effect of lamination was evidenced by the increased mechanical properties (P < 0.05). Multi-layered films had higher water vapor barrier property and water resistance, compared to control gelatin film (P < 0.05). Gelatin films showed increased lightness (L*) with coincidental decrease in total color difference (?E*) in the presence of PLA layers (P < 0.05). Transparency and solubility of films decreased with increasing ratio of PLA (P < 0.05). In addition, multi-layered films showed the enhanced hydrophobicity and thermal stability as evidenced by increased water contact angle and degradation temperature, respectively. Thus, PLA/Gelatin/PLA multi-layered film with improved water vapour barrier property could serve as bio-degradable packaging material for wider applications.  相似文献   

12.
There is an interest in the development of an antioxidant packaging fully biodegradable to increase the shelf life of food products. An active film from cassava starch bio-based, incorporated with aqueous green tea extract and oil palm colorant was developed packaging. The effects of additives on the film properties were determined by measuring mechanical, barrier and thermal properties using a response surface methodology design experiment. The bio-based films were used to pack butter (maintained for 45 days) under accelerated oxidation conditions. The antioxidant action of the active films was evaluated by analyzing the peroxide index, total carotenoids, and total polyphenol. The same analysis also evaluated unpacked butter, packed in films without additives and butter packed in LDPE films, as controls. The results suggested that incorporation of the antioxidants extracts tensile strength and water vapor barrier properties (15 times lower) compared to control without additives. A lower peroxide index (231.57%), which was significantly different from that of the control (p<0.05), was detected in products packed in film formulations containing average concentration of green tea extracts and high concentration of colorant. However, it was found that the high content of polyphenols in green tea extract can be acted as a pro-oxidant agent, which suggests that the use of high concentration should be avoided as additives for films. These results support the applicability of a green tea extract and oil palm carotenoics colorant in starch films totally biodegradable and the use of these materials in active packaging of the fatty products.  相似文献   

13.
Biodegradable polyesters such as poly(epsilon-caprolactone) (PCL) have a number of biomedical applications; however, their usage is often limited by a lack of biological functionality. In this paper, a PCL-based polymer containing pendent groups activated by 4-nitrophenyl chloroformate (NPC) and reactive toward primary amines has been cast into thin films. The reactivity of the films toward poly(l-lysine) and the cell adhesion peptide, GRGDS, was assessed, and their cell adhesive capabilities were characterized. ATR-FTIR analysis found that NPC functional groups were present on the surface of the cast film, and the synthesis, conjugation, and visualization of a fluorescent molecule on these films further demonstrated the success of this functionalization methodology. The immersion of these films into a solution of either poly(l-lysine) (PLL) or GRGDS in PBS (pH 7.4) and subsequent 3T3 fibroblast adhesion studies demonstrated significant improvement in cell adhesion and spreading over films cast from unmodified PCL. This investigation has shown that this novel NPC-containing polymer can be utilized in many applications where increased cellular adhesion is required, or the coupling of specific molecules to polymer surfaces is of interest.  相似文献   

14.
Phytagel and nano-clay particles were used to improve the mechanical and thermal properties and moisture resistance of soy protein concentrate (SPC) resin successfully. SPC and Phytagel were mixed together to form a cross-linked structure. The Phytagel-modified SPC resin (PH-SPC) showed improved tensile strength, modulus, moisture resistance, and thermal stability as compared to the unmodified SPC resin. The incorporation of 40% Phytagel and 20% glycerol led to an overall 340% increase in the tensile strength (over 50 MPa) and approximately 360% increase in the Young's modulus (over 710 MPa) of the SPC resin. Nano-clay was uniformly dispersed into PH-SPC resin to further improve the properties. The PH-SPC (40% Phytagel) resin modified with 7% clay nanoparticles (CPH-SPC) had a modulus of 2.1 GPa and a strength of 72.5 MPa. The dynamic mechanical properties such as storage modulus together with the glass transition temperature of the modified resins were also increased by the addition of clay nanoparticles. The moisture resistance of the CPH-SPC resin was higher as compared to both SPC and PH-SPC resins. The thermal stability of the CPH-SPC resin was seen to be higher as compared to the unmodified SPC.  相似文献   

15.
The aim of this paper is to report the impact of the addition of cellulose nanocrystals on the barrier properties and on the migration behaviour of poly(lactic acid), PLA, based nano-biocomposites prepared by the solvent casting method. Their microstructure, crystallinity, barrier and overall migration properties were investigated. Pristine (CNC) and surfactant-modified cellulose nanocrystals (s-CNC) were used, and the effect of the cellulose modification and content in the nano-biocomposites was investigated. The presence of surfactant on the nanocrystal surface favours the dispersion of CNC in the PLA matrix. Electron microscopy analysis shows the good dispersion of s-CNC in the nanoscale with well-defined single crystals indicating that the surfactant allowed a better interaction between the cellulose structures and the PLA matrix. Reductions of 34% in water permeability were obtained for the cast films containing 1wt.% of s-CNC while good oxygen barrier properties were detected for nano-biocomposites with both 1wt.% and 5wt.% of modified and un-modified cellulose nanocrystals, underlining the improvement provided by cellulose on the PLA films. Moreover, the migration level of the studied nano-biocomposites was below the overall migration limits required by the current normative for food packaging materials in both non-polar and polar simulants.  相似文献   

16.
The purpose of this research was to elucidate the significance of the changes in the mechanical and the volumetric properties on the moisture diffusivity through the polymer films. The internal stress concept was adapted and applied to estimate the relative impact of these property changes on the total stress experienced by a polymer film during storage. Hydroxypropyl Methylcellulose free films were used as a model material prepared at various conditions and stored at different relative humidities. The changes in the internal stress of these films due to the moisture sorption were studied. It was demonstrated that the stress-relaxation of the films increases at increasing moisture content. At the point when there is a definite loss of stress in the film, which is at moisture content higher than 6%, was shown to correlate with the significant increase of the moisture diffusivity. Further investigations revealed that the loss of stress is especially due to the swelling of the polymer rather than the changes in the inherent strain (the quotient between the tensile strength and the modulus of elasticity) of the HPMC films. This implies that the impact of the moisture sorption on the diffusivity is predominantly via volume addition rather than via altering the mechanical properties. Additionally, the approach presented here also brings up a new application of the internal stress concept, which in essence suggests the possibility to estimate the diffusion coefficient from the sorption isotherm and the mechanical analysis data.  相似文献   

17.
Free films based on glucuronoxylan isolated from aspen wood were prepared by casting from aqueous solutions and drying in a controlled environment. Addition of xylitol or sorbitol facilitated film formation and thus examination of the material properties of these films. The mechanical properties of the films were evaluated using tensile testing and dynamic mechanical analysis in a controlled ambient relative humidity. The strain at break increased, and the stress at break and Young's modulus of the films decreased with increasing amounts of xylitol and sorbitol due to plasticization. At high amount of plasticizer, it was found that films with xylitol gave lower extensibility. Wide-angle X-ray scattering analysis showed that xylitol crystallized in a distinct phase, which we believe contributes to the more brittle behavior of these films. The effect of the plasticizers on the glass transition temperature was determined using dynamic mechanical analysis and differential scanning calorimetry. An increased amount of plasticizer shifted the glass transition to lower temperatures. The effect of moisture on the properties of plasticized films was investigated using water vapor sorption isotherms and by humidity scans in dynamic mechanical analysis. Sorption isotherms showed a transition from type II to type III when adding plasticizer. The films showed low oxygen permeability and thus have a potential application in food packaging.  相似文献   

18.
Chitosan-whey protein edible films with different protein concentrations were prepared in the absence or presence of microbial transglutaminase as cross-linking agent. The films prepared in the presence of the enzyme showed low solubility at a wide range of pH, a lower degree of swelling, and good biodegradability following protease treatments. The presence of transglutaminase induced also an enhancement in film mechanical resistance and a reduction in their deformability. Finally, the barrier efficiency toward oxygen and carbon dioxide was found to be markedly improved in the cross-linked films which showed also a lower permeability to water vapor. Some potential practical applications of transglutaminase-treated chitosan-whey protein films are suggested.  相似文献   

19.
Despite the wide interest raised by lung administration of nanoparticles (NPs) for the treatment of various diseases, little information is available on their effect toward the airway epithelial barrier function. In this study, the potential damage of the pulmonary epithelium upon exposure to poly(lactide-co-glycolide) (PLGA) NPs has been assessed in vitro using a Calu-3-based model of the bronchial epithelial barrier. Positively and negatively charged as well as neutral PLGA NPs were obtained by coating their surface with chitosan (CS), poloxamer (PF68), or poly(vinyl alcohol) (PVA). The role of NP surface chemistry and charge on the epithelial resistance and mucus turnover, using MUC5AC as a marker, was investigated. The interaction with mucin reduced the penetration of CS- and PVA-coated NPs, while the hydrophilic PF68-coated NPs diffused across the mucus barrier leading to a higher intracellular accumulation. Only CS-coated NPs caused a transient but reversible decrease of the trans-epithelial electrical resistance (TEER). None of the NP formulations increased MUC5AC mRNA expression or the protein levels. These in vitro results highlight the safety of PLGA NPs toward the integrity and function of the bronchial airway barrier and demonstrate the crucial role of NP surface properties to achieve a controlled and sustained delivery of drugs via the pulmonary route.  相似文献   

20.
This study focuses on the manufacture and characterization of model surfaces consisting of end-grafted xyloglucan (XG), a naturally occurring polysaccharide, onto a gold substrate. The now well-established XET-technology was utilized for enzymatic incorporation of a thiol moiety at one end of the xyloglucan backbone. This functionalized macromolecule was subsequently top-down grafted to gold, forming a thiol-bonded xyloglucan brushlike layer. The grafting was monitored in situ with QCM-D, and a significant difference in the adsorbed/grafted amount between unmodified xyloglucan and the thiol-functionalized polymer was observed. The grafted surface was demonstrated to be accessible to enzyme digestion using the plant endo-xyloglucanase TmNXG1. The nanotribological properties toward cellulose of the untreated crystal, brush-modified surface, and enzyme-exposed surfaces were compared with a view to understanding the role of xyloglucan in friction reduction. Friction coefficients obtained by the AFM colloidal probe technique using a cellulose functionalized probe on the xyloglucan brush showed an increase of a factor of 2 after the enzyme digestion, and this result is interpreted in terms of surface roughness. Finally, the brush is shown to exhibit binding to cellulose despite its highly oriented nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号