首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dynamic light scattering (DLS) measurements were performed to study the binding of anionic surfactant alpha olefin sulfonate (AOS) to gelatin chains at various NaCl concentrations at 30 degrees C in aqueous sodium phosphate buffer (pH = 6.8) solutions. The surfactant concentration was varied from 0 to 80 mM and the NaCl concentrations chosen were 0.025, 0.05, and 0.1 M. AOS exhibited electrostatic binding to the positively charged sites of the polypeptide chain resulting in considerable reduction in its hydrodynamic radius up to critical micellar concentration (cmc = 8 mM for no salt, 0.01 and 0.025 M, and 5 mM for 0.05 M and 2 mM for 0.1 M solutions). The correlation function revealed the presence of two types of structures above cmc; namely the micelles of AOS and gelatin-AOS micelle complexes. The micellar radii (Rm), the effective gelatin-surfactant complex radii (Rc), have been determined as a function of salt concentration. No critical aggregation concentration (cac) was observed. The inter-gelatin-surfactant complex (kD1) and inter-micellar interactions (kD2), were determined by fitting the concentration dependence of Rm and Rc to a virial expansion in reduced concentration (c - cmc), which are compared. While kD1 showed strong ionic strength dependence, kD2 remained invariant of the same. The protein to surfactant binding ratio was found to be smaller than normal. Results have been discussed within the framework of the necklace-bead model of polymer-surfactant interactions.  相似文献   

2.
The dynamics of three synthetic oligonucleotides d(CG)4, d(CG)6, and d(CGCGTTGTTCGCG) of different length and shape were studied in solution by depolarized dynamic light scattering (DDLS) and time-resolved nuclear Overhauser effect cross-relaxation measurements. For cylindrically symmetric molecules the DDLS spectrum is dominated by the rotation of the main symmetry axis of the cylinder. The experimental correlation times describe the rotation of the oligonucleotides under hydrodynamic stick boundary conditions. It is shown that the hydrodynamic theory of Tirado and Garcia de la Torre gives good predictions of the rotational diffusion coefficients of cylindrically symmetric molecules of the small axial ratios studied here. These relations are used to calculate the solution dimensions of the DNA fragments from measured correlation times. The hydrodynamic diameter of the octamer and dodecamer is 20.5 +/- 1.0 A, assuming a rise per base of 3.4 A. The tridecamer, d(CGCGTTGTTCGCG), adopts a hairpin structure with nearly spherical dimensions and a diameter of 23.0 +/- 2.0 A. The DDLS relaxation measurements provide a powerful method for distinguishing between different conformations of the oligonucleotides (e.g., DNA double-helix versus hairpin structure). Furthermore, the rotational correlation times are a very sensitive probe of the length of different fragments. The NMR results reflect the anisotropic motion of the molecules as well as the amount of local internal motion present. The experimental correlation time from NMR is determined by the rotation of both the short and long axes of the oligonucleotide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Cell aggregation was studied using the method of dynamic light scattering in the course of growth of Micrococcus luteus cultures in a liquid medium. The method detects particles ranging in size from 0.5 to 1000 microm in samples containing no more than 10(5) cells/ml. When grown in liquid media, M. luteus forms aggregates; during the lag phase, 80% of the cells are found in aggregates of 10 to 1000 microm, only minor amounts being represented by single cells. With the onset of exponential growth, the aggregates were decomposed, and single cells became prevalent in the culture liquid. This observation confirms that the aggregation of the cells during the lag phase is prerequisite to the initiation of bacterial growth. The method may be used in biotechnology for monitoring the state of bacterial cultures.  相似文献   

4.
Proteins with predominantly hydrophobic character called amelogenins play a key role in the formation of the highly organized enamel tissue by forming nanospheres that interact with hydroxyapatite crystals. In the present investigation, we have studied the temperature and pH-dependent self-assembly of two recombinant mouse amelogenins, rM179 and rM166, the latter being an engineered version of the protein that lacks a 13 amino acid hydrophilic C-terminus. It has been postulated that this hydrophilic domain plays an important role in controlling the self-assembly behavior of rM179. By small-angle X-ray and neutron scattering, as well as by dynamic light scattering, we observed the onset of an aggregation of the rM179 protein nanospheres at pH 8. This behavior of the full-length recombinant protein is best explained by a core-shell model for the nanospheres, where hydrophilic and negatively charged side chains prevent the agglomeration of hydrophobic cores of the protein nanospheres at lower temperatures, while clusters consisting of several nanospheres start to form at elevated temperatures. In contrast, while capable of forming nanospheres, rM166 shows a very different aggregation behavior resulting in the formation of larger precipitates just above room temperature. These results, together with recent observations that rM179, unlike rM166, can regulate mineral organization in vitro, suggest that the aggregation of nanospheres of the full-length amelogenin rM179 is an important step in the self-assembly of the enamel matrix.  相似文献   

5.
The formation of non-soluble complexes between a positively charged protein and a strong anionic polyelectrolyte, chymotrypsin, and poly vinyl sulfonate, respectively, was studied under different experimental conditions such as pH (1-3.5), protein concentration, temperature, ionic strength, and the presence of anions that modifies the water structure. Turbidimetric titration and dynamic light scattering approaches were used as study methods. When low protein-polyelectrolyte ratio was used, the formation of a soluble complex was observed. The increase in poly vinyl sulfonate concentration produced the interaction between the soluble complex particules, thus inducing macro-aggregate formation and precipitation. Stoichiometry ratios of 500 to 780 protein molecules were found in the precipitate per polyelectrolyte molecule when the medium pH varied from 1.0 to 3.5. The kinetic of the aggregation process showed to be of first order with a low activation energy value of 4.2+/-0.2 kcal/mol. Electrostatic forces were found in the primary formation of the soluble complex, while the formation of the insoluble macro aggregate was a process driven by the disorder of the ordered water around the hydrophobic chain of the polymer.  相似文献   

6.
Reversible and irreversible states of pressure-dissociated casein micelles were studied by in situ light scattering techniques and ex situ atomic force microscopy. AFM experiments performed at ambient pressure reveal heterogeneities across the micelle, suggesting a sub-structure on a 20 nm scale. At pressures between 50 and 250 MPa, the native micelles disintegrate into small fragments on the scale of the observed sub-structure. At pressures above 300 MPa the micelles fully decompose into their monomeric constituents. After pressure release two discrete populations of casein aggregates are observed, depending on the applied initial pressure: Between 160 and 240 MPa stable micelles with diameters near 100 nm without detectable sub-structures are formed. Casein micelles exposed to pressures above 280 MPa re-associate at ambient pressure yielding mini-micelles with diameters near 25 nm. The implications concerning structural models are discussed.  相似文献   

7.
We have studied the effect of codon-anticodon interaction on the structure and dynamics of transfer RNAs using molecular dynamics simulations over a nanosecond time scale. From our molecular dynamical investigations of the solvated anticodon domain of yeast tRNA(Phe) in the presence and absence of the codon trinucleotides UUC and UUU, we find that, although at a gross level the structures are quite similar for the free and the bound domains, there are small but distinct differences in certain parts of the molecule, notably near the Y37 base. Comparison of the dynamics in terms of interatomic or inter-residual distance fluctuation for the free and the bound domains showed regions of enhanced rigidity in the loop region in the presence of codons. Because fluorescence experiments suggested the existence of multiple conformers of the anticodon domain, which interconvert on a much larger time scale than our simulations, we probed the conformational space using five independent trajectories of 500 ps duration. A generalized ergodic measure analysis of the trajectories revealed that at least for this time scale, all the trajectories populated separate parts of the conformational space, indicating a need for even longer simulations or enhanced sampling of the conformational space to give an unequivocal answer to this question.  相似文献   

8.
Membrane fusion is a key step in the virus mediated cell fusion. The vesicular dispersion serves as a model system to study the membrane fusion. We employed dynamic and static light scattering to study the fusion of phosphatidylcholine vesicles in the presence of model fusion peptide fragments from the hemagglutinin HA2 protein. The fusion-induced aggregation under the present experimental setup exhibited strong pH dependence, similar to the parental viral protein. Replacement of the glycine residue at the extreme amino terminus by glutamic acid (G1E) abolished fusion activity. The average molecular mass and diameter of vesicular dispersion obtained from static and dynamic light scattering measurements respectively at neutral and acidic pH showed about three fold increase in acidic solution containing wild type fusion peptide. The light scattering data are consistent with lipid mixing results. The present work demonstrates the utility of light scattering as a facile means to monitor the fusion process.  相似文献   

9.
This review of protein dynamics studied by neutron scattering focuses on data collected in the last 10 years. After an introduction to thermal neutron scattering and instrumental aspects, theoretical models that have been used to interpret the data are presented and discussed. Experiments are described according to sample type, protein powders, solutions and membranes. Neutron-scattering results are compared to those obtained from other techniques. The biological relevance of the experimental results is discussed. The major conclusion of the last decade concerns the strong dependence of internal dynamics on the macromolecular environment.  相似文献   

10.
The hydrodynamic properties of large homodisperse single stranded DNAs complexed with the helix destabilizing protein of phage T4, the product of gene 32 (GP32), have been measured. The results suggest a size of the binding site between 8 and 10 nucleotides/GP32 molecule, in reasonable agreement with earlier work on a complex between GP32 and single stranded 145 base DNA. From static light scattering experiments it is concluded that the persistence length of these complexes is about 30 nm, distinctly smaller than the generally accepted value for double stranded DNA. The quasi-elastic light scattering properties of the DNA-GP32 complexes were determined. The variation of the apparent translation diffusion coefficient Dapp with the scattering vector q was analyzed using the discrete ISMF and Rouse-Zimm models [S.C. Lin et al., Biopolymers 17 (1978) 425]. The model parameters that followed from the fit of Dapp versus q2 and from an extensive global analysis of the actually measured autocorrelation functions agreed with the notion that these DNA-protein complexes are indeed rather flexible. The continuous Soda model [K. Soda, Macromolecules 17 (1984) 2365] could successfully explain the variation of Dapp versus q2, assuming a persistence length of 30 nm and a base-base distance in the complex of 0.44 nm.  相似文献   

11.
Depolarized laser light-scattering theory was applied to derive the autocorrelation function of laser light scattered by motile spermatozoa, assuming that each spermatozoon is a chain of rotatable rigid ellipsoids of revolution and also that the rotational velocity about an axis perpendicular to the symmetry axis of the ellipsoid is constant for times of the order of the characteristic decay time of the autocorrelation function. The rotations are produced by flagellar movements of the spermatozoa. The correlation function thus obtained was related to the second-order coefficient of a Legendre polynomial expansion of the rotation of the direction angle of the ellipsoidal axis. The experimental fact that the correlation function for dead spermatozoa of sea urchin resembled that for flagella mechanically separated from spermatozoa indicated to us that the depolarized light was scattered mainly by flagella. The rotational velocity distribution of the flagella was determined by comparing the theoretical analysis with the experimentally obtained correlation functions for the motile and dead spermatozoa. The value of the average velocity caused by the flagellation, 230 rad/s, was in good agreement with that measured under an optical microscope.  相似文献   

12.
13.
The early steps of fibrin aggregation induced by low Reptilase concentrations were studied by means of static and dynamic light scattering. In order to obtain information on the size and shape of the first oligomers, the angular dependence of the scattered intensity and the mean Rayleigh line width were measured. Under physiological pH and ionic strength, oligomer formation was detectable immediately after enzymatic activation. Comparison of the calculated data for different models with experimental results shows that the early fibrin polymerization proceeds as an end-to-end aggregation of elongated and possibly flexible molecules approximately 75 nm long.  相似文献   

14.
The unknown molecular weight and chemical structure of melanin place the study of these pigments outside the range of the classical biochemical techniques; thus in this paper the problem of characterizing these heterogeneous biopolymers was approached by means of light scattering techniques, static and dynamic. The static technique allowed us to identify the macromolecular properties (MW and R(g)(2)(1/2)) of melanin extracted from sepia inksac and of two synthetic analogues: L-Dopa melanin obtained by autooxidation and by enzymatic oxidation by Tyrosinase. By dynamic light scattering (DLS), the hydrodynamic radius R(h) was measured to monitor the temporal behaviour of the polymerization and aggregation processes and R(h) variation by changing the chemical constraints of the polymerization medium, such as pH and ionic strength. The fractal dimension d of the aggregates of melanin, both natural and synthetic, in the past only recognized during the aggregation of the synthetic one by lowering the pH of the medium, was a useful parameter to further investigate and compare the structure of melanin granules of differing origins, revealing for the natural sample, a structure with clusters that are spherical, not largely hydrated and self-assembled, following a reaction limited aggregation kinetics (d=2.38).  相似文献   

15.
Fluorophore of proflavine was introduced onto the 3'-terminal ribose moiety of yeast tRNA(Phe). The distance between the fluorophore and the fluorescent Y base in the anticodon of yeast tRNA(Phe) was measured by a singlet-singlet energy transfer. Conformational changes of tRNA(Phe) with binding of tRNA(2Glu), which has the anticodon UUC complementary to the anticodon GAA of tRNA(Phe), were investigated. The distance obtained at the ionic strength of 100 mM K+ and 10 mM Mg2+ is very close to the distance from x-ray diffraction, while the distance obtained in the presence of tRNA(2Glu) is significantly smaller. Further, using a fluorescent probe of 4-bromomethyl-7-methoxycoumarin introduced onto pseudouridine residue psi 55 in the T psi C loop of tRNA(Phe), Stern-Volmer quenching experiments for the probe with or without added tRNA(2Glu) were carried out. The results showed greater access of the probe to the quencher with added tRNA(2Glu). These results suggest that both arms of the L-shaped tRNA structure tend to bend inside with binding of tRNA(2Glu) and some structural collapse occurs at the corner of the L-shaped structure.  相似文献   

16.
Theoretical exploration of the possible interaction of netropsin with tRNAPhe indicates that binding should occur preferentially with the major groove of the T psi C stem of the macromolecule, specifically with the bases G51, U52, G53 and phosphates 52, 53, 61 and 62. This agrees with the recent crystallographic result of Rubin and Sundaralingam. It is demonstrated that the difference with respect to netropsin binding with B-DNA, where it occurs specifically in the minor groove of AT sequences, is due to the differences in the distribution of the electrostatic molecular potential generated by these different types of DNA: this potential is sequence dependent in B-DNA (located in the minor groove of AT sequences and the major groove of GC sequences), while it is sequence independent and always located in the major groove in A-RNA. The result demonstrates the major role of electrostatics in determining the location of the binding site.  相似文献   

17.
Solution properties of starch nanoparticles dispersed in DMSO and in water were studied using dynamic light scattering. The particle size distribution had two main peaks in both solvents at all scattering angles studied. They were at around 40 and 300 nm, ascribed to isolated starch nanoparticles and their aggregates, respectively. From the excess scattering intensity by the 40-nm particles, the molecular weight of the nanoparticle was estimated as 2.2–2.6×106 g/mol. When the concentration was increased, another peak appeared at around 1 μm. Raising the temperature from 25 to 65 °C did not change the distribution, indicating a purely entropic process in dynamic equilibrium of the aggregation. In DMSO, an oscillatory behavior was observed in the autocorrelation function at high temperatures.  相似文献   

18.
M Hohenadl  T Storz  H Kirpal  K Kroy    R Merkel 《Biophysical journal》1999,77(4):2199-2209
We studied polymers of desmin, a muscle-specific type III intermediate filament protein, using quasi-elastic light scattering. Desmin was purified from chicken gizzard. Polymerization was induced either by 2 mM MgCl(2) or 150 mM NaCl. The polymer solutions were in the semidilute regime. We concluded that the persistence length of the filaments is between 0.1 and 1 microm. In all cases, we found a hydrodynamic diameter of desmin filaments of 16-18 nm. The filament dynamics exhibits a characteristic frequency in the sense that correlation functions measured on one sample but at different scattering vectors collapse onto a single master curve when time is normalized by the experimentally determined initial decay rate.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号