首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Hamma T  Miller PS 《Biochemistry》1999,38(46):15333-15342
Oligonucleotide analogues 15-20 nucleotides in length have been prepared, whose sequences are complementary to nucleotides in the upper hairpin of HIV TAR RNA. These alternating oligonucleoside methylphosphonates, mr-AOMPs, contain 2'-O-methylribonucleosides and alternating methylphosphonate and phosphodiester internucleotide linkages. The methylphosphonate and phosphodiester linkages of these oligomers are highly resistant to hydrolysis by exonuclease activity found in mammalian serum and to endonucleases, such as S1 nuclease. The oligomers were prepared using automated phosphoramidite chemistry and terminate with a 5'-phosphate group, which provides an affinity handle for purification by strong anion exchange HPLC. A 15-mer mr-AOMP, 1676, that is complementary to the 5'-side of the TAR RNA hairpin, including the 3-base bulge and 6-base loop region, forms a 1:1 duplex with a complementary RNA 18-mer, mini-TAR RNA. The T(m) of this duplex is 71 degrees C, which is similar to that of the duplex formed by the corresponding all phosphodiester 15-mer. Introduction of two mismatched bases reduces the T(m) by 17 degrees C. The apparent dissociation constant, K(d), for the 1676/mini-TAR RNA duplex as determined by an electrophoretic mobility shift assay at 37 degrees C is 0.3 nM. Oligomer 1676 also binds tightly to the full length TAR RNA target under physiological conditions (K(d) = 20 nM), whereas no binding was observed by the mismatched oligomer. A 19-mer that is complementary to the entire upper hairpin also binds to TAR RNA with a K(d) that is similar to that of 1676, a result that suggests only part of the oligomer binds. When two of the methylphosphonate linkages in the region complementary to the 6-base loop are replaced with phosphodiester linkages, the K(d) is reduced by approximately a factor of 10. This result suggests that interactions between TAR RNA and the oligomer occur initially with nucleotides in the 6-base loop, and that these interactions are sensitive to presence and possibly the chirality of the methylphosphonate linkages in the oligomer. The high affinities of mr-AOMPs for TAR RNA and their resistance to nuclease hydrolysis suggests their potential utility as antisense agents in cell culture.  相似文献   

4.
Seven oligonucleotides corresponding to the 3' and 5' sequences of the acceptor stem of yeast tRNAPhe have been prepared by chemical synthesis, chemical-enzymatic synthesis or by isolation from tRNA hydrolysates. The oligonucleotides have been examined as substrates for phosphodiester bond synthesis in the presence of ATP as catalysed by yeast ATP (CTP): tRNA nucleotidyltransferase. Oligonucleotides which correspond to the sequence of the 3'-strand of the tRNA acceptor stem and possess no secondary structure exhibit little or no activity with the enzyme. The ability of the enzyme to catalyse the synthesis of a phosphodiester linkage using ATP and an oligonucleotide corresponding to the 3'-strand of the acceptor stem is in general dramatically increased when an oligonucleotide corresponding to the sequence of the 5'-strand of tRNA acceptor stem is present. In cases where significant activity was observed kinetic parameters have been determined.  相似文献   

5.
6.
7.
8.
The interaction of HIV-1 Tat protein with its recognition sequence, the trans-activation responsive region TAR is a potential target for drug discovery against HIV infection. We show by use of an in vitro competition filter binding interference assay that synthetic oligodeoxyribonucleotides complementary to the HIV-1 TAR RNA apical stem-loop and bulge region inhibit the binding of Tat protein or a Tat peptide (residues 37-72) better than two small molecules that have been shown to bind TAR RNA, Hoechst 33258 and neomycin B. The inhibition is not sensitive to length between 13 and 16 residues or precise positioning but shorter oligonucleotides are less effective. Enhanced inhibition was obtained for a 16-mer 2'-O-methyl oligoribonucleotide but not for C5-propyne pyrimidine-substituted oligonucleotides. Control non-antisense oligonucleotides were occasionally also effective in filter binding interference but only the complementary antisense 2'-O-methyl oligoribonucleotide was effective in gel mobility shift assays in direct TAR binding or in interference with Tat peptide binding to the TAR stem-loop. This is the first demonstration of effective inhibition of the Tat-TAR interaction by nuclease-stabilized oligonucleotide analogues.  相似文献   

9.
Selective inhibitory DNA aptamers of the human RNase H1   总被引:5,自引:1,他引:4  
Human RNase H1 binds double-stranded RNA via its N-terminal domain and RNA–DNA hybrid via its C-terminal RNase H domain, the latter being closely related to Escherichia coli RNase HI. Using SELEX, we have generated a set of DNA sequences that can bind efficiently (Kd values ranging from 10 to 80 nM) to the human RNase H1. None of them could fold into a simple perfect double-stranded DNA hairpin confirming that double-stranded DNA does not constitute a trivial ligand for the enzyme. Only two of the 37 DNA aptamers selected were inhibitors of human RNase H1 activity. The two inhibitory oligomers, V-2 and VI-2, were quite different in structure with V-2 folding into a large, imperfect but stable hairpin loop. The VI-2 structure consists of a central region unimolecular quadruplex formed by stacking of two guanine quartets flanked by the 5′ and 3′ tails that form a stem of six base pairs. Base pairing between the 5′ and 3′ tails appears crucial for conferring the inhibitory properties to the aptamer. Finally, the inhibitory aptamers were capable of completely abolishing the action of an antisense oligonucleotide in a rabbit reticulocyte lysate supplemented with human RNase H1, with IC50 ranging from 50 to 100 nM.  相似文献   

10.
11.
12.
A series of oligonucleotide conjugates were designed and synthesized as novel inhibitors of human telomerase. These compounds contain a relatively short (6-7-mer) oligonucleotide domain, with an N3'-->P5' phosphoramidate (np) or thio-phosphoramidate (nps) backbone, targeted to the template region of the RNA component of the enzyme and various pendant groups attached to either their 5'- or preferably to the 3'-termini. The most potent compounds in the series inhibited telomerase with low nM IC50 values in biochemical assays whereas the cognate oligonucleotides without the pendant groups were significantly less active having IC50 values 100-1000-fold higher.  相似文献   

13.
14.
Oligo-2'-O-methylribonucleotides conjugated with 4-(2-aminooxyethoxy)-2-(ethylureido)quinoline (AOQ) and 4-ethoxy-2-(ethylureido)quinoline (EOQ) were prepared by reaction of the AOQ or EOQ phosphoramidite with the protected oligonucleotide on a controlled pore glass support. Deprotection with ethylenediamine enabled successful isolation and purification of the highly reactive AOQ-conjugated oligomer. Polyacrylamide gel electrophoresis mobility shift experiments showed that the dissociation constants of complexes formed between an AOQ- or EOQ-conjugated 8-mer and complementary RNA or 2'-O-methyl-RNA targets (9- and 10-mers) were in the low nM concentration range at 37 degrees C, whereas no binding was observed for the corresponding nonconjugated oligomer, even at a concentration of 500 nM. Fluorescence studies suggested that this enhanced affinity is most likely due to the ability of the quinoline ring of the AOQ or EOQ group to stack on the last base pair formed between the oligomer and target, thus stabilizing the duplex. The binding affinity of a 2'-O-methyl RNA 15-mer, which contained an alternating methylphosphonate/phosphodiester backbone, for a 59-nucleotide stem-loop HIV TAR RNA target, increased 2.3 times as a consequence of conjugation with EOQ. The aminooxy group of AOQ-conjugated oligomers is a highly reactive nucleophile, which reacts readily with aldehydes and ketones to form stable oxime derivatives. This feature was used to couple an AOQ-oligomer with leupeptin, a tripeptide that contains a C-terminus aldehyde group. A simple method was developed to introduce a ketone functionality into peptides that contain a cysteine residue by reacting the peptide with bromoacetone. The resulting keto-peptide was then coupled to the AOQ-oligomer. This procedure was used to prepare oligonucleotide conjugates of a tetrapeptide, RGDC, and a derivative of HIV tat peptide having a C-terminus cysteine. The combination of the unique reactivity of the aminooxy group and enhanced binding affinity conferred by its quinoline ring suggests that AOQ may serve as a useful platform for the preparation of novel oligonucleotide conjugates.  相似文献   

15.
16.
Nonstructural protein 3 (NS3) from hepatitis C virus (HCV) is a serine protease that provides an essential function in maturation of the virus by cleaving the nonstructural regions of the viral polyprotein. The goal of this work was to isolate RNA aptamers that bind specifically to the NS3 protease active site in the truncated polypeptide DeltaNS3. RNA aptamers were selected in vitro by systematic evolution of ligands by exponential enrichment (SELEX). The RNA pool for SELEX had a 30-nucleotide randomized core region. After nine selection cycles, a pool of DeltaNS3-specific RNA aptamers were obtained. This RNA pool included 45 clones that divided into three main classes (G9-I, II and III). These classes include the conserved sequence GA(A/U)UGGGAC. These aptamers bind to DeltaNS3 with a binding constant of about 10 nM and inhibit approximately 90% of the protease activity of DeltaNS3 and MBP-NS3 (full-length of NS3 fused with maltose binding protein). In addition, these aptamers inhibited approximately 70% of the MBP-NS3 protease activity in the presence of the NS4A peptide P41. G9-I aptamer appeared to be a noncompetitive inhibitor for DeltaNS3 with a Ki approximately 100 nM in the presence of P41. These results suggest that the pool of selected aptamers have potential as anti-HCV compounds. Mutational analysis of the G9-I aptamer demonstrated that the sequences required for protease inhibition are in stem I, stem III and loop III of the aptamer. These regions include the conserved sequence GA(A/U)UGGGAC.  相似文献   

17.
Two electrochemical DNA hybridization biosensors (genosensors) for the detection of a 30-mer sequence unique to severe acute respiratory syndrome (SARS) virus are described in this work. Both genosensors rely on the hybridization of the oligonucleotide target with its complementary probe, which is immobilized on positively charged polylysine modified screen-printed carbon electrodes (SPCEs), through electrostatic interactions. In one design, a biotinylated target is used and the detection of the hybridization reaction is monitored using alkaline phosphatase labeled streptavidin (S-AP). This enzyme catalyzes the hydrolysis of the substrate 3-indoxyl phosphate (3-IP) to indigo, which is then solubilized to indigo carmine and detected by means of cyclic voltammetry (CV). In the other design, the target is labeled using an Au(I) complex, sodium aurothiomalate, and the duplex formation is detected by measuring, for first time, the current generated by the hydrogen evolution catalyzed by the gold label. Using 30 min of hybridization time, a detection limit of 8 pM is calculated for the enzymatic genosensor. Although this good sensitivity cannot be reached with the metal label (0.5 nM), the use of this label allows a considerable decrease of the analysis time. Both genosensors do not require the modification of the oligonucleotide probe and using stringent experimental conditions (60 min of hybridization time and 50% formamide in the hybridization buffer) can discriminate between a complementary oligonucleotide and an oligonucleotide with a three-base mismatch.  相似文献   

18.
Site directed alkylation of three oligonucleotide targets: 41-mer (hairpin structure), 22-mer (loop part of this hairpin) and 10-mer (part of the loop) with 5'-p-(N-2-chloroethyl-N-methylamino)benzylamides of oligonucleotides complementary to the loop region was studied. Thermodynamic parameters of the interaction were estimated using the dependence of the limit modification extent on the reagent concentration at different temperatures. The stability of the complex increases much in the set: 302-mer carrying the above hairpin, 41-mer, 22-mer; data on 22-mer and 10-mer being almost identical. This indicates significant influence of the loop supporting structure on the interaction with antisense reagents.  相似文献   

19.
Single stranded DNA aptamers that bind with high affinity and specificity to the oxytetracycline (OTC) were identified by selection from an oligonucleotide library of 10(15) molecules. The binding affinities of four aptamers were in nanomolar range. The aptamers were highly selective in that, lack of -OH group at 5-position in tetracycline and -H group in place of -OH at 6-position in doxycycline determined the specificity of these aptamers to bind OTC. Three aptamers designated as No. 4, 5, and 20 shared strong affinities with K(d)=9.61, 12.08, and 56.84 nM, respectively, as well as selectivity to bind OTC (72-76%). Aptamer No. 4 had strong affinity among all with high selectivity, whereas No. 2 had relatively weak affinity (K(d)=121.1 nM) and moderate selectivity (52%). Our results indicated that the aptamers No. 4, 5, and 20 with variable 40-base oligonucleotides can be good candidates for selectively binding to OTC with high molecular discrimination over its analogs such as tetracycline and doxycycline.  相似文献   

20.
NS3 (nonstructural protein 3) from the hepatitis C virus is a 3' --> 5' helicase classified in helicase superfamily 2. The optimally active form of this helicase remains uncertain. We have used unwinding assays in the presence of a protein trap to investigate the first cycle of unwinding by full-length NS3. When the enzyme was in excess of the substrate, NS3 (500 nM) unwound >80% of a DNA substrate containing a 15-nucleotide overhang and a 30-bp duplex (45:30-mer; 1 nM). This result indicated that the active form of NS3 that was bound to the DNA prior to initiation of the reaction was capable of processive DNA unwinding. Unwinding with varying ratios of NS3 to 45:30-mer allowed us to investigate the active form of NS3 during the first unwinding cycle. When the substrate concentration slightly exceeded that of the enzyme, little or no unwinding was observed, indicating that if a monomeric form of the protein is active, then it exhibits very low processivity. Binding of NS3 to the 45:30-mer was measured by electrophoretic mobility shift assays, resulting in K(D) = 2.7 +/- 0.4 nM. Binding to individual regions of the substrate was investigated by measuring the K(D) for a 15-mer oligonucleotide as well as a 30-mer duplex. NS3 bound tightly to the 15-mer (K(D) = 1.3 +/- 0.2 nM) and, surprisingly, fairly tightly to the double-stranded 30-mer (K(D) = 11.3 +/- 1.3 nM). However, NS3 was not able to rapidly unwind a blunt-end duplex. Thus, under conditions of optimal unwinding, the 45:30-mer is initially saturated with the enzyme, including the duplex region. The unwinding data are discussed in terms of a model whereby multiple molecules of NS3 bound to the single-stranded DNA portion of the substrate are required for optimal unwinding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号