首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Protein kinase CK1 is a ser/thr protein kinase family which has been identified in the cytosol cell fraction, associated with membranes as well as in the nucleus. Several isoforms of this gene family have been described in various organisms: CK1alpha, CK1beta, CK1delta, CK1epsilon and CK1gamma. Over the last decade, several members of this family have been involved in development processes related to wnt and sonic hedgehog signalling pathways. However, there is no detailed temporal information on the CK1 family in embryonic stages, even though orthologous genes have been described in several different vertebrate species. In this study, we describe for the first time the cloning and detailed expression pattern of five CK1 zebrafish genes. Sequence analysis revealed that zebrafish CK1 proteins are highly homologous to other vertebrate orthologues. Zebrafish CK1 genes are expressed throughout development in common and different territories. All the genes studied in development show maternal and zygotic expression with the exception of CK1epsilon. This last gene presents only a zygotic component of expression. In early stages of development CK1 genes are ubiquitously expressed with the exception of CK1epsilon. In later stages the five CK1 genes are expressed in the brain but not in the same way. This observation probably implicates the CK1 family genes in different and also in redundant functions. This is the first time that a detailed comparison of the expression of CK1 family genes is directly assessed in a vertebrate system throughout development.  相似文献   

2.
3.
Tubulin, the building block of microtubules, consists of an alpha and beta subunit, each in itself a family of several highly homologous isotypes. Abundance, tissue specificity, developmental regulation, and possibly function vary between isotypes. Six isotypes of beta tubulin (class I to class VI) have been cloned from several vertebrate species. Class I beta tubulin is believed to be widely expressed, but has not been studied by in situ hybridization in any vertebrate species so far. We have cloned a beta tubulin from zebrafish that appears most similar to other vertebrate class I tubulins and name it zbeta1 tubulin, accordingly. We report a distinct expression pattern of zbeta1 tubulin in the zebrafish embryo in restricted regions of the peripheral and central nervous system that comprise early-differentiating neurons. The expression pattern changes during development and in the adult zebrafish expression mostly is confined to a subset of proliferative zones that include the subependymal zone around the telencephalic ventricle, zones in the preoptic and hypothalamic area and in the olfactory epithelium. Thus, zbeta1 tubulin is expressed with remarkable selectivity during neuronal differentiation and neurogenesis in the embryonic and adult nervous system, respectively.  相似文献   

4.
5.
Zebrafish has in recent years emerged as a popular vertebrate model for use in pharmacological and toxicological studies. While there have been sporadic studies on the zebrafish glutathione S‐transferases (GSTs), the zebrafish GST gene superfamily still awaits to be fully elucidated. We report here the identification of 15 zebrafish cytosolic GST genes in NCBI GenBank database and the expression, purification, and enzymatic characterization of the zebrafish cytosolic GST Pi‐1 (GSTP1). The cDNA encoding the zebrafish GSTP1 was cloned from a 3‐month‐old female zebrafish, expressed in Eschelichia coli host cells, and purified. Purified GSTP1 displayed glutathione‐conjugating activity toward 1‐chloro‐2,4‐dinitrobenzene as a representative substrate. The enzymatic characteristics of the zebrafish GSTP1, including pH‐dependency, effects of metal cations, and kinetic parameters, were studied. Moreover, the expression of zebrafish GSTP1 at different developmental stages during embryogenesis, throughout larval development, onto maturity was examined.  相似文献   

6.
Wnt signaling controls a wide range of developmental processes and its aberrant regulation can lead to disease. To better understand the regulation of this pathway, we identified zebrafish homologues of Naked Cuticle (Nkd), Nkd1 and Nkd2, which have previously been shown to inhibit canonical Wnt/beta-catenin signaling. Zebrafish nkd1 expression increases substantially after the mid-blastula transition in a pattern mirroring that of activated canonical Wnt/beta-catenin signaling, being expressed in both the ventrolateral blastoderm margin and also in the axial mesendoderm. In contrast, zebrafish nkd2 is maternally and ubiquitously expressed. Overexpression of Nkd1 or Nkd2a suppressed canonical Wnt/beta-catenin signaling at multiple stages of early zebrafish development and also exacerbated the cyclopia and axial mesendoderm convergence and extension (C&E) defect in the non-canonical Wnt/PCP mutant silberblick (slb/wnt11). Thus, Nkds are sufficient to antagonize both canonical and non-canonical Wnt signaling. Reducing Nkd function using antisense morpholino oligonucleotides resulted in increased expression of canonical Wnt/beta-catenin target genes. Finally, reducing Nkd1 function in slb mutants suppressed the axial mesendoderm C&E defect. These data indicate that zebrafish Nkd1 and Nkd2 function to limit both canonical and non-canonical Wnt signaling.  相似文献   

7.
8.
Chemosensory systems in vertebrates employ G protein-coupled receptors as sensors. In mammals, several families of olfactory and gustatory receptors as well as specific G alpha proteins coupling to them have been identified, for example, gustducin for taste. Orthologous receptor families have been characterized in fish, but the corresponding G alpha genes have not been well investigated so far. We have performed a comprehensive search of several lower vertebrate genomes to establish the G alpha protein family in these taxa and to identify those genes that may be involved in chemosensory signal transduction in fish. We report that gustducin is absent from the genomes of all teleost and amphibian species analyzed, presumably due to independent gene losses in these lineages. However, 2 other G alpha genes, Gi1b and G14a, are expressed in zebrafish taste buds and 4 G proteins, Go1, Go2, Gi1b, and Golf2, were detected in the olfactory epithelium. Golf2, Gi1b, and G14a are expressed already shortly after hatching, consistent with the physiological and behavioral responses of larvae to odorants and tastants. Our results show general similarity to the mammalian situation but also clear-cut differences and as such are essential for using the zebrafish model system to study chemosensory perception.  相似文献   

9.
The hypoxia-inducible factors HIF-1 alpha and HIF-2 alpha are structurally similar as regards their DNA-binding and dimerization domains, but differ in their transactivation domains and, as is shown by experiments using hif-1 alpha(-/-) and hif-2 alpha(-/-) mice, in their functions. This implies that HIF-1 alpha and HIF-2 alpha may have unique target genes. To address this discrepancy and identify HIF-2 alpha-specific target genes, we performed yeast two-hybrid analysis and identified the tumor suppressor Int6/eIF3e/p48 as a novel target gene product involved in HIF-2 alpha regulation. The int6 gene was first identified from a screen in which the mouse mammary tumor virus was employed as an insertional mutagen to identify genes whose functions are critical for breast tumor formation. Here, by using two-hybrid analysis, immunoprecipitation in mammalian cells, and HRE-reporter assays, we report the specific interaction of HIF-2 alpha (but not HIF-1 alpha or HIF-3 alpha) with Int6. The results indicate that the direct interaction of Int6 induces proteasome inhibitor-sensitive HIF-2 alpha degradation. This degradation was clearly observed in renal cell carcinoma 786-O cells, and was found to be both hypoxia- and pVHL-independent. Furthermore, Int6 protein knockdown by int6-siRNA vectors or the dominant-negative mutant Int6-Delta C increased endogenous HIF-2 alpha expression, even under normoxia, and induced sets of critical angiogenic factors comprising vascular endoplasmic growth factor, angiopoietin, and basic fibroblast growth factor mRNA. These results indicate that Int6 is a novel and critical determinant of HIF-2 alpha-dependent angiogenesis as well as cancer formation, and that int6-siRNA transfer may be an effective therapeutic strategy in pathological conditions such as heart and brain ischemia, hepatic cirrhosis, and obstructive vessel diseases.  相似文献   

10.
11.
Three homologues of the Drosophilaregion-specific homeotic gene spalt (sal) have been isolated in zebrafish, sall1a, sall1b and sall3. Phylogenetic analysis of these genes against known salDNA sequences showed zebrafish sall1aand sall1b to be orthologous to other vertebrate sal-1 genes and zebrafish sall3to be orthologous to other vertebrate sal-3 genes, except Xenopus sall3. Phylogenetic reconstruction suggests that zebrafish sall1a and sall1bresulted from a gene duplication event occurring prior to the divergence of the ray-finned and lobe-finned fish lineages. Analysis of the expression pattern of the zebrafish sal genes shows that sall1a and sall3 share expression domains with both orthologous and non-orthologous vertebrate sal genes. Both are expressed in various regions of the CNS, including in primary motor neurons. Outside of the CNS, sall1a expression is observed in the otic vesicle (ear), heart and in a discrete region of the pronephric ducts. These analyses indicate that orthologies between zebrafish sal genes and other vertebrate sal genes do not imply equivalence of expression pattern and, therefore, that biological functions are not entirely conserved. However we suggest that, like other vertebrate sal genes, zebrafish sal genes have a role in neural development. Also, expression of zebrafish sall1a in the otic vesicle, heart sac and the pronephric ducts of zebrafish embryos is possibly consistent with some of the abnormalities seen in Sall1-deficient mice and in Townes-Brocks Syndrome, a human disorder which is caused by mutations in the human spalt gene SALL1.  相似文献   

12.
13.
Collagen IV is a major component of vertebrate basal laminae (BLs). Studies in humans have revealed a family of genes encoding alpha 1- alpha 6 collagen IV chains and implicated alpha 3-alpha 6 in disease processes (Goodpasture and Alport syndromes and diffuse leiomyomatosis). To extend studies of these components to an experimentally accessible animal, we cloned cDNAs encoding partial collagen alpha 3, alpha 4, and alpha 5(IV) chains from the mouse. Ribonuclease protection assays showed that all three genes were expressed at highest levels in kidney and lung; alpha 5(IV) was also expressed at high levels in heart. We then made antibodies specific for each collagen IV chain. Immunohistochemical studies of several tissues revealed many combinations of collagen IV chains; however, alpha 3 and alpha 4 (IV) were always coexpressed, and only appeared in BLs that were alpha 5(IV) positive. The alpha 3-alpha 5(IV) chains were frequently but not exclusively associated with the S (beta 2) chain of laminin, as were the alpha 1, 2 (IV) collagen chains with laminin B1 (beta 1). An analysis of developing rat kidney BLs showed that newly formed (S-shaped) nephrons harbored collagen alpha 1 and alpha 2(IV) and laminin B1; maturing (capillary loop stage) BLs contained collagen alpha 1-alpha 5(IV) and laminin B1 and S-laminin; and mature glomerular BLs contained mainly collagen alpha 3-alpha 5(IV) and S-laminin. Thus, collagen alpha 1 and alpha 2(IV) and laminin B1 appear to be fetal components of the glomerular BL, and there is a developmental switch to collagen alpha 3-alpha 5(IV) and S-laminin expression.  相似文献   

14.
Regulation and function of G alpha protein subunits in Dictyostelium   总被引:28,自引:0,他引:28  
We have examined the developmental regulation and function of two G alpha protein subunits, G alpha 1 and G alpha 2, from Dictyostelium. G alpha 1 is expressed in vegetative cells through aggregate stages while G alpha 2 is inducible by cAMP pulses and preferentially expressed in aggregation. Our results suggest that G alpha 2 encodes the G alpha protein subunit associated with the cAMP receptor and mediates all known receptor-activated intracellular signal transduction processes, including chemotaxis and gene regulation. G alpha 1 appears to function in both the cell cycle and development. Overexpression of G alpha 1 results in large, multinucleated cells that develop abnormally. The central role that these G alpha proteins play in signal transduction processes and in controlling Dictyostelium development is discussed.  相似文献   

15.
16.
The function and structure of LysM-domain containing proteins are very diverse. Although some LysM domains are able to bind peptidoglycan or chitin type carbohydrates in bacteria, in fungi and in plants, the function(s) of vertebrate LysM domains and proteins remains largely unknown. In this study we have identified and annotated the six zebrafish genes of this family, which encode at least ten conceptual LysM-domain containing proteins. Two distinct sub-families called LysMD and OXR were identified and shown to be highly conserved across vertebrates. The detailed characterization of LysMD and OXR gene expression in zebrafish embryos showed that all the members of these sub-families are strongly expressed maternally and zygotically from the earliest stages of a vertebrate embryonic development. Moreover, the analysis of the spatio-temporal expression patterns, by whole mount and fluorescent in situ hybridizations, demonstrates pronounced LysMD and OXR gene expression in the zebrafish brain and nervous system during stages of larval development. None of the zebrafish LysMD or OXR genes was responsive to challenge with bacterial pathogens in embryo models of Salmonella and Mycobacterium infections. In addition, the expression patterns of the OXR genes were mapped in a zebrafish brain atlas.  相似文献   

17.
18.
Receptor protein-tyrosine phosphatases (RPTPs) are key players in Drosophila development. To study the role of RPTPs in vertebrate development, we have cloned zebrafish (zf) RPTPs, including RPTP alpha (RPTPalpha), RPTP sigma (RPTPsigma) and LAR. These three RPTPs are broadly transcribed in early development. At 24h post fertilisation (hpf), all three genes are expressed in the nervous system in partially overlapping patterns. At 3 days post fertilisation zf-RPTPalpha and zf-LAR show similar expression patterns in the central nervous system (CNS), the pharyngeal arches, the pectoral fins and the spinal cord. Interestingly, zf-LAR is uniquely expressed in the neuromast cells, whereas zf-RPTPsigma expression is confined to the central nervous system.  相似文献   

19.
Regulation of migration and proliferation by calpain has been shown in various cell types; however, no data are available concerning calpain 2 (capn2) localization in embryonic tissues. Here, we report the expression pattern of capn2 during mouse embryonic development. Expression of the capn2 gene is observed throughout embryonic development. From ES cells and the 8-cell stage to late neurulation stages, CAPN2 is expressed in the cytoplasm and nuclear compartments, with a clear co-localisation with chromatin. Whole-mount in situ hybridization analysis from E8.5 to 14.5 stages indicates high levels of capn2 expression in the nervous system, heart and mesodermal tissues. Up-regulation is maintained during later developmental stages in proliferating cells and in precursor cells involved in muscle (myoblasts) or bone formation (chondrocytes). At later developmental stages, elevated mRNA levels coincided with CAPN2 nuclear localization in these cell types, while differentiated cells maintained cytoplasmic expression. This detailed analysis reveals dynamic expression: nuclear localization was associated either with active cell mitosis in embryonic stem cells and early developmental stages or with precursor cells later during organogenesis. Thus, these data indicate that CAPN2 may represent a key factor in development from the first cell division.  相似文献   

20.
NF-E2-related factor 2 (NRF2; also called NFE2L2) and related NRF family members regulate antioxidant defenses by activating gene expression via antioxidant response elements (AREs), but their roles in embryonic development are not well understood. We report here that zebrafish (Danio rerio), an important developmental model species, possesses six nrf genes, including duplicated nrf1 and nrf2 genes. We cloned a novel zebrafish nrf2 paralog, nrf2b. The predicted Nrf2b protein sequence shares several domains with the original Nrf2 (now Nrf2a) but lacks the Neh4 transactivation domain. Zebrafish-human comparisons demonstrate conserved synteny involving nrf2 and hox genes, indicating that nrf2a and nrf2b are co-orthologs of human NRF2. nrf2a and nrf2b displayed distinct patterns of expression during embryonic development; nrf2b was more highly expressed at all stages. Embryos in which Nrf2a expression had been knocked down with morpholino oligonucleotides were more sensitive to tert-butylhydroperoxide but not tert-butylhydroquinone, whereas knockdown of Nrf2b did not affect sensitivity of embryos to either chemical. Gene expression profiling by microarray identified a specific role for Nrf2b as a negative regulator of several genes, including p53, cyclin G1, and heme oxygenase 1, in embryos. Nrf2a and Nrf2b exhibited different mechanisms of cross-talk with the Ahr2 signaling pathway. Together, these results demonstrate distinct roles for nrf2a and nrf2b, consistent with subfunction partitioning, and identify a novel negative regulatory role for Nrf2b during development. The identification of zebrafish nrf2 co-orthologs will facilitate new understanding of the multiple roles of NRF2 in protecting vertebrate embryos from oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号