首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Most mitochondrial mRNAs are edited in Trypano soma brucei by a series of steps that are catalyzed by a multienzyme complex that is in its initial stages of characterization. RNA interference (RNAi)-mediated repression of the expression of TbMP81, a zinc finger protein component of the complex, inhibited growth of bloodstream and insect forms, and blocked in vivo RNA editing. This repression preferentially inhibited insertion editing compared with deletion editing in vitro. It resulted in reduced specific endoribonucleolytic cleavage and a greater reduction of U addition and associated RNA ligation activities than U removal and associated RNA ligation activities. The repressed cells retained 20S editing complexes with several demonstrable proteins and adenylatable TbMP52 RNA ligase, but adenlyatable TbMP48 was not detected. Elimination of TbMP48 by RNAi repression did not inhibit cell growth or in vivo editing in either bloodstream or procyclic forms. These results indicate that TbMP81 is required for RNA editing and suggest that the editing complex is functionally partitioned.  相似文献   

2.
In trypanosome RNA editing, uridylate (U) residues are inserted and deleted at numerous sites within mitochondrial pre-mRNAs by an approximately 20S protein complex that catalyzes cycles of cleavage, U addition/U removal, and ligation. We used RNA interference to deplete TbMP18 (band VII), the last unexamined major protein of our purified editing complex, showing it is essential. TbMP18 is critical for the U-deletional and U-insertional cleavages and for integrity of the approximately 20S editing complex, whose other major components, TbMP99, TbMP81, TbMP63, TbMP52, TbMP48, TbMP42 (bands I through VI), and TbMP57, instead sediment as approximately 10S associations. Additionally, TbMP18 augments editing substrate recognition by the TbMP57 terminal U transferase, possibly aiding the recognition component, TbMP81. The other editing activities and their coordination in precleaved editing remain active in the absence of TbMP18. These data are reminiscent of the data on editing subcomplexes reported by A. Schnaufer et al. (Mol. Cell 12:307-319, 2003) and suggest that these subcomplexes are held together in the approximately 20S complex by TbMP18, as was proposed previously. Our data additionally imply that the proteins are less long-lived in these subcomplexes than they are when held in the complete editing complex. The editing endonucleolytic cleavages being lost when the editing complex becomes fragmented, as upon TbMP18 depletion, should be advantageous to the trypanosome, minimizing broken mRNAs.  相似文献   

3.
RNA editing in kinetoplastid mitochondria occurs by a series of enzymatic steps that is catalyzed by a macromolecular complex. Four novel proteins and their corresponding genes were identified by mass spectrometric analysis of purified editing complexes from Trypanosoma brucei. These four proteins, TbMP81, TbMP63, TbMP42, and TbMP18, contain conserved sequences to various degrees. All four proteins have sequence similarity in the C terminus; TbMP18 has considerable sequence similarity to the C-terminal region of TbMP42, and TbMP81, TbMP63, and TbMP42 contain zinc finger motif(s). Monoclonal antibodies that are specific for TbMP63 and TbMP42 immunoprecipitate in vitro RNA editing activities. The proteins are present in the immunoprecipitates and sediment at 20S along with the in vitro editing, and RNA editing ligases TbMP52 and TbMP48. Recombinant TbMP63 and TbMP52 coimmunoprecipitate. These results indicate that these four proteins are components of the RNA editing complex and that TbMP63 and TbMP52 can interact.  相似文献   

4.
Uridylate insertion/deletion RNA editing in Trypanosoma brucei mitochondria is catalyzed by a multiprotein complex, the approximately 20S editosome. Editosomes purified via three related tagged RNase III proteins, KREN1 (KREPB1/TbMP90), KREPB2 (TbMP67), and KREN2 (KREPB3/TbMP61), had very similar but nonidentical protein compositions, and only the tagged member of these three RNase III proteins was identified in each respective complex. Three new editosome proteins were also identified in these complexes. Each tagged complex catalyzed both precleaved insertion and deletion editing in vitro. However, KREN1 complexes cleaved deletion but not insertion editing sites in vitro, and, conversely, KREN2 complexes cleaved insertion but not deletion editing sites. These specific nuclease activities were abolished by mutations in the putative RNase III catalytic domain of the respective proteins. Thus editosomes appear to be heterogeneous in composition with KREN1 complexes catalyzing cleavage of deletion sites and KREN2 complexes cleaving insertion sites while both can catalyze the U addition, U removal, and ligation steps of editing.  相似文献   

5.
RNA editing produces mature trypanosome mitochondrial mRNAs by uridylate (U) insertion and deletion. In insertion editing, Us are added to the pre-mRNA by a 3' terminal uridylyl transferase (TUTase) activity. We report the identification of a TUTase activity that copurifies with in vitro editing and is catalyzed by the integral editosome protein TbMP57. TbMP57 catalyzes the addition of primarily a single U to single-stranded (ss) RNA and adds the number of Us specified by a guide RNA to insertion editing-like substrates. TbMP57 is distinct from a previously identified TUTase that adds many Us to ssRNA and which we find is neither a stable editosome component nor does it add Us to editing-like substrates. Recombinant TbMP57 specifically interacts with the editosome protein TbMP81, and this interaction enhances the TUTase activity. These results suggest that TbMP57 catalyzes U addition to pre-mRNA during editing.  相似文献   

6.
RNA editing produces mature mitochondrial mRNAs in trypanosomatids by the insertion and deletion of uridylates. It is catalyzed by a multiprotein complex, the editosome. We identified TbMP44 among the components of enriched editosomes by a combination of mass spectrometry and DNA sequence database analysis. Inactivation of an ectopic TbMP44 allele in cells in which the endogenous alleles were disrupted abolished RNA editing, inhibited cell growth, and was eventually lethal to bloodstream form trypanosomes. Loss of TbMP44 mRNA was followed initially by a reduction in the editosome sedimentation coefficient and then by the absence of other editosome proteins despite the presence of the mRNA. Reactivation of TbMP44 gene expression resulted in the resumption of cell growth and the reappearance of editosomes. These data indicate that TbMP44 is a component of the editosome that is essential for editing and critical for the structural integrity of the editosome.  相似文献   

7.
Kinetoplastid RNA editing consists of the addition or deletion of uridines at specific sites within mitochondrial mRNAs. This unusual RNA processing event is catalyzed by a ribonucleoprotein (RNP) complex that includes editing site-specific endoribonuclease, RNA ligase and terminal uridylnucleotidyl transferase (Tutase) among its essential enzymatic activities. To identify the components of this RNP, monoclonal antibodies were raised against partially purified editing complexes. One antibody reacts with a mitochondrially located 45 kDa polypeptide (p45) which contains a conserved repetitive amino acid domain. p45 co-purifies with RNA ligase and Tutase in a large ( approximately 700 kDa) RNP, and anti-p45 antibody inhibits in vitro RNA editing. Thus, p45 is the first kinetoplastid RNA-editing-associated protein (REAP-1) that has been cloned and identified as a protein component of a functional editing complex.  相似文献   

8.
RNA editing in trypanosomatids is catalyzed by a high molecular mass RNP complex, which is only partially characterized. TbMP42 is a 42 kDa protein of unknown function that copurifies with the editing complex. The polypeptide is characterized by two Zn fingers and a potential barrel structure/OB-fold at its C terminus. Using recombinant TbMP42, we show that the protein can bind to dsRNA and dsDNA but fails to recognize DNA/RNA hybrids. rTbMP42 degrades ssRNA by a 3' to 5' exoribonuclease activity. In addition, rTbMP42 has endoribonuclease activity, which preferentially hydrolyzes non-base-paired uridylate-containing sequences. Gene silencing of TbMP42 inhibits cell growth and is ultimately lethal to the parasite. Mitochondrial extracts from TbMP42-minus trypanosomes have only residual RNA editing activity and strongly reduced endo-exoribonuclease activity. However, all three activities can be restored by the addition of rTbMP42. Together, the data suggest that TbMP42 contributes both endo- and exoribonuclease activity to the editing reaction cycle.  相似文献   

9.
Trypanosome mitochondrial mRNAs achieve their coding sequences through RNA editing. This process, catalyzed by approximately 20S protein complexes, involves large numbers of uridylate (U) insertions and deletions within mRNA precursors. Here we analyze the role of the essential TbMP42 protein (band VI/KREPA2) by individually examining each step of the U-deletional and U-insertional editing cycles, using reactions in the approximately linear range. We examined control extracts and RNA interference (RNAi) extracts prepared soon after TbMP42 was depleted (when primary effects should be most evident) and three days later (when precedent shows secondary effects can become prominent). This analysis shows TbMP42 is critical for cleavage of editing substrates by both the U-deletional and U-insertional endonucleases. However, on simple substrates that assess cleavage independent of editing features, TbMP42 is similarly required only for the U-deletional endonuclease, indicating TbMP42 affects the two editing endonucleases differently. Supplementing RNAi extract with recombinant TbMP42 partly restores these cleavage activities. Notably, we find that all the other editing steps (the 3'-U-exonuclease [3'-U-exo] and ligation steps of U-deletion and the terminal-U-transferase [TUTase] and ligation steps of U-insertion) remain at control levels upon RNAi induction, and hence are not dependent on TbMP42. This contrasts with an earlier report that TbMP42 is a 3'-U-exo that may act in U-deletion and additionally is critical for the TUTase and/or ligation steps of U-insertion, observations our data suggest reflect indirect effects of TbMP42 depletion. Thus, trypanosomes require TbMP42 for both endonucleolytic cleavage steps of RNA editing, but not for any of the subsequent steps of the editing cycles.  相似文献   

10.
11.
RNA editing in Trypanosoma brucei mitochondria produces mature mRNAs by a series of enzyme-catalyzed reactions that specifically insert or delete uridylates in association with a macromolecular complex. Using a mitochondrial fraction enriched for in vitro RNA editing activity, we produced several monoclonal antibodies that are specific for a 21-kDa guide RNA (gRNA) binding protein initially identified by UV cross-linking. Immunofluorescence studies localize the protein to the mitochondrion, with a preference for the kinetoplast. The antibodies cause a supershift of previously identified gRNA-specific ribonucleoprotein complexes and immunoprecipitate in vitro RNA editing activities that insert and delete uridylates. The immunoprecipitated material also contains gRNA-specific endoribonuclease, terminal uridylyltransferase, and RNA ligase activities as well as gRNA and both edited and unedited mRNA. The immunoprecipitate contains numerous proteins, of which the 21-kDa protein, a 90-kDa protein, and novel 55- and 16-kDa proteins can be UV cross-linked to gRNA. These studies indicate that the 21-kDa protein associates with the ribonucleoprotein complex (or complexes) that catalyze RNA editing.  相似文献   

12.
The RNA editing that produces most functional mRNAs in trypanosomes is catalysed by a multiprotein complex. This complex catalyses the endoribonucleolytic cleavage, uridylate addition and removal, and RNA ligation steps of the editing process. Enzymatic and in vitro editing analyses reveal that each catalytic step contributes to the specificity of the editing and, together with the interaction between gRNA and the mRNA, results in precisely edited mRNAs. Tandem mass spectrometric analysis was used to identify the genes for several components of biochemically purified editing complexes. Their identity and presence in the editing complex were confirmed using immunochemical analyses utilizing mAbs specific to the editing complex components. The genes for two RNA ligases were identified. Genetic studies show that some, but not all, of the components of the complex are essential for editing. The TbMP52 RNA ligase is essential for editing while the TbMP48 RNA ligase is not. Editing was found to be essential in bloodstream form trypanosomes. This is surprising because mutants devoid of genes encoding RNAs that become edited survive as bloodstream forms but encouraging since editing complex components may be targets for chemotherapy.  相似文献   

13.
RNA editing, the processing that generates functional mRNAs in trypanosome mitochondria, involves cycles of protein catalyzed reactions that specifically insert or delete U residues. We recently reported purification from Trypanosoma brucei mitochondria of a complex showing seven major polypeptides which exhibits the enzymatic activities inferred in editing and that a pool of fractions of the complex catalyzed U deletion, the minor form of RNA editing in vivo . We now show that U insertion activity, the major form of RNA editing in vivo , chromatographically co-purifies with both U deletion activity and the protein complex. Furthermore, these editing activities co-sediment at approximately 20 S. U insertion does not require a larger, less characterized complex, as has been suggested and could have implied that the editing machinery would not function in a processive manner. We also show that U insertion is optimized at rather different and more exacting reaction conditions than U deletion. By markedly reducing ATP and carrier RNA and increasing UTP and carrier protein relative to standard editing conditions, U insertion activity of the purified fraction is enhanced approximately 100-fold.  相似文献   

14.
Kinetoplastid mitochondrial RNA editing, the insertion and deletion of U residues, is catalyzed by sequential cleavage, U addition or removal, and ligation reactions and is directed by complementary guide RNAs. We have purified a approximately 20S enzymatic complex from Trypanosoma brucei mitochondria that catalyzes a complete editing reaction in vitro. This complex possesses all four activities predicted to catalyze RNA editing: gRNA-directed endonuclease, terminal uridylyl transferase, 3' U-specific exonuclease, and RNA ligase. However, it does not contain other putative editing complex components: gRNA-independent endonuclease, RNA helicase, endogenous gRNAs or pre-mRNAs, or a 25 kDa gRNA-binding protein. The complex is composed of eight major polypeptides, three of which represent RNA ligase. These findings identify polypeptides representing catalytic editing factors, reveal the nature of this approximately 20S editing complex, and suggest a new model of editosome assembly.  相似文献   

15.
The Trypanosoma brucei editosome catalyzes the maturation of mitochondrial mRNAs through the insertion and deletion of uridylates and contains at least 16 stably associated proteins. We examined physical and functional associations among these proteins using three different approaches: purification of complexes via tagged editing ligases TbREL1 and TbREL2, comprehensive yeast two-hybrid analysis, and coimmunoprecipitation of recombinant proteins. A purified TbREL1 subcomplex catalyzed precleaved deletion editing in vitro, while a purified TbREL2 subcomplex catalyzed precleaved insertion editing in vitro. The TbREL1 subcomplex contained three to four proteins, including a putative exonuclease, and appeared to be coordinated by the zinc finger protein TbMP63. The TbREL2 subcomplex had a different composition, contained the TbMP57 terminal uridylyl transferase, and appeared to be coordinated by the TbMP81 zinc finger protein. This study provides insight into the molecular architecture of the editosome and supports the existence of separate subcomplexes for deletion and insertion editing.  相似文献   

16.
17.
U-insertion/deletion RNA editing of mitochondrial mRNAs in trypanosome mitochondria is mediated by a core complex (RECC) containing around 16-20 proteins which is linked to several other multiprotein complexes by RNA. There are two known subcomplexes in the RECC: the REL1 subcomplex which contains the REL1 RNA ligase, the MP63 zinc finger-containing protein and the REX2 U-specific 3’-5’ exonuclease; and the REL2 subcomplex which contains the REL2 RNA ligase, the RET2 3’ TUTase and the MP81 zinc finger-containing protein. In this study we have affinity isolated recombinant TAP-tagged Leishmania major RET2 and Leishmania tarentolae MP63, REL1 and REL2 proteins after expression in baculovirus-infected insect cells. Recombinant MP63 protein was found to stimulate several in vitro activities of recombinant REL1; these activities include autoadenylation, bridged ligation and even pre-cleaved gRNA-mediated U-insertion editing with RET2 which is in the REL2 subcomplex. There was no effect of recombinant MP63 on similar REL2 ligation activities. The specificity for REL1 is consistent with MP63 being a component of the REL1 subcomplex. These results suggest that in vivo the interaction of MP63 with REL1 may play a role in regulating the overall activity of RNA editing.  相似文献   

18.
19.
The 20S editosome, a multiprotein complex, catalyzes the editing of most mitochondrial mRNAs in trypanosomatids by uridylate insertion and deletion. RNAi mediated inactivation of expression of KREPA4 (previously TbMP24), a component of the 20S editosome, in procyclic form Trypanosoma brucei resulted in inhibition of cell growth, loss of RNA editing, and disappearance of 20S editosomes. Levels of MRP1 and REAP-1 proteins, which may have roles in editing but are not editosome components, were unaffected. Tagged KREPA4 protein is incorporated into 20S editosomes in vivo with no preference for either insertion or deletion subcomplexes. Consistent with its S1-like motif, recombinant KREPA4 protein binds synthetic gRNA with a preference for the 3' oligo (U) tail. These data suggest that KREPA4 is an RNA binding protein that may be specific for the gRNA Utail and also is important for 20S editosome stability.  相似文献   

20.
The basic mechanism of uridine insertion/deletion RNA editing in mitochondria of kinetoplastid protists has been established for some time but the molecular details remained largely unknown. Recently, there has been significant progress in defining the molecular components of the editing reaction. A number of factors have been isolated from trypanosome mitochondria, some of which have been definitely implicated in the uridine insertion/deletion RNA editing reaction and others of which have been circumstantially implicated. Several protein complexes have been isolated which exhibit some editing activities, and the macromolecular organization of these complexes is being analyzed. In addition, there have been several important technical advances in the in vitro analysis of editing. In this review we critically examine the various factors and complexes proposed to be involved in RNA editing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号