首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prescribed burning currently is used to preserve endemicity of plant communities in remnant tallgrass prairies. Although some types of arthropods benefit from changes in plant communities brought about by burning, other species that are endemic to prairies may be threatened. Because they inhabit the fuel layer of prairies, endophytic insects would seem particularly susceptible to this management tactic. In this paper, we assess the impact of prescribed burning on endophytic insect communities inhabiting stems of Silphium laciniatum L. and S. terebinthinaceum Jacquin (Asteraceae), endemic prairie plants. Populations of these insects were decimated by burning, with mortality approaching 100% in most cases. Their populations nevertheless began to rebound within a single growing season, with densities moderately but significantly reduced 1 year after the burn. Even when a prairie remnant was completely incinerated, plant stems were recolonized by insects within one growing season. Our findings suggest that sufficient numbers of endophytic insects survive burns in remains of Silphium to recolonize burned areas the following year.  相似文献   

2.
Evidence of poor correspondence between an insect herbivore’s oviposition preferences and the performance of its offspring has generally been attributed either to maladaptive behavior of the insect mother or inadequate measurement by the researcher. In contrast, we hypothesize that many cases of “bad mothers” in herbivores may be a byproduct of the hierarchical way natural selection works on resistance in host plants. Epistatic selection on the components of resistance (i.e., antixenosis and antibiosis) may generate negative genetic correlations between the resistance components, which could counteract the efforts of herbivores to oviposit on the best hosts for the performance of their offspring. In common garden and greenhouse experiments, we measured aspects of antixenosis and antibiosis resistance in 26 genets of tall goldenrod, Solidago altissima, against two common herbivores: the gall-inducing fly Eurosta solidaginis and the spittlebug Philaenus spumarius. Goldenrod antixenosis and antibiosis were positively correlated against E. solidaginis and negatively correlated against P. spumarius. Analogously, population-wide preference–performance correlations were positive for the gall flies and negative for the spittlebugs. Several natural history differences between the two insects could make gall flies better mothers, including better synchrony of the phenologies of the flies and the host plant, the much narrower host range of the gall flies than the spittlebugs, and the more sedentary lifestyle of the gall fly larvae than the spittlebug nymphs. If these results are typical in nature, then negative genetic correlations in antixenosis and antibiosis in plants may often result in zero or negative population-wide correlations between preference and performance in herbivores, and thus may be an important reason why herbivorous insects often appear to be bad mothers.  相似文献   

3.

For insect herbivores, a critical niche requirement—possibly the critical niche requirement—is the presence of suitable host plants. Current research suggests that non-native plants are not as suitable as native plants for native herbivores, resulting in decreases in insect abundance and richness on non-native plants. Like herbivores, gall-forming insects engage in complex, species-specific interactions with host plants. Galls are plant tissue tumors (including bulbous or spindle-shaped protrusions on leaves, stems and other plant organs) that are induced by insects through physical or chemical damage (prompting plants to grow a protective tissue shell around the insect eggs and larvae). As such, we hypothesized that gall-inducing insect species richness would be higher on native than non-native plants. We also predicted higher gall-inducing insect species richness on woody than herbaceous plants. We used an extensive literature review in which we compiled gall host plant species by genus, and we assigned native or non-native (or mixed) status to each genus. We found that native plants host far more gall-inducing insect species than non-native plants; woody plants host more gall-inducing species than herbaceous plants; and native woody plants host the most gall-inducing species of all. Gall-inducing species generally are a very cryptic group, even for experts, and hence do not elicit the conservation efforts of more charismatic insects such as plant pollinators. Our results suggest that non-native plants, particularly non-native woody species, diminish suitable habitat for gall-inducing species in parallel with similar results found for other herbivores, such as Lepidopterans. Hence, the landscape-level replacement of native with non-native species, particularly woody ones, degrades taxonomically diverse gall-inducing species (and their inquilines and parasitoids), removing multiple layers of diversity from forest ecosystems.

  相似文献   

4.
Communities of insect herbivores and their natural enemies are rich and ecologically crucial components of terrestrial biodiversity. Understanding the processes that promote their origin and maintenance is thus of considerable interest. One major proposed mechanism is ecological speciation through host‐associated differentiation (HAD), the divergence of a polyphagous species first into ecological host races and eventually into more specialized daughter species. The rich chalcid parasitoid communities attacking cynipid oak gall wasp hosts are structured by multiple host traits, including food plant taxon, host gall phenology, and gall structure. Here, we ask whether the same traits structure genetic diversity within supposedly generalist parasitoid morphospecies. We use mitochondrial DNA sequences and microsatellite genotypes to quantify HAD for Megastigmus (Bootanomyia) dorsalis, a complex of two apparently generalist cryptic parasitoid species attacking oak galls. Ancient Balkan refugial populations showed phenological separation between the cryptic species, one primarily attacking spring galls, and the other mainly attacking autumn galls. The spring species also contained host races specializing on galls developing on different host‐plant lineages (sections Cerris vs. Quercus) within the oak genus Quercus. These results indicate more significant host‐associated structuring within oak gall parasitoid communities than previously thought and support ecological theory predicting the evolution of specialist lineages within generalist parasitoids. In contrast, UK populations of the autumn cryptic species associated with both native and recently invading oak gall wasps showed no evidence of population differentiation, implying rapid recruitment of native parasitoid populations onto invading hosts, and hence potential for natural biological control. This is of significance given recent rapid range expansion of the economically damaging chestnut gall wasp, Dryocosmus kuriphilus, in Europe.  相似文献   

5.
In the Brazilian savanna many plant species bear regular associations with patrolling ants that are aggressive towards insect herbivores. However, not only ants but also several species of predatory wasps are attracted to plants due to the extrafloral nectaries (EFNs). Such wasps feed on both herbivores and plant exudates. In this study we describe the foraging behavior of the social Polistinae wasp Brachygastra lecheguana in the extrafloral nectaried shrub Banisteriopsis malifolia, and investigated the influence of patrolling ants Camponotus blandus on the activity of the wasp. Brachygastra lecheguana fed on the endophytic larvae of Anthonomus (Curculionidae) beetles that developed inside flower buds. The wasp lacerated the bud layers to reach the beetle larvae located at the bud core. The wasp visits to Ba. malifolia were statistically related to the abundance of flower buds and beetles. Ant exclusion experiments revealed that the hunting behavior of B. lecheguana on beetles was not related to the absence of C. blandus. However we found that wasps spent more time consuming extrafloral nectar on branches where ants were excluded. This is the first study reporting extrafloral nectar consumption by B. lecheguana, as well as the predation on herbivores in natural areas. In cerrado vegetation, ants benefit the plant by reducing insect herbivores, and our study provides evidence that the B. lecheguana – Ba. malifolia system represents a potential interaction where the wasp may also benefit the host plant. The value of this wasp species as a plant‐guard is discussed.  相似文献   

6.
1. Herbivorous insects often have close associations with specific host plants, and their preferences for mating and ovipositing on a specific host‐plant species can reproductively isolate populations, facilitating ecological speciation. Volatile emissions from host plants can play a major role in assisting herbivores to locate their natal host plants and thus facilitate assortative mating and host‐specific oviposition. 2. The present study investigated the role of host‐plant volatiles in host fidelity and oviposition preference of the gall‐boring, inquiline beetle, Mordellistena convicta LeConte (Coleoptera: Mordellidae), using Y‐tube olfactometers. Previous studies suggest that the gall‐boring beetle is undergoing sequential host‐associated divergence by utilising the resources that are created by the diverging populations of the gall fly, Eurosta solidaginis Fitch (Diptera: Tephritidae), which induces galls on the stems of goldenrods including Solidago altissima L. (Asteraceae) and Solidago gigantea Ait. 3. Our results show that M. convicta adults are attracted to galls on their natal host plant, avoid the alternate host galls, and do not respond to volatile emissions from their host‐plant stems. 4. These findings suggest that the gall‐boring beetles can orient to the volatile chemicals from host galls, and that beetles can use them to identify suitable sites for mating and/or oviposition. Host‐associated mating and oviposition likely play a role in the sequential radiation of the gall‐boring beetle.  相似文献   

7.
Human-induced disturbances and wildfires can transform areas of tropical rainforest into Imperata-dominated grassland, but it may be possible that recovery of biodiversity is facilitated by reforestation with fast-growing trees. We compared the assemblages of braconid wasps as parasitoids of taxonomically diverse groups of insects among Imperata grasslands, young and mature plantations of Acacia mangium, young secondary forests after wildfires, and old secondary forests in the lowland of East Kalimantan. The abundance and species richness of braconids, which had declined in Imperata grasslands, somewhat increased in Acacia plantations, and also the species composition of braconids in Acacia plantations was transitional between Imperata grasslands and old secondary forests. Parasitoids of detritivores and wood borers increased markedly after plantation, while those of herbivores showed a distinct turnover of species all over the range from grasslands to old secondary forests. The plantation of A. mangium had most likely facilitated the recovery of the diversity of host forest and their parasitoids, but the recovery was just at the rudimentary stage even in mature plantations. Monitoring of parasitic wasps would be useful to test the continuous recovery of forest biodiversity in plantation stands.  相似文献   

8.
Summary Genetic variation in resistance to 16 species of herbivorous insects was studied in 18 clones of Solidago altissima growing in an old field near Ithaca, New York, USA. Resistance to each insect, defined as the abundance of a species attacking a particular host genotype relative to other genotypes, was measured in both the natural stand and in two experimental gardens. The heritability of resistance was estimated by parent-offspring regression and sibcorrelation. The primary result was that clones differed in resistance to 15 of 16 insect species. The resistance of genotypes to these insect species remained relatively constant over the four years of the study. However, for only 10 of these resistances were the heritability estimates significantly different from zero. Thus the common assumption of plant-insect studies — that phenotypic variation in insect abundance is closely correlated with underlying genetic variation — is only conditionally true. There is heritable variation in resistance to many insects, but not all. The insects for which we observed heritable variation in plant resistance represent five different orders and several functional groups, including leaf chewers, phloem and xylem feeders, and gall formers. There was no apparent pattern between the degree of heritability of plant resistance and the destructiveness, feeding method, breadth of host range, or taxonomic group of the insects. The lack of marked heritable variation in resistance to some insects may be the result of (a) reduced variation caused by strong selection during prolonged or repeated insect outbreaks, and (b) genotype-environment interactions that obscure differences among genotypes.  相似文献   

9.
Longevity and fecundity of female wasps are two decisive factors for the effectiveness of parasitoid species as biological control agents. Accessibility and suitability of nutrient sources determine parasitoid survival and reproduction. Host, nectar and honeydew feeding are frequent adult parasitoid behaviors to cover nutritional needs. Here we postulate that especially parasitoid species of endophytic herbivores might use plant tissue as a nutrient source that becomes accessible upon herbivory. We investigated the influence of plant consumption and host feeding on longevity and fecundity of Hyssopus pallidus, a gregarious ecto-parasitoid of caterpillars of the codling moth that feed inside apple fruits. Longevity of unmated and mated ovipositing female parasitoids was highest in treatments with fruit pulp. While longevity in this treatment was not significantly different from that with honey, it was significantly higher than in treatments without food, with water or with a host alone.Reproduction was significantly increased by these sugar-rich nutrient sources compared to the control with a host alone. In contrast, host feeding did not yield any significant contribution to longevity and fecundity in a series of bioassays with different host–parasitoid ratios and with differently aged and sized hosts, compared to controls without food.We conclude that in this synovigenic species host feeding does not contribute to longevity and fecundity, but females can increase survival and reproduction in the field relying solely on the plant tissue damaged by their host caterpillar.  相似文献   

10.
Forest fragmentation alters plant-animal interactions, including herbivory. Relying manipulative experiments, we test if the reduction in insect herbivory associated with forest fragmentation translates into increased seedling growth and survival of three tree common species (Aristotelia chilensis, Cryptocarya alba and Persea lingue) in forest fragments and continuous forests in coastal Maulino forest, central Chile. Furthermore, we test if after protecting seedlings from herbivorous insects, plant performance is increased regardless of forest fragmentation. Nursery grown seedlings were transplanted into four forest fragments and a continuous forest during 2002. Insects, important herbivores in this forest, were excluded from half the seedlings by repeated applications of insecticides. Compared to continuous forests, in forest fragments, herbivory was reduced in all three species, seedling growth was greater in A. chilensis and C. alba but not in P. lingue, and survivorship was unaffected by herbivory or fragmentation in all three species. Protecting seedlings from insects reduced herbivory in the continuous forest to similar levels attained in the forest fragments. No change in herbivory results from by protecting seedlings in forest fragments. These results confirm that insects are important herbivores in the Maulino forest and also support the hypothesis that fragmentation can have strong indirect effects on plant communities as mediated through trophic interactions.  相似文献   

11.
Phylogenetic studies are increasing our understanding of the evolution of associations between phytophagous insects and their host plants. Sequential evolution, i.e. the shift of insect herbivores onto pre-existing plant species, appears to be much more common than coevolution, where reciprocal selection between interacting insects and plants is thought to induce chemical diversification and resistance in plants and food specialization in insects.Extreme host specificity is common in phytophagous insects and future studies are likely to reveal even more specialization. Hypotheses that assume that food specialists have selective advantages over generalists do not seem to provide a general explanation for the ubiquity of specialist insect herbivores. Specialists are probably committed to remain so, because they have little evolutionary opportunity to reverse the process due to genetically determined constraints on the evolution of their physiology or nervous system. The same constraints might result in phylogenetic conservatism, i.e. the frequent association of related insect herbivores with related plants. Current phylogenetic evidence, however, indicates that there is no intrinsic direction to the evolution of specialization.Historical aspects of insect-host plant associations will be illustrated with the small ermine moth genus Yponomeuta. Small ermine moths show an ancestral host association with the family Celastraceae. The genus seems to be committed to specialization per se rather than to a particular group of plants. Whatever host shift they have made in their evolutionary past (onto Rosaceae, Crassulaceae, and Salicaceae), they remain monophagous. The oligophagous Y. padellus is the only exception. This species might comprise a mosaic of genetically divergent host-associated populations.  相似文献   

12.
B. B. Schultz 《Oecologia》1992,90(2):297-299
Summary Recent studies have suggested that plant galls benefit only the insects living in them and not the host plants, and that galls are induced by insects primarily to improve the plant as a microenvironment or a food source. The potential advantage to insects of protection from their predators and parasitoids has been considered unclear and perhaps minor in importance. However, the potential threat to gallforming insects from other insect herbivores has usually been relatively neglected. This paper notes literature and observations which suggest that herbivores may either consume or be deterred by galls. Even soft leaf galls produced by Hormaphis and Phylloxera aphids appeared to deter some herbivores in the field. The threat of herbivory to galls might help explain general patterns of gall ecology and morphology, and deserves closer attention.  相似文献   

13.
Hochwender CG  Fritz RS 《Oecologia》2004,138(4):547-557
To determine the influence of plant genetic variation on community structure of insect herbivores, we examined the abundances of 14 herbivore species among six genetic classes of willow: Salix eriocephala, S. sericea, their F1 and F2 interspecific hybrids, and backcross hybrids to each parental species. We placed 1-year-old plants, grown from seeds generated from controlled crosses, in a common garden. During the growing season, we censused gall-inducing flies and sawflies, leaf-mining insects, and leaf-folding Lepidoptera to determine the community structure of herbivorous insects on the six genetic classes. Our results provided convincing evidence that the community structure of insect herbivores in this hybrid willow system was shaped by genetic differences among the parental species and the hybrid genetic classes. Using MANOVA, we detected significant differences among genetic classes for both absolute and relative abundance of herbivores. Using canonical discriminant analysis, we found that centroid locations describing community structure of the insect herbivores differed for each genetic class. Moreover, the centroids for the four hybrid classes were located well outside of the range between the centroids for the parental species, suggesting that more than additive genetic effects of the two parental species influenced community formation on hybrid classes. Line-cross analysis suggested that plant genetic factors responsible for structuring the herbivore community involved epistatic effects, as well as additive and dominance effects. We discuss the ramifications of these results in regard to the structure of insect herbivore communities on plants and the implications of our findings for the evolution of interspecific interactions.  相似文献   

14.
The frequency of coevolution as a process of strong mutual interaction between a single plant and herbivore species has been questioned in light of more commonly observed, complex relationships between a plant and a suite of herbivore species. Despite recognition of the possibility of diffuse coevolution, relatively few studies have examined ecological responses of plants to herbivores in complex associations. We studied the impact of two specialist herbivores, the horse nettle beetle, Leptinotarsa juncta, and the eggplant flea beetle, Epitrix fuscula, on reproduction of their host, Solanum carolinense. Our study involved field and controlled-environment experimental tests of the impact on sexual and potential asexual reproduction of attack by individuals of the two herbivore species, individually and in combination. Field tests demonstrated that under normal levels of phytophagous insect attack, horse nettle plants experienced a reduction in fruit production of more than 75% compared with plants from which insects were excluded. In controlled-environment experiments using enclosure-exclosure cages, the horse nettle's two principal herbivores, the flea beetle and the horse nettle beetle, caused decreases in sexual reproduction similar to those observed in the field, and a reduction in potential asexual reproduction, represented by root biomass. Attack by each herbivore reduced the numbers of fruits produced, and root growth, when feeding in isolation. When both species were feeding together, fruit production, but not root growth, was lower than when either beetle species fed alone. Ecological interactions between horse nettle and its two primary herbivores necessary for diffuse coevolution to occur were evident from an overall analysis of the statistical interactions between the two herbivores for combined assessment of fruit and vegetative traits. For either of these traits alone, the interactions necessary to promote diffuse coevolution apparently were lacking.  相似文献   

15.
The genus Anicetus includes economically important biocontrol agents that are introduced for control of soft and wax scale insect agricultural pests (Ceroplastes spp.). Understanding of host–parasitoid associations is critical to the successful outcome of their utilization in biological control projects. However, identification of these parasitoids is often difficult because of their small size and generally similar morphological features, and hence, studies on the host–parasitoid associations. Here, nucleotide sequence data were generated from the mitochondrial COI gene and the D2 region of 28S rRNA to assess genetic variation within and between species of Anicetus occurring in China. The results of this study support the use of the COI and the D2 region of 28S rRNA gene as useful markers in separating species of Anicetus, even in cases where morphological differences are subtle. On the other hand, the COI gene is also useful in recognizing species with much variation in morphology. DNA barcoding reveals high levels of host specificity of endoparasitoids wasps in the genus Anicetus. Our results indicate that each Anicetus species is adapted to a limited set of host species, or even are monospecific in their host choice.  相似文献   

16.
Summary In the humid tropics of SE Asia there are some 14 myrmecophytic species of the pioneer tree genus Macaranga (Euphorbiaceae). In Peninsular Malaysia a close association exists between the trees and the small, non-stinging myrmicine Crematogaster borneensis. These ants feed mainly on food bodies provided by the plants and have their colonies inside the hollow internodes. In a ten months field study we were able to demonstrate for four Macaranga species (M. triloba, M. hypoleuca, M. hosei, M. hulletti) that host plants also benefit considerably from ant-occupation. Ants do not contribute to the nutrient demands of their host plant, they do, however, protect it against herbivores and plant competition. Cleaning behaviour of the ants results in the removal of potential hervivores already in their earliest developmental stages. Strong aggressiveness and a mass recruiting system enable the ants to defend the host plant against many herbivorous insects. This results in a significant decrease in leaf damage due to herbivores on ant-occupied compared to ant-free myrmecophytes as well as compared to non-myrmecophytic Macaranga species. Most important is the ants' defense of the host plant against plant competitors, especially vines, which are abundant in the well-lit pioneer habitats where Macaranga grows. Ants bite off any foreign plant part coming into contact with their host plant. Both ant-free myrmecophytes and non-myrmecophytic Macaranga species had a significantly higher incidence of vine growth than specimens with active ant colonies. This may be a factor of considerable importance allowing Macaranga plants to grow at sites of strongest competition.  相似文献   

17.
The presence of the exotic Argentine ant, Linepithema humile Mayr (Hymenoptera: Dolichoderinae), nitrogen enrichment, and early-season herbivory by the specialist beetle Trirhabda bacharidis (Coleoptera: Chrysomelidae) have been shown, through separate experiments, to affect the densities of insect herbivores of the coastal shrub Baccharis halimifolia (Asteraceae), in Florida. Using a fully-factorial field experiment, we examined the relative importance of all three of these factors to the six most common insect herbivore species utilizing this host plant in a West Central Florida coastal habitat. The presence of ants affected more herbivore species than either early-season herbivory by larval T. bacharidis or nitrogen enrichment. Experimental reductions of L. humile resulted in reductions of an aphid, its coccinellid predators, and adult T. bacharidis, and increases of two species of leafminers and one species of stemborer. Due to the strong negative effects of stemborer herbivory on host plant survival, the increase in stemborer abundance led to increased host plant mortality. Early-season herbivory by larval T. bacharidis only affected the abundance of aphids and their predators, both of which were more abundant on trees with reduced early-season herbivory. Nitrogen fertilization had the most limited effects and only T. bacharidis larvae achieved higher densities on fertilized trees. Our results indicate that aphid tending by the exotic L. humile affects other insects on B. halimifolia more so than herbivory by the exploitative competitor T. bacharidis or nitrogen as a limiting nutrient.  相似文献   

18.
Plant architecture is considered to affect herbivory intensity, but it is one of the least studied factors in plant–insect interactions, especially for gall-inducing insects. This study aimed to investigate the influence of plant architecture on the speciose fauna of gall-inducing insects associated with 17 species of Baccharis. Five architectural variables were evaluated: plant height, number of fourth-level shoots, biomass, average level and number of ramifications. The number of galling species associated with each host plant species was also determined. To test the effects of plant architecture on gall richness at the individual level, we used another data set where the number of fourth-level shoots and gall richness were determined for B. concinna, B. dracunculifolia, and B. ramosissima every 3 weeks during 1 year. The average similarity between host species based on gall fauna was low (9%), but plants with the same architectural pattern tended to support similar gall communities. The most important architectural trait influencing gall richness at the species level was the number of fourth-level shoots, which is indicative of the availability of plant meristems, a fundamental tissue for gall induction and development. This variable also showed a positive correlation with gall richness at the individual level. We propose that variations in gall richness among host species are driven by interspecific differences in plant architecture via availability of young, undifferentiated tissue, which is genetically controlled by the strength of the apical dominance. Plant architecture should have evolutionary consequences for gall communities, promoting insect radiation among architecturally similar plants through host shift and sympatric speciation. We also discuss the role of plant architecture in the global biogeography of gall-inducing insects. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
1. Hypersensitive reaction is an important type of induced defence by which the plant elicits a defence response to pathogens and insects. Hypersensitive reaction has been argued to be the most common plant resistance mechanism against insect herbivores that have intimate associations with their host plants. 2. The work reported here attempted to establish how important and widespread hypersensitive reaction might be against gall‐forming species across host taxa. 3. Hypersensitive reaction was the most important mortality factor against gall formation across host plant taxa in seven out of eight cases. 4. The number of insect galls correlated with the size of the leaves but module (leaf) size was a weak factor influencing the incidence of plant hypersensitive reaction to galling. 5. Insect galls and hypersensitive reactions occurred in genetically distant as well as geographically widespread host plant taxa.  相似文献   

20.
The response of a host plant to gall‐inducing insects varies both among and within plants, so that different levels of resources are available to the insects. The weevil Collabismus clitellae Boheman induces galls on the shoots of Solanum lycocarpum St Hil. in south‐east Brazil. Galls are found on a range of parts within an individual plant and are more abundant on smaller plants. In the present study, the host plant response as a possible influence on the performance of C. clitellae both between and within plants was tested. Gall abortion increased with plant height. Within plants, gall size was positively related to shoot diameter and number of chambers within the gall. The increase in gall larval density (number of individuals per gall volume unit) resulted in smaller adults and reduced developmental rates, probably because of resource limitation within the gall. The number of eggs laid by females increased with shoot diameter. Females laid more eggs on thicker shoots, where there are fewer chances to form galls with high larval density. However, this relationship was weak and a large variation was found for adult sizes. The availability of high quality sites is limited to smaller plants and thicker shoots located on the basal region of the plant. The phenotypic plasticity of this insect species in adult size and development time allows individuals growing on low quality sites to reach maturity, thus enhancing exploitation of the host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号