首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study we have evaluated the specificity of different PKC isozymes for the phosphorylation of the catalytic alpha1 subunit of rat renal Na+,K+-ATPase (alpha1 Na+,K+-ATPase). Using in vitro phosphotransferase assays we found that classical PKCs (cPKCs) alpha, betaI, and gamma efficiently phosphorylate alpha1 Na+,K+-ATPase. However, alpha1 Na+,K+-ATPase was a poor substrate for the novel PKCs (nPKCs) delta and epsilon. Two-dimensional phosphopeptide mapping revealed a similar pattern of phosphorylation by all cPKCs. The functional significance of this finding was evaluated by measuring Na+,K+-ATPase activity (assessed by 86Rb+ uptake) in COS-7 cells expressing the rat alpha1 Na+,K+-ATPase. 1-oleoyl-2-acetoyl-sn-glycerol (OAG), a nonselective PKC activator, inhibited Na+,K+-ATPase activity in this system. On the other hand, 12-deoxyphorbol-13-phenylacetate (DPP), which preferentially activates nPKCepsilon, did not affect 86Rb+ uptake. These results indicate a differential pattern of phosphorylation and regulation of rat renal Na+,K+-ATPase activity by PKC isoforms and suggest an important role for cPKCs in the physiological regulation of the pump.  相似文献   

2.
We have shown that ouabain activates Src, resulting in subsequent tyrosine phosphorylation of multiple effectors. Here, we tested if the Na+/K+-ATPase and Src can form a functional signaling complex. In LLC-PK1 cells the Na+/K+-ATPase and Src colocalized in the plasma membrane. Fluorescence resonance energy transfer analysis indicated that both proteins were in close proximity, suggesting a direct interaction. GST pulldown assay showed a direct, ouabain-regulated, and multifocal interaction between the 1 subunit of Na+/K+-ATPase and Src. Although the interaction between the Src kinase domain and the third cytosolic domain (CD3) of 1 is regulated by ouabain, the Src SH3SH2 domain binds to the second cytosolic domain constitutively. Functionally, binding of Src to either the Na+/K+-ATPase or GST-CD3 inhibited Src activity. Addition of ouabain, but not vanadate, to the purified Na+/K+-ATPase/Src complex freed the kinase domain and restored the Src activity. Consistently, exposure of intact cells to ouabain apparently increased the distance between the Na+/K+-ATPase and Src. Concomitantly, it also stimulated tyrosine phosphorylation of the proteins that are associated with the Na+/K+-ATPase. These new findings illustrate a novel molecular mechanism of signal transduction involving the interaction of a P-type ATPase and a nonreceptor tyrosine kinase.  相似文献   

3.
Structural organization of alpha- and beta-subunits of Na+,K+-ATPase in the membrane, the enzyme oligomeric structure, and mechanisms of ATP hydrolysis and cation transport are considered. The data on the structure of cation-binding sites and ion-conductive pathways of the pump are reviewed. The properties of isoforms of both subunits are described. Special attention was paid to the ATP modifying effect on Na+,K+-ATPase. To explain the rather complex dependence of the Na+,K+-ATPase activity on ATP concentration, a hypothesis is proposed, which is based on the assumption that the membrane contains the enzyme protomer exhibiting high affinity to ATP and an oligomer having low affinity to the nucleotide and characterized by positive cooperative interactions between subunits. Data on the Na+,K+-ATPase phosphorylation by protein kinases A and C are reviewed.  相似文献   

4.
The effects of external Na+ on the activity of the Na+-pump are complex. The first-order rate constant for Na+-efflux is reduced in the presence of very low external Na+ concentrations, and this inhibition is reversed when the Na+ level is raised. The same pattern has been observed for Na+-ATPase activity; however, it is not apparent from the current reaction mechanisms at which site (or sites) external Na+ binds to cause inhibition. In this paper, the effect of external Na+ on Na+-pump activity was studied by simulation, using a model similar to the Post-Albers scheme. Curves similar to those experimentally observed were obtained assuming that: (i) after phosphorylation, three Na+ ions are translocated and consecutively released to the external medium with decreasing dissociation constants; (ii) external Na+, with low affinity, binds to the K+o (external) sites stimulating dephosphorylation. These assumptions also permit one to explain the experimental observation that external Na+ (with both high and low affinities) competes with K+, inhibiting the K+ influx due to the Na+-pump, and the kinetically similar behavior of Na+-ATPase and ATP/ADP exchange reactions at low variable Na+ concentrations. The experimental evidence available that supports the present hypothesis is discussed.  相似文献   

5.
The participation of Mg2+ and Ca2+ in complicated mechanisms of Na+, K(+)-ATPase regulation is discussed in the survey. The regulatory actions of Mg2+ on Na+, K(+)-ATPase such as its participation in phosphorylation and dephosphorylation of the enzyme, ADP/ATP-exchange inhibition, cardiac glycosides and vanadate binding with the enzyme, conformational changes induction during ATPase cycle are reviewed in detail. Some current views of mechanisms of above mentioned Mg2+ regulatory effects are discussed. The experimental evidence of Ca2+ immediate influence on the functional activity of Na+, K(+)-ATPase (catalytic, transport and glycoside-binding) are given. It's noted that these effects are based on the conformational changes in the enzyme and also on the phase transition in membrane induced by Ca2+. Unimmediate action of Ca2+ on Na+, K(+)-ATPase is also discussed, especially due to its effect on other membrane systems functionally linked with Na(+)-pump (for instance, due to Na+/Ca(+)-exchanger activation). It's concluded that Mg2+ and Ca2+ as "universal regulators" of the cell effectively influence the functional activity and conformational states of Na+, K(+)-ATPase.  相似文献   

6.
(Na+ + K+)-ATPase from kidney outer medulla was incorporated into artificial dioleoylphosphatidylcholine vesicles. In the reconstituted system the pump can be activated by adding ATP to the external medium. ATP-driven potassium extrusion by the Na+,K+-pump was studied using a voltage-sensitive dye in the presence of valinomycin. ADP strongly reduced the turnover rate of the pump with a concentration for half-maximal inhibition of cD,1/2 = 0.1 mM. cD,1/2 was found to be virtually independent of ATP concentration, indicating that the inhibition is non-competitive with respect to ATP. The non-competitive inhibition by ADP can be explained on the basis of the Post-Albers reaction cycle of the Na+,K+-pump, assuming that the main action of ADP is the reversal of the phosphorylation step. A similar 'product inhibition' was observed with inorganic phosphate, but at much higher concentrations (cP,1/2 = 14 mM).  相似文献   

7.
In principle, an ion channel needs no more than a single gate, but a pump requires at least two gates that open and close alternately to allow ion access from only one side of the membrane at a time. In the Na+,K+-ATPase pump, this alternating gating effects outward transport of three Na+ ions and inward transport of two K+ ions, for each ATP hydrolysed, up to a hundred times per second, generating a measurable current if assayed in millions of pumps. Under these assay conditions, voltage jumps elicit brief charge movements, consistent with displacement of ions along the ion pathway while one gate is open but the other closed. Binding of the marine toxin, palytoxin, to the Na+,K+-ATPase uncouples the two gates, so that although each gate still responds to its physiological ligand they are no longer constrained to open and close alternately, and the Na+,K+-ATPase is transformed into a gated cation channel. Millions of Na+ or K+ ions per second flow through such an open pump-channel, permitting assay of single molecules and allowing unprecedented access to the ion transport pathway through the Na+,K+-ATPase. Use of variously charged small hydrophilic thiol-specific reagents to probe cysteine targets introduced throughout the pump's transmembrane segments allows mapping and characterization of the route traversed by transported ions.  相似文献   

8.
Ouabain assembles signaling cascades through the caveolar Na+/K+-ATPase   总被引:11,自引:0,他引:11  
Based on the observation that the Na(+)/K(+)-ATPase alpha subunit contains two conserved caveolin-binding motifs, we hypothesized that clustering of the Na(+)/K(+)-ATPase and its partners in caveolae facilitates ouabain-activated signal transduction. Glutathione S-transferase pull-down assay showed that the Na(+)/K(+)-ATPase bound to the N terminus of caveolin-1. Significantly, ouabain regulated the interaction in a time- and dose-dependent manner and stimulated tyrosine phosphorylation of caveolin-1 in LLC-PK1 cells. When added to the isolated membrane fractions, ouabain increased tyrosine phosphorylation of proteins from the isolated caveolae but not other membrane fractions. Consistently, ouabain induced the formation of a Na(+)/K(+)-ATPase-Src-caveolin complex in the isolated caveolae preparations as it did in live cells. Finally, depletion of either cholesterol by methyl beta-cyclodextrin or caveolin-1 by siRNA significantly reduced the caveolar Na(+)/K(+)-ATPase and Src. Concomitantly, cholesterol depletion abolished ouabain-induced recruitment of Src to the Na(+)/K(+)-ATPase signaling complex. Like depletion of caveolin-1, it also blocked the effect of ouabain on ERKs, which was restored after cholesterol repletion. Clearly, the caveolar Na(+)/K(+)-ATPase represents the signaling pool of the pump that interacts with Src and transmits the ouabain signals.  相似文献   

9.
Binding of ouabain to Na(+)/K(+)-ATPase activates tyrosine phosphorylation of the epidermal growth factor receptor (EGFR), Src, and p42/44 mitogen-activated protein kinases (MAPKs) in both cardiac myocytes and A7r5 cells. Here, we explored the roles of Src and the EGFR in the ouabain-invoked pathways that lead to the activation of MAPKs. Exposure of A7r5 and LLC-PK1 cells to ouabain caused a dose-dependent inhibition of Na(+)/K(+)-ATPase activity, which correlated well with ouabain-induced activation of Src and MAPKs in these cells. Immunoprecipitation experiments showed that ouabain stimulated Src binding to Na(+)/K(+)-ATPase in a dose- and time-dependent manner and increased phosphorylation of Src at Tyr(418) but had no effect on Tyr(529) phosphorylation. Ouabain failed to activate MAPKs in A7r5 cells that were pretreated with the Src inhibitor PP2 and in SYF cells in which Src family kinases are knocked out. Preincubation with AG1478, but not AG1295, also blocked the effects of ouabain on p42/44 MAPKs in A7r5 cells. Significantly, both herbimycin A and PP2 abrogated ouabain-induced but not epidermal growth factor-induced Src binding to the EGFR and the subsequent EGFR tyrosine phosphorylation. Ouabain also failed to affect tyrosine phosphorylation of the EGFR in SYF cells. In addition, unlike epidermal growth factor, ouabain did not increase EGFR autophosphorylation at Tyr(1173). These findings clearly indicate that ouabain transactivates the EGFR by activation of Src and stimulation of Src binding to the EGFR. Furthermore, we found that the transactivated EGFR was capable of recruiting and phosphorylating the adaptor protein Shc. This resulted in increased binding of another adaptor protein Grb2 to the Src-EGFR complex and the subsequent activation of Ras and MAPKs. Taken together, these new findings suggest that Src mediates the inter-receptor cross-talk between Na(+)/K(+)-ATPase and the EGFR to transduce the signals from ouabain to the Ras/MAPK cascade.  相似文献   

10.
In kidney, Na+, K+-ATPase is an oligomer (alphabeta gamma) with equimolar amounts of essential alpha and beta subunits and one small hydrophobic FXYD protein (gamma subunit). This report describes gamma subunit as an activator of pig kidney outer medulla Na+, K+-ATPase in aqueous medium. The effects of gamma subunit on Na+, K+-ATPase were dose-dependent and preincubation-dependent. Changes in alphabeta/gamma stoichiometry did not alter Km1 for ATP, and slightly increased Km2, but Vmax was increased at both catalytic and regulatory sites. Hydroxylamine treatment of enzyme phosphorylated by ATP (E-P), in the presence of additional gamma subunit, revealed that 52% of the E-P accumulation was not via acyl-phosphate formation. The gamma subunit was phosphorylated by endogenous kinases and by commercial catalytic subunit of protein kinase A (PKA). Additionally, we demonstrated that PKA phosphorylation of gamma subunit increased its capacity to stimulate ATP hydrolysis. These results suggest that gamma subunit can act as an intrinsic Na+, K+-ATPase regulator in kidney.  相似文献   

11.
Our previous studies showed that dopamine inhibits Na+,K+-ATPase activity in acutely dissociated neurons from striatum. In the present study, we have found that in this preparation, dopamine inhibited significantly (by approximately 25%) the activity of the alpha3 and/or alpha2 isoforms, but not the alpha1 isoform, of Na+,K+-ATPase. Dopamine, via D1 receptors, activates cyclic AMP-dependent protein kinase (PKA) in striatal neurons. Dopamine is also known to activate the calcium- and phospholipid-dependent protein kinase (PKC) in a number of different cell types. The PKC activator phorbol 12,13-dibutyrate reduced the activity of Na+,K+-ATPase alpha3 and/or alpha2 isoforms (by approximately 30%) as well as the alpha1 isoform (by approximately 15%). However, dopamine-mediated inhibition of Na+,K+-ATPase activity was unaffected by calphostin C, a PKC inhibitor. Dopamine did not affect the phosphorylation of Na+,K+-ATPase isoforms at the PKA-dependent phosphorylation site. Phorbol ester treatment did not alter the phosphorylation of alpha2 or alpha3 isoforms of Na+,K+-ATPase in neostriatal neurons but did increase the phosphorylation of the alpha1 isoform. Thus, in rat neostriatal neurons, treatment with either dopamine or PKC activators results in inhibition of the activity of specific (alpha3 and/or alpha2) isoforms of Na+,K+-ATPase, but this is not apparently mediated through direct phosphorylation of the enzyme. In addition, PKC is unlikely to mediate inhibition of rat Na+,K+-ATPase activity by dopamine in neostriatal neurons.  相似文献   

12.
An increase in endogenous Na+,K+-ATPase inhibitor(s) with digitalis-like properties has been reported in chronic renal insufficiency, in Na+-dependent experimental hypertension and in some essential hypertensive patients. The present study specifies some properties and some biochemical characteristics of a semipurified compound from human urine having digitalis-like properties. The urine-derived inhibitor (endalin) inhibits Na+,K+-ATPase activity and [3H]-ouabain binding, and cross-reacts with anti-digoxin antibodies. The inhibitory effect on ATPases of endalin is higher on Na+,K+-ATPase than on Mg2+-ATPase and Ca2+-ATPase. The mechanism of endalin action on highly purified Na+,K+-ATPase was compared to that of ouabain and was similar in that it reversibly inhibited Na+,K+-ATPase activity; it inhibited Na+,K+-ATPase non-competitively with ATP; its inhibitory effect was facilitated by Na+; K+ decreased its inhibitory effect on Na+,K+-ATPase; it competitively inhibited ouabain binding to the enzyme; its binding was maximal in the presence of Mg2+ and Pi; it decreased the Na+ pump activity in human erythrocytes; it reduced serotonin uptake by human platelets; and it was diuretic and natriuretic in rat bioassay. The endalin differed from ouabain in only three aspects: its inhibitory effect was not really specific for Na+,K+-ATPase; its binding to the enzyme was undetectable in the presence of Mg2+ and ATP; it was not kaliuretic in rat bioassay. Endalin is a reversible and partial specific inhibitor of Na+,K+-ATPase, its Na+,K+-ATPase inhibition closely resembles that of ouabain and it could be considered as one of the natriuretic hormones.  相似文献   

13.
The effects of phenytoin, a potent antiepileptic drug, on the active transport of cations within membranes remain controversial. To assess the direct effects of phenytoin on the Na+,K+ pump, we studied the drug's influence on the phosphorylation of partially purified (Na+,K+)-ATPase from mouse brain. (Na+,K+)-ATPase subunits were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phenytoin, in vitro, decreased net phosphorylation of the (Na+,K+)-ATPase catalytic subunit in a dose-dependent manner (approximately 50% at 10(-4) M). When the conversion of E1-P to E2-P, e.g., the two major phosphorylated conformational states of (Na+,K+)-ATPase, was blocked by oligomycin or N-ethylmaleimide, phenytoin had no effect. The results suggest that phenytoin acts on the phosphatasic component of the reaction cycle, decreasing the phosphorylation level of the enzyme.  相似文献   

14.
The alpha- and beta-subunits of Na+,K+-ATPase and H+,K+-ATPase were expressed in Sf9 cells in different combinations. Immunoprecipitation of the alpha-subunits resulted in coprecipitation of the accompanying beta-subunit independent of the type of beta-subunit. This indicates cross-assembly of the subunits of the different ATPases. The hybrid ATPase with the catalytic subunit of Na+,K+-ATPase and the beta-subunit of H+,K+-ATPase (NaKalphaHKbeta) showed an ATPase activity, which was only 12 +/- 4% of the activity of the Na+,K+-ATPase with its own beta-subunit. Likewise, the complementary hybrid ATPase with the catalytic subunit of H+,K+-ATPase and the beta-subunit of Na+,K+-ATPase (HKalphaNaKbeta) showed an ATPase activity which was 9 +/- 2% of that of the recombinant H+,K+-ATPase. In addition, the apparent K+ affinity of hybrid NaKalphaHKbeta was decreased, while the apparent K+ affinity of the opposite hybrid HKalphaNaKbeta was increased. The hybrid NaKalphaHKbeta could be phosphorylated by ATP to a level of 21 +/- 7% of that of Na+,K+-ATPase. These values, together with the ATPase activity gave turnover numbers for NaKalphabeta and NaKalphaHKbeta of 8800 +/- 310 min-1 and 4800 +/- 160 min-1, respectively. Measurements of phosphorylation of the HKalphaNaKbeta and HKalphabeta enzymes are consistent with a higher turnover of the former. These findings suggest a role of the beta-subunit in the catalytic turnover. In conclusion, although both Na+,K+-ATPase and H+,K+-ATPase have a high preference for their own beta-subunit, they can function with the beta-subunit of the other enzyme, in which case the K+ affinity and turnover number are modified.  相似文献   

15.
The possibility that H+ might substitute for Na+ at Na+ sites of Na+,K+-ATPase was studied. Na+,K+-ATPase purified from pig kidney showed ouabain-sensitive K+-dependent ATPase activity in the absence of Na+ at acid pH (H+,K+-ATPase). The specific activity was 1.1 mumol Pi/mg/min at pH 5.7, whereas the specific activity of Na+,K+-ATPase was 14 mumol Pi/mg/min at pH 7.5. The enzyme was phosphorylated from ATP in the absence of Na+ at the acid pH. The initial rate of the phosphorylation was also accelerated at the acid pH in the absence of Na+, and the maximal rate obtained at pH 5.5 without Na+ was 9% of the rate at pH 7.0 with Na+. The phosphoenzyme was sensitive to K+ but almost insensitive to ADP. The phosphoenzyme was sensitive to hydroxylamine treatment and the alpha-subunit of the enzyme was found to be phosphorylated. H+,K+-ATPase was inhibited as effectively as Na+,K+-ATPase by N-ethylmaleimide but was less inhibited by oligomycin or dimethyl sulfoxide. These results indicate that protons have an Na+-like effect on the Na+ sites of Na+,K+-ATPase and suggest that protons can be transported by the sodium pump in place of Na+.  相似文献   

16.
In interleukin-2 (IL-2)-induced human blood lymphocytes, the Na+/K+ pump function (assessed by ouabain-sensitive Rb+ influx), the abundance of Na+, K+-ATPase alpha1-subunit (determined by Western blotting) and the alpha1- and beta1-subunits mRNA of Na+, K+-ATPase (RT-PCR), as well as the phosphorylation of STAT5 and STAT3 family proteins and ERK1/2 kinase have been examined. A 3.5-4.0-fold increase in the expression of alpha1- and beta1-subunits mRNA of Na+, K+-ATPase was found at 24 h of IL-2 stimulation. The inhibitors of JAK3 kinase (B-42, WHI-P431) was shown to decrease both the phosphorylation of STATs and the rise in the oubain-sensitive rubidium influx as well as the increased abundance of Na+, K+-ATPase alpha1-subunit. The inhibition of the protein kinases ERK1/2 by PD98059 (20 microM) suppressed the alpha1-subunit accumulation. All the kinase inhibitors tested did not alter the intracellular content ofmonovalent cations in resting and IL-2-stimulated lymphocytes. It is concluded that MAPK and JAK/STAT signaling pathways mediate the IL-2-dependent regulation of the Na+, K+-ATPase expression during the lymphocyte transition from resting stage to proliferation.  相似文献   

17.
The effects of 16 group-specific, amino acid-modifying agents were tested on ouabain binding, catalytical activity of membrane-bound (rat brain microsomal), sodium dodecyl sulfate-treated Na+,K(+)-ATPase, and Na+,K(+)-pump activity in intact muscle cells. With few exceptions, the potency of various tryptophan, tyrosine, histidine, amino, and carboxy group-oriented drugs to suppress ouabain binding and Na+,K(+)-ATPase activity correlated with inhibition of the Na+,K(+)-pump electrogenic effect. ATP hydrolysis was more sensitive to inhibition elicited by chemical modification than ouabain binding (membrane-bound or isolated enzyme) and than Na+,K(+)-pump activity. The efficiency of various drugs belonging to the same "specificity" group differed markedly. Tyrosine-oriented tetranitromethane was the only reagent that interfered directly with the cardiac receptor binding site as its inhibition of ouabain binding was completely protected by ouabagenin preincubation. The inhibition elicited by all other reagents was not, or only partially, protected by ouabagenin. It is surprising that agents like diethyl pyrocarbonate (histidine groups) or butanedione (arginine groups), whose action should be oriented to amino acids not involved in the putative ouabain binding site (represented by the -Glu-Tyr-Thr-Trp-Leu-Glu- sequence), are equally effective as agents acting on amino acids present directly in the ouabain binding site. These results support the proposal of long-distance regulation of Na+,K(+)-ATPase active sites.  相似文献   

18.
Palytoxin (PTX) inhibits the (Na(+) + K+)-driven pump and simultaneously opens channels that are equally permeable to Na+ and K+ in red cells and other cell membranes. In an effort to understand the mechanism by which PTX induces these fluxes, we have studied the effects of PTX on: 1) K+ and Na+ occlusion by the pump protein; 2) phosphorylation and dephosphorylation of the enzyme when a phosphoenzyme is formed from ATP and from P(i); and 3) p-nitro phenyl phosphatase (p-NPPase) activity associated with the (Na+, K+)-ATPase. We have found that palytoxin 1) increases the rate of deocclusion of K+(Rb+) in a time- and concentration-dependent manner, whereas Na+ occluded in the presence of oligomycin is unaffected by the toxin; 2) makes phosphorylation from P(i) insensitive to K+, and 3) stimulates the p-NPPase activity. The results are consistent with the notion that PTX produces a conformation of the Na+, K(+)-pump that resembles the one observed when ATP is bound to its low-affinity binding site. Further, they suggest that the channels that are formed by PTX might arise as a consequence of a perturbation in the ATPase structure, leading to the loss of control of the outside "gate" of the enzyme and hence to an uncoupling of the ion transport from the catalytic function of the ATPase.  相似文献   

19.
Na+,K+-ATPase (porcine alpha/his10-beta) has been expressed in Pichia Pastoris, solubilized in n-dodecyl-beta-maltoside and purified to 70-80% purity by nickel-nitrilotriacetic acid chromatography combined with size exclusion chromatography. The recombinant protein is inactive if the purification is done without added phospholipids. The neutral phospholipid, dioleoylphosphatidylcholine, preserves Na+,K+-ATPase activity of protein prepared in a Na+-containing medium, but activity is lost in a K+-containing medium. By contrast, the acid phospholipid, dioleoylphosphatidylserine, preserves activity in either Na+- or K+-containing media. In optimal conditions activity is preserved for about 2 weeks at 0 degrees C. Both recombinant Na+,K+-ATPase and native pig kidney Na+,K+-ATPase, dissolved in n-dodecyl-beta-maltoside, appear to be mainly stable monomers (alpha/beta) as judged by size exclusion chromatography and sedimentation velocity. Na+,K+-ATPase activities at 37 degrees C of the size exclusion chromatography-purified recombinant and renal Na+,K+-ATPase are comparable but are lower than that of membrane-bound renal Na+,K+-ATPase. The beta subunit is expressed in Pichia Pastoris as two lightly glycosylated polypeptides and is quantitatively deglycosylated by endoglycosidase-H at 0 degrees C, to a single polypeptide. Deglycosylation inactivates Na+,K+-ATPase prepared with dioleoylphosphatidylcholine, whereas dioleoylphosphatidylserine protects after deglycosylation, and Na+,K+-ATPase activity is preserved. This work demonstrates an essential role of phospholipid interactions with Na+,K+-ATPase, including a direct interaction of dioleoylphosphatidylserine, and possibly another interaction of either the neutral or acid phospholipid. Additional lipid effects are likely. A role for the beta subunit in stabilizing conformations of Na+,K+-ATPase (or H+,K+-ATPase) with occluded K+ ions can also be inferred. Purified recombinant Na+,K+-ATPase could become an important experimental tool for various purposes, including, hopefully, structural work.  相似文献   

20.
During the development of large bowel cancer alterations in colonic epithelial ion transport have been observed some of which result in altered intracellular ionic composition. In many tumors intracellular sodium and potassium become elevated and depressed, respectively. This observation suggests that mechanisms governing intracellular homeostasis for sodium and potassium are no longer tightly regulated. Changes in cell membrane permeability, sodium, potassium-ATPase K(+)-ATPase) pump activity, or both may be responsible for these alterations. It is not known when during initiation and development of cancer such changes may occur. To assess whether there are changes in the Na+, K(+)-ATPase pump early during the induction of large bowel cancer and prior to any notable histological changes, we measured the kinetics of the Na+, K(+)-pump in distal colonic mucosa of CF1 mice one week following only four weekly injections of the carcinogen 1,2-dimethyhydrazine (DMH). The kinetics of the pump were found to be best described by a model of highly cooperative binding. The VMAX of the pump in premalignant mucosa was lower for both sodium and potassium substrate activation (55-65% of control) with little change in other kinetic parameters. Depression of VMAX could not be attributed to an increased barium blockable potassium conductance of the basolateral membrane. Na+,K(+)-ATPase activity was also decreased by 50% in the distal colon of DMH treated mice, but was not affected in the less cancer susceptible proximal colon. These data demonstrate that alterations occur in the Na+,K(+)-pump in premalignant mucosa months before gross tumors develop, and these changes may partially explain the altered levels of Na+ and K+ in the cytoplasm of pre-malignant and malignant colonocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号