首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first goal of this study was to determine whether chronic injection of nicotine alters endothelium-dependent arteriolar dilatation. We measured the diameter of cheek pouch resistance arterioles (approximately 50 microm in diameter) in response to endothelium-dependent (acetylcholine and ADP) and -independent (nitroglycerin) agonists in control hamsters and hamsters treated with nicotine (2 microg. kg-1. day-1 for 2-3 wk). In control hamsters, acetylcholine (0.1 and 1.0 microM) dilated arterioles by 13 +/- 2 and 31 +/- 3%, respectively, and ADP (1.0 and 10 microM) dilated arterioles by 18 +/- 1 and 30 +/- 1%, respectively. In contrast, acetylcholine (0.1 and 1.0 microM) dilated arterioles by only 5 +/- 2 and 12 +/- 3%, respectively, and ADP (1.0 and 10 microM) dilated arterioles by only 7 +/- 2 and 13 +/- 3%, respectively, in animals treated with nicotine (P < 0.05 vs. response in control hamsters). Nitroglycerin produced similar dose-related dilatation of cheek pouch arterioles in control and nicotine-treated hamsters. Our second goal was to examine a possible mechanism for impaired endothelium-dependent arteriolar dilatation during chronic treatment with nicotine. We found that superfusion of the cheek pouch microcirculation with superoxide dismutase (150 U/ml) restored impaired endothelium-dependent, but did not alter endothelium-independent, arteriolar dilatation in hamsters treated with nicotine. Superfusion with superoxide dismutase did not alter endothelium-dependent or -independent arteriolar dilatation in control hamsters. We suggest that chronic exposure to nicotine produces selective impairment of endothelium-dependent arteriolar dilatation via a mechanism related to the synthesis/release of oxygen-derived free radicals.  相似文献   

2.
We investigated effects of calcitonin gene-related peptide (CGRP), substance P (SP), and neurokinin A (NKA) on pial arterioles in newborn pigs. Pial arteriolar diameter was determined using a closed cranial window and intravital microscopy. Initial diameters were approximately 100 microns. Calcitonin-gene related peptide dilated pial arterioles by 22 +/- 8% at 10(-9)M and by 34 +/- 6% at 10(-8)M (n = 8), and this response was not significantly altered by prior administration of indomethacin (5mg/kg, iv) (n = 6) or administration of NG-methyl-L-arginine (5mg/kg, iv, and 10(-3)M in CSF) (n = 10). Substance P dilated arterioles at 10(-10)M through 10(-5)M (maximal response = 23 +/- 3%) (n = 6), and this response was unaffected by indomethacin administration (n = 6). In contrast, NG-methyl-L-arginine blocked much of the pial arteriolar dilation to SP. Unlike the other two peptides, NKA did not change pial arteriolar diameter. Radioimmunoassay determinations indicated that cerebrospinal fluid levels of 6-keto-prostaglandin F1 and prostaglandin E2 did not change appreciably during application of CGRP or SP. We conclude that CGRP and SP but not NKA are dilator stimuli in the piglet pial circulation. Dilation by CGRP probably involves direct activation of receptors on vascular smooth muscle, while SP probably partially dilates pial arterioles via release of an endothelium-dependent relaxing factor.  相似文献   

3.
The gaseous compound carbon monoxide (CO) has been identified as an important endogenous biological messenger in brain and is a major component in regulation of cerebrovascular circulation in newborns. CO is produced endogenously by catabolism of heme to CO, free iron, and biliverdin during enzymatic degradation of heme by heme oxygenase (HO). The present study was designed to test the hypothesis that endogenously produced CO contributes to hypotension-induced vasodilation of cerebral arterioles. Experiments used anesthetized piglets with implanted, closed cranial windows. Topical application of the HO substrate heme-l-lysinate caused dilation of pial arterioles that was blocked by a metal porphyrin inhibitor of HO, chromium mesoporphyrin (CrMP). In normotensive piglets (arterial pressure 64 +/- 4 mmHg), CrMP did not cause vasoconstriction of pial arterioles but rather a transient dilation. Hypotension (50% of basal blood pressure) increased cerebral CO production and dilated pial arterioles from 66 +/- 2 to 92 +/- 7 microm. In hypotensive piglets, topical CrMP or intravenous tin protoporphyrin decreased cerebral CO production and produced pial arteriolar constriction to normotensive diameters. In additional experiments, because prostacyclin and nitric oxide (NO) are also key dilators that can contribute to cerebrovascular dilation, we held their levels constant. NO/prostacyclin clamp was accomplished with continuous, simultaneous application of indomethacin, N(omega)-nitro-l-arginine, and minimal dilatory concentrations of iloprost and sodium nitroprusside. With constant NO and prostacyclin, the transient dilator and prolonged constrictor responses to CrMP of normotensive and hypotensive piglets, respectively, were the same as when NO and prostaglandins were not held constant. These data suggest that endogenously produced CO contributes to cerebrovascular dilation in response to reduced perfusion pressure.  相似文献   

4.
We tested the hypothesis that adenosine (Ado) mediates glutamate-induced vasodilation in the cerebral cortex by monitoring pial arteriole diameter in chloralose-anesthetized rats equipped with closed cranial windows. Topical application of 100 microM glutamate and 100 microM N-methyl-d-aspartate (NMDA) dilated pial arterioles (baseline diameter 25 +/- 2 microm) by 17 +/- 1% and 18 +/- 4%, respectively. Coapplication of the nonselective Ado receptor antagonist theophylline (Theo; 10 microM) significantly reduced glutamate- and NMDA-induced vasodilation to 4 +/- 2% (P < 0.01) and 6 +/- 2% (P < 0.05), whereas the Ado A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.1 microM) had no effect. Moreover, application of the Ado A(2A) receptor-selective antagonist 4-(2-[7-amino-2-(2-furyl)(1,2,4)triazolo(2,3-a)(1,3,5)triazin-5-ylamino]ethyl)phenol (ZM-241385), either by superfusion (0.1 microM, 1 microM) or intravenously (1 mg/kg), significantly inhibited the pial arteriole dilation response to glutamate. Neither Theo nor ZM-241385 affected vascular reactivity to mild hypercapnia induced by 5% CO(2) inhalation. These results suggest that Ado contributes to the dilation of rat cerebral arterioles induced by exogenous glutamate, and that the Ado A(2A) receptor subtype may be involved in this dilation response.  相似文献   

5.
The excitatory neurotransmitter glutamate causes dilation of newborn pig cerebral arterioles in vivo that is blocked by inhibition of carbon monoxide (CO) production. CO, a potent dilator in cerebral circulation in vivo, is produced endogenously in cerebral microvessels via heme oxygenase (HO). In isolated pressurized cerebral arterioles (approximately 200 microm) from newborn pigs, we investigated the involvement of CO and the endothelium in response to glutamate. A CO-releasing molecule, dimanganese decacarbonyl (10(-8)-10(-6) M), dilated cerebral arterioles. Glutamate (10(-6)-10(-4) M) and 1-aminocyclopentane-cis-1,3-dicarboxylic acid (cis-ACPD; 10(-6)-10(-5) M), a N-methyl-D-aspartate (NMDA) receptor agonist, caused cerebral vascular dilation. Dilation of cerebral arterioles to glutamate and cis-ACPD was abolished by chromium mesoporphyrin (CrMP; 10(-6) M), a HO inhibitor. In contrast, CrMP did not alter dilation to isoproterenol, a -adrenergic receptor agonist. Endothelium-denuded cerebral arterioles did not dilate to glutamate or bradykinin (endothelium-dependent dilator), whereas responses to isoproterenol were preserved. These data indicate that cerebral arterioles from newborn pigs may directly respond to glutamate and the NMDA receptor agonists by endothelium-dependent dilation that involves stimulation of CO production via the HO pathway in the endothelium.  相似文献   

6.
The effects of nicotine on nitric oxide synthase (NOS)-dependent reactivity of cerebral arterioles remain uncertain. Our first goal was to examine whether infusion of nicotine alters NOS-dependent reactivity of cerebral arterioles. Our second goal was to examine the mechanisms that may account for the effects of nicotine on cerebral arterioles. We measured the diameter of pial arterioles to NOS-dependent (ADP and acetylcholine) and NOS-independent (nitroglycerin) agonists before and after the infusion of nicotine (2 microg x kg(-1) x min(-1) iv for 30 min, followed by a maintenance dose of 0.35 microg x kg(-1) x min(-1)). ADP- and acetylcholine-induced vasodilatation was impaired after the infusion of nicotine. In contrast, nicotine did not alter vasodilatation to nitroglycerin. Next, we examined whether the impaired responses of pial arterioles during infusion of nicotine may be related to oxygen radicals. We found that application of superoxide dismutase or tetrahydrobiopterin during infusion of nicotine could prevent impaired NOS-dependent vasodilatation. Thus acute exposure of cerebral vessels to nicotine specifically impairs NOS-dependent dilatation via the production of oxygen radicals possibly related to an alteration in the utilization of tetrahydrobiopterin.  相似文献   

7.
We compared the effect of topical application of PGF2 alpha on cerebral arterioles in cats and rats equipped with an acutely implanted cranial window. Arterial diameter was measured using a microscope and image splitting device. PGF2 alpha in a concentration ranging from 10(-7) to 10(-5) M had no effect on large (greater than or equal to 100 microns) or small (less than 100 microns) cat pial arterioles, but induced a dose dependent constriction of rat pial arterioles with a maximum constriction to 76% of control diameter. Dilation of cat large cerebral arterioles by topically applied PGE2 was not affected by simultaneous application of PGF2 alpha and PGE2 induced dilation of small arterioles was decreased 3% by PGF2 alpha. While we and others have previously shown that both cat and rat brain can synthesize PGF2 alpha, it appears that PGF2 alpha is not likely to normally be a major modulator of cerebral arteriolar resistance in all species.  相似文献   

8.
The purpose of this study was to test the hypothesis that endothelium-dependent dilation is impaired in soleus resistance arteries from hindlimb-unweighted (HLU) rats. Male Sprague-Dawley rats (300-350 g) were exposed to HLU (n = 14) or weight-bearing control (Con, n = 14) conditions for 14 days. After the 14-day treatment period, soleus first-order (1A) arterioles were isolated and cannulated with micropipettes to assess vasodilator responses to an endothelium-dependent dilator, ACh (10(-9)-10(-4) M), and an endothelium-independent dilator, sodium nitroprusside (SNP, 10(-9)-10(-4) M). Arterioles from HLU rats were smaller than Con arterioles (maximal passive diameter = 140 +/- 4 and 121 +/- 4 microm in Con and HLU, respectively) but developed similar spontaneous myogenic tone (43 +/- 3 and 45 +/- 3% in Con and HLU, respectively). Arteries from Con and HLU rats dilated in response to increasing doses of ACh, but dilation was impaired in arterioles from HLU rats (P = 0.03), as was maximal dilation to ACh (85 +/- 4 and 65 +/- 4% possible dilation in Con and HLU, respectively). Inhibition of nitric oxide (NO) synthase (NOS) with N(omega)-nitro-L-arginine (300 microM) reduced ACh dilation by approximately 40% in arterioles from Con rats and eliminated dilation in arterioles from HLU rats. The cyclooxygenase inhibitor indomethacin (50 microM) did not significantly alter dilation to ACh in either group. Treatment with N(omega)-nitro-L-arginine + indomethacin eliminated all ACh dilation in Con and HLU rats. Dilation to sodium nitroprusside was not different between groups (P = 0.98). To determine whether HLU decreased expression of endothelial cell NOS (ecNOS), mRNA and protein levels were measured in single arterioles with RT-PCR and immunoblot analysis. The ecNOS mRNA and protein expression was significantly lower in arterioles from HLU rats than in Con arterioles (20 and 65%, respectively). Collectively, these data indicate that HLU impairs ACh dilation in soleus 1A arterioles, in part because of alterations in the NO pathway.  相似文献   

9.
Schwaninger RM  Sun H  Mayhan WG 《Life sciences》2003,73(26):3415-3425
The goals of this study were to determine the effects of type II diabetes mellitus on nitric oxide synthase-dependent responses of cerebral arterioles and on endothelial nitric oxide synthase (eNOS) protein in cerebral arterioles. We examined dilatation of cerebral (pial) arterioles in 13-15 week old male lean and diabetic obese Zucker rats in response to nitric oxide synthase-dependent agonists (acetylcholine and adenosine diphosphate (ADP)) and a nitric oxide synthase-independent agonist (nitroglycerin). We found that acetylcholine (10 microM) increased cerebral arteriolar diameter by 10 +/- 3% (mean +/- SE) in lean Zucker rats, but by only 2 +/- 2% in diabetic obese Zucker rats (p<0.05). In addition, ADP (100 microM) increased cerebral arteriolar diameter by 20 +/- 2% in lean Zucker rats, but by only 8 +/- 2% in diabetic obese Zucker rats (p<0.05). In contrast, nitroglycerin produced similar vasodilatation in lean and diabetic obese Zucker rats. Thus, impaired dilatation of cerebral arterioles in diabetic obese Zucker rats is not related to non-specific impairment of vasodilatation. Following these functional studies, we harvested cerebral microvessels for Western blot analysis of eNOS protein. We found that eNOS protein was significantly higher in diabetic obese Zucker rats than in lean Zucker rats (p<0.05). Thus, type II diabetes mellitus impairs nitric oxide synthase-dependent responses of cerebral arterioles. In addition, eNOS protein from cerebral blood vessels is increased in diabetic obese Zucker rats.  相似文献   

10.
Previous studies showed that nitric oxide (NO) plays an important role in coronary arteriolar dilation to increases in myocardial oxygen consumption (MVO(2)). We sought to evaluate coronary microvascular responses to endothelium-dependent and to endothelium-independent vasodilators in an in vivo model. Microvascular diameters were measured using intravital microscopy in 10 normal (N) and 9 hyperglycemic (HG; 1 wk alloxan, 60 mg/kg iv) dogs during suffusion of acetylcholine (1, 10, and 100 microM) or nitroprusside (1, 10, and 100 microM) to test the effects on endothelium-dependent and -independent dilation. During administration of acetylcholine, coronary arteriolar dilation was impaired in HG, but was normal during administration of nitroprusside. To examine a physiologically important vasomotor response, 10 N and 7 HG control, 5 HG and 5 N during superoxide dismutase (SOD), and 5 HG and 4 N after SQ29,548 (SQ; thromboxane A(2)/prostaglandin H(2) receptor antagonist) dogs were studied at three levels of MVO(2): at rest, during dobutamine (DOB; 10 microg. kg(-1). min(-1) iv), and during DOB with rapid atrial pacing (RAP; 280 +/- 10 beats/min). During dobutamine, coronary arterioles dilated similarly in all groups, and the increase in MVO(2) was similar among the groups. However, during the greater metabolic stimulus (DOB+RAP), coronary arterioles in N dilated (36 +/- 4% change from diameter at rest) significantly more than HG (16 +/- 3%, P < 0.05). In HG+SQ and in HG+SOD, coronary arterioles dilated similarly to N, and greater than HG (P < 0.05). MVO(2) during DOB+RAP was similar among groups. Normal dogs treated with SOD and SQ29,548 were not different from untreated N dogs. Thus, in HG dogs, dilation of coronary arterioles is selectively impaired in response to administration of the endothelium-dependent vasodilator acetylcholine and during increases in MVO(2).  相似文献   

11.
Carbon monoxide (CO) is an endogenous dilator in the newborn cerebral circulation. The present study addressed the hypothesis that endogenous CO attenuates pial arteriolar vasoconstriction caused by hypocapnia, platelet activating factor, and elevated blood pressure. Experiments used anesthetized piglets with implanted, closed cranial windows. Topical application of a metal porphyrin inhibitor of heme oxygenase was used to inhibit production of CO. Chromium mesopophyrin increased vasoconstriction in response to hypocapnia. The constrictor response to a topical stimulus, platelet activating factor, was also increased by application of chromium mesoporphyrin. Inhibition of heme oxygenase did not constrict pial arterioles in normotensive newborn pigs (mean arterial pressure of about 70 mmHg), but did constrict pial arterioles of piglets with experimentally induced increases in arterial pressure (mean arterial pressure greater than 90 mmHg). In fact, pial arterioles of normotensive piglets transiently dilated to chromium mesoporphyrin, whereas those of hypertensive piglets progressively constricted during 10 min of chromium mesoporphyrin treatment. Therefore, inhibition of heme oxygenase augments cerebral vasoconstriction in response to several very different constrictor stimuli. These data suggest endogenous CO attenuates vasoconstrictor responses in the newborn cerebral circulation.  相似文献   

12.
Cerebral arteries of newborn pigs and baboons constrict to acetylcholine, suggesting that endothelium-dependent dilator mechanisms may be lacking in immature cerebral arteries. The present study tested this possibility in the immature sheep by examining the response of cerebral arterioles in fetal and newborn sheep to endothelium-dependent dilator, acetylcholine. Pial arteriolar diameter was measured in 9 anaesthetized foetuses in utero (4 preterm, 90-111 days gestation and 5 term, 128-143 days gestation) and in 5 anaesthetized, newborn lambs (14 days) using a closed cranial window with intravital microscopy. Application of acetylcholine to the pial surface induced dose-dependent increase in pial arteriolar diameter in all age groups; EC50 for acetylcholine was 0.10 +/- 0.03, 0.28 +/- 0.08 and 0.26 +/- 0.17 microM for preterm fetal, term fetal, and newborn lambs, respectively. The data demonstrate a sensitive dilator response to acetylcholine in immature fetuses as well as newborn lambs suggesting that cholinergic-mediated release of endothelium-dependent relaxing factor is functional early in gestation. The contractile response to acetylcholine observed in newborn pigs and premature baboons may reflect a species difference rather than maturational lack of endothelium-dependent dilator mechanisms.  相似文献   

13.
The hyperemic response in exercising skeletal muscle is dependent on muscle fiber-type composition and fiber recruitment patterns, but the vascular control mechanisms producing exercise hyperemia in skeletal muscle remain poorly understood. The purpose of this study was to test the hypothesis that arterioles from white, low-oxidative skeletal muscle are less responsive to adenosine-induced dilation than are arterioles from diaphragm (Dia) and red, high-oxidative skeletal muscle. Second-order arterioles (2As) were isolated from the white portion of gastrocnemius muscle (WG; low-oxidative, fast-twitch muscle tissue) and two types of high-oxidative skeletal muscle [Dia and red portion of gastrocnemius muscle (RG)] of rats. Results reveal that 2As from all three types of muscle dilated in response to the endothelium-dependent dilator acetylcholine (WG: 48 +/- 3%, Dia: 51 +/- 3%, RG: 74 +/- 3%). In contrast, adenosine dilated only 2As from WG (48 +/- 4%) and Dia (46 +/- 5%) but not those from RG (5 +/- 5%). Thus adenosine-induced dilator responses differed among 2As of these different types of muscle tissue. However, the results do not support our hypothesis because 2As from Dia and WG dilated in response to adenosine, whereas 2As from RG did not. We conclude that the adenosine responsiveness of 2As from rat skeletal muscle cannot be predicted only by the fiber-type composition or oxidative capacity of the skeletal muscle tissue wherein the arteriole lies.  相似文献   

14.
Hypercapnia-induced cerebral vasodilation is associated with prostanoids in the piglet, but is a primarily nitric oxide (NO) associated response in many adult models. Hypercapnia-induced cerebral vasodilation is both NO and prostanoid associated in the juvenile pig. We hypothesized that with chronic administration of indomethacin the piglet would advance the role of the NO system in cerebrovascular responses. The closed cranial window technique was used in piglets to determine pial arteriolar response. Chronically indomethacin treated newborn animals dilated in response to CO2 similarly to control newborns (40.9+/-4.4% vs 48.4+/-4.1%). Topical n-nitro L-arginine (L-NA, 10(-3) M), attenuated CO2 induced dilation in the chronically indomethacin treated animals (11.7+/-3.3% vs 40.9+/-4.4%; p < 0.001), but had no effect on the response to hypercapnia of piglets not treated with indomethacin. Neither indomethacin nor L-NA altered response to topical isoproterenol (10(-6) M). We conclude that with chronic indomethacin administration there develops a significant hypercapnia-induced cerebral vasodilation in which NO has an important role. The chronic inhibition of the newborn's principal dilator system appears to increase the role of NO in newborn cerebral hemodynamics.  相似文献   

15.
Selective cerebral vascular dysfunction in Mn-SOD-deficient mice.   总被引:1,自引:0,他引:1  
We tested the hypothesis that the mitochondrial form of superoxide dismutase [manganese superoxide dismutase (Mn-SOD)] protects the cerebral vasculature. Basilar arteries (baseline diameter approximately 140 microm) from mice were isolated, cannulated, and pressurized to measure vessel diameter. In arteries from C57BL/6 mice preconstricted with U-46619, acetylcholine (ACh; an endothelium-dependent vasodilator) produced dilation that was similar in male and female mice and abolished by an inhibitor of nitric oxide synthase. Vasodilation to ACh was not altered in heterozygous male or female Mn-SOD-deficient (Mn-SOD+/-) mice compared with wild-type littermate controls (Mn-SOD+/+). Constriction of the basilar artery to arginine vasopressin, but not KCl or U-46619, was increased in Mn-SOD+/- mice (P<0.05), and this effect was prevented by tempol, a scavenger of superoxide. We also examined responses of cerebral (pial) arterioles (branches of the middle cerebral artery, control diameter approximately 30 microm) to ACh in anesthetized mice using a cranial window. Responses to ACh, but not nitroprusside (an endothelium-independent agonist), were reduced (P<0.05) in cerebral arterioles in Mn-SOD+/- mice, and this effect was prevented by tempol. Thus these are the first data on the role of Mn-SOD in cerebral circulation. In the basilar artery, ACh produced nitric oxide-mediated dilation that was similar in male and female mice. Under normal conditions in cerebral arteries, responses to ACh were not altered but constrictor responses were selectively enhanced in Mn-SOD+/- mice. In the cerebral microcirculation, there was superoxide-mediated impairment of responses to ACh.  相似文献   

16.
The hypothesis that glutamate dilates pial arterioles of newborn pigs through the production of carbon monoxide (CO) was addressed. Anesthesized newborn pigs were equipped with cranial windows to measure pial arteriolar responses to stimuli. Heme oxygenase (HO) inhibitors added topically inhibited dilation to glutamate and to specific glutamate receptor agonists. The initial dilation to glutamate (10(-5) M) was 22% from baseline without an inhibitor and decreased to 9% with the HO inhibitor chromium mesoporphyrin (CrMP). Inhibition of dilation upon HO inhibition was similar when specific glutamate receptor agonists were employed. RS-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid caused 24% dilation from the baseline without an inhibitor, and the dilation was decreased to 1% with tin protoporphyrin (SnPP). (RS)-2-amino-3-(3-hydroxy-5-t-butylisoxazol-4-yl)propionic acid (kainate receptors) caused dilation of 18% from baseline without an inhibitor, but only 2% when tin mesoporphyrin was applied. 1-Aminocyclopropanecarboxylic acid (N-methyl-D-aspartate receptors) dilated pial arterioles 33% from baseline in control, but only to 2% in the presence of SnPP. Neither copper mesoporphyrin, which does not inhibit HO, nor light-inactivated CrMP affected the dilations. Furthermore, cerebral microvessels removed from the brain produced CO (stable isotope dilution gas chromatography-mass spectrometry), and this production was dose dependently increased by glutamate and inhibited by metal porphyrin HO inhibitors. These data suggest that dilation of newborn pig pial arterioles to glutamate and specific glutamate receptor agonists involves vascular production of CO. Additional cerebral sources of CO also could be stimulated by glutamate and contribute to the dilation.  相似文献   

17.
Fructose, an everyday component of western diet associated to chronic hyperglycemia and enhanced free radical production, impairs endothelial function and supplementation with antioxidants might improve it. In this study we investigated if vitamin E could reverse the microvascular damage elicited by fructose. Male Syrian golden hamsters drank either 10% fructose solution (F) or filtered water (C), combined with three concentrations of vitamin E in their chows [zero, normal (VE) or 5X (5XVE)] during 60 days. Microvascular reactivity in response to topical application of acetylcholine (Ach; endothelium-dependent vasodilator) or sodium nitroprusside (SNP; endothelium-independent vasodilator) and macromolecular permeability increase induced by either 30 min ischemia followed by reperfusion (I/R) or topical application of histamine (5 μM) were assessed using the cheek pouch preparation. Compared to controls (drinking filtered water), fructose-drinking animals showed decreased vasodilatation to acetylcholine in all concentrations tested (-56.2% for 10-9M, -53.9% for 10-7M and -43.7% for 10-5M). On the other hand, vitamin E supplementation resulted in increased responses for both water and fructose drinking groups (177.4% for F vs. F/5XVE and 241.6% for C vs. C/5XVE for 10-5M Ach). Endothelial-independent vasodilatation explored by topical application of SNP was restored and even enhanced with the supplementation of 5X vitamin E in both groups (80.1% for F vs. F/5XVE; 144.2% for C vs. C/5XVE; 3.4% of difference for C/5XVE vs. F/5XVE on 10-5M SNP). The number of leaky sites after I/R and histamine stimuli in vitamin E supplemented animals decreased (-25.1% and -15.3% for F vs. F/5XVE; and -21.7% and -16% of leaky sites comparing C vs. C/5XVE, respectively for I/R and histamine stimuli) pointing to tightening of the endothelial barrier for macromolecular permeability. Our results strongly suggest that vitamin E could improve the endothelial function and permeability barrier and also reverse impairments elicited by sugar overload.  相似文献   

18.
Effects of prior exposure of pial arterioles to endothelin-1 (ET-1) (10(-9) M) on the constriction induced by the by-products of hemolyzed blood (5-HT, LTC4, LPA, and thromboxane analog U-46619) were examined. Piglets (age: 1-3 d) anesthetized with a mixture of ketamine hydrochloride and acepromazine were implanted with cranial windows, and anesthesia was maintained with alpha-chloralose. Topical applications of the by-products of hemolyzed blood mildly constricted pial arterioles. Following prior exposure of the microvessels to ET-1, application of the by-products of hemolyzed blood produced significantly potentiated and long-lasting constrictions compared to the controls. In another experiment, pretreatment of pial arterioles with U-46619 (10(-8) M) also potentiated the constriction induced by ET-1. The constriction produced was fast and longer-lasting. Thus, these data show that by-products of hemolyzed blood, though not potent vasoconstrictors per se, potently constricted pial arterioles in the presence of ET-1. The same agents in the CSF can also potentiate constriction induced by ET-1. Hence, by-products of hemolyzed blood may play a significant role in the initiation and maintenance of cerebral arterial narrowing observed following intracranial bleeding.  相似文献   

19.
Carbon monoxide (CO) has been postulated to be a signaling molecule in many tissues, including the vasculature. We examined vasomotor responses of adult rat and mouse cerebral arteries to both exogenously applied and endogenously produced CO. The diameter of isolated, pressurized, and perfused rat middle cerebral arteries (MCAs) was not altered by authentic CO (10(-6) to 10(-4) M). Mouse MCAs, however, dilated by 21 +/- 10% at 10(-4) M CO. Authentic nitric oxide (NO., 10(-10) to 10(-7) M) dilated both rat and mouse MCAs. At 10(-8) M NO., rat vessels dilated by 84 +/- 4%, and at 10(-7) M NO., mouse vessels dilated by 59 +/- 9%. Stimulation of endogenous CO production through heme oxygenase (HO) with the heme precursor delta-aminolevulinic acid (10(-10) to 10(-4) M) did not dilate the MCAs of either species. The metalloporphyrin HO inhibitor chromium mesoporphyrin IX (CrMP) caused profound constriction of the rat MCA (44 +/- 2% at 3 x 10(-5) M). Importantly, this constriction was unaltered by exogenous CO (10(-4) M) or CO plus 10(-5) M biliverdine (both HO products). In contrast, exogenous CO (10(-4) M) reversed CrMP-induced constriction in rat gracilis arterioles. Control mouse MCAs constricted by only 3 +/- 1% in response to 10(-5) M CrMP. Magnesium protoporphyrin IX (10(-5) M), a weak HO inhibitor used to control for nonspecific effects of metalloporphyrins, also constricted the rat MCA to a similar extent as CrMP. We conclude that, at physiological concentrations, CO is not a dilator of adult rodent cerebral arteries and that metalloporphyrin HO inhibitors have nonspecific constrictor effects in rat cerebral arteries.  相似文献   

20.
The cerebrovascular response to decreases in hematocrit and viscosity depends on accompanying changes in arterial O2 content. This study examines whether 1) the arteriolar dilation seen after exchange transfusion with a 5% albumin solution can be reduced by the K(ATP) channel antagonist glibenclamide (known to inhibit hypoxic dilation), and 2) the arteriolar constriction seen after exchange transfusion with a cell-free hemoglobin polymer to improve O2-carrying capacity can be blocked by inhibitors of the synthesis or vasoconstrictor actions of 20-HETE. In anesthetized rats, decreasing hematocrit by one-third with albumin exchange transfusion dilated pial arterioles (14 +/- 2%; SD), whereas superfusion of the surface of the brain with 10 muM glibenclamide blocked this response (-10 +/- 7%). Exchange transfusion with polymeric hemoglobin decreased the diameter of pial arterioles by 20 +/- 3% without altering arterial pressure. This constrictor response was attenuated by superfusing the surface of the brain with a 20-HETE antagonist, WIT-002 (10 microM; -5 +/- 1%), and was blocked by two chemically dissimilar selective inhibitors of the synthesis of 20-HETE, DDMS (50 microM; 0 +/- 4%) and HET-0016 (1 microM; +6 +/- 4%). The constrictor response to hemoglobin transfusion was not blocked by an inhibitor of nitric oxide (NO) synthase, and the inhibition of the constrictor response by DDMS was not altered by coadministration of the NO synthase inhibitor. We conclude 1) that activation of K(ATP) channels contributes to pial arteriolar dilation during anemia, whereas 2) constriction to polymeric hemoglobin transfusion at reduced hematocrit represents a regulatory response that limits increased O2 transport and that is mediated by increased formation of 20-HETE, rather than by NO scavenging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号