首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cancer cells can adapt their metabolic activity under nutritional hostile conditions in order to ensure both bioenergetics and biosynthetic requirements to survive. In this study, the effect of glucose deprivation on Caco-2 cells bioenergetics activity and putative relationship with membrane lipid changes were investigated. Glucose deprivation induces a metabolic remodeling characterized at mitochondrial level by an increase of oxygen consumption, arising from an improvement of complex II and complex IV activities and an inhibition of complex I activity. This effect is accompanied by changes in cellular membrane phospholipid profile. Caco-2 cells grown under glucose deprivation show higher phosphatidylethanolamine content and decreased phosphatidic acid content. Considering fatty acid profile of all cell phospholipids, glucose deprivation induces a decrease of monounsaturated fatty acid (MUFA) and n-3 polyunsaturated fatty acids (PUFA) simultaneously with an increase of n-6 PUFA, with consequent drop of n-3/n-6 ratio. Additionally, glucose deprivation affects significantly the fatty acid profile of all individual phospholipid classes, reflected by an increase of peroxidability index in zwitterionic phospholipids and a decrease in all anionic phospholipids, including mitochondrial cardiolipin. These data indicate that Caco-2 cells metabolic remodeling induced by glucose deprivation actively involves membrane lipid changes associated with a specific bioenergetics profile which ensure cell survival.  相似文献   

3.
The fatty acid profile of hepatocytes and adipocytes is determined by the composition of the dietary lipids. It remains unclear which fatty acid components contribute to the development or reduction of insulin resistance. The present work examined the fatty acid composition of both tissues in sucrose-induced obese rats receiving fish oil to determine whether the effect of dietary (n-3) polyunsaturated fatty acids (PUFAs) on the reversion of metabolic syndrome in these rats is associated to changes in the fatty acid composition of hepatocyte and adipocyte membrane lipids. Animals with metabolic syndrome were divided into a corn–canola oil diet group and a fish oil diet group, and tissues fatty acids composition were analyzed after 6 weeks of dietary treatment. Fatty acid profiles of the total membrane lipids were modified by the fatty acid composition of the diets fed to rats. N-3 PUFAs levels in animals receiving the fish oil diet plus sucrose in drinking water were significantly higher than in animals under corn–canola oil diets. It is concluded that in sucrose-induced obese rats, consumption of dietary fish oil had beneficial effects on the metabolic syndrome and that such effects would be conditioned by the changes in the n-3 PUFAs composition in hepatic and adipose tissues because they alter membrane properties and modify the type of substrates available for the production of active lipid metabolites acting on insulin resistance and obesity.  相似文献   

4.
The effects of different dietary fat intake on the lipid composition and enzyme behaviour of sarcolemmal (Na+ + K+)ATPase and sarcoplasmic reticulum Ca2+-ATPase from rat heart were investigated. Rat diets were supplemented with either sunflower seed oil (unsatd./satd. 5.6) or sheep kidney fat (unsatd./satd. 0.8). Significant changes in the phospholipid fatty acid composition were observed in both membranes after 9 weeks dietary lipid treatment. For both membranes, the total saturated/unsaturated fatty acid levels were unaffected by the dietary lipid treatment, however the proportions of the major unsaturated fatty acids were altered. Animals fed the sunflower seed oil diet exhibited an increase in n-6 fatty acids, including linoleic (18:2(n-6] and arachidonic (20:4(n-6] while the sheep kidney fat dietary rats were higher in n-3 fatty acids, principally docosahexaenoic (22:6), with the net result being a higher n-6/n-3 ratio in the sunflower seed oil group compared to sheep kidney fat dietary animals. Fluorescence polarization indicated that the fluidity of sarcoplasmic reticular membrane was greater than that of sarcolemmal membrane, with a dietary lipid-induced decrease in fluidity being observed in the sarcoplasmic reticular membrane from sheep kidney fat dietary animals. Despite these significant changes in membrane composition and physical properties, neither the specific activity nor the temperature-activity relationship (Arrhenius profile) of the associated ATPases were altered. These results suggest that with regard to the parameters measured in this study, the two ion-transporting ATPases are not modulated by changes which occur in the membrane lipid composition as a result of the diet.  相似文献   

5.
The opposing effects of n-3 and n-6 fatty acids   总被引:5,自引:0,他引:5  
Polyunsaturated fatty acids (PUFAs) can be classified in n-3 fatty acids and n-6 fatty acids, and in westernized diet the predominant dietary PUFAs are n-6 fatty acids. Both types of fatty acids are precursors of signaling molecules with opposing effects, that modulate membrane microdomain composition, receptor signaling and gene expression. The predominant n-6 fatty acid is arachidonic acid, which is converted to prostaglandins, leukotrienes and other lipoxygenase or cyclooxygenase products. These products are important regulators of cellular functions with inflammatory, atherogenic and prothrombotic effects. Typical n-3 fatty acids are docosahexaenoic acid and eicosapentaenoic acid, which are competitive substrates for the enzymes and products of arachidonic acid metabolism. Docosahexaenoic acid- and eicosapentaenoic acid-derived eicosanoids antagonize the pro-inflammatory effects of n-6 fatty acids. n-3 and n-6 fatty acids are ligands/modulators for the nuclear receptors NFkappaB, PPAR and SREBP-1c, which control various genes of inflammatory signaling and lipid metabolism. n-3 Fatty acids down-regulate inflammatory genes and lipid synthesis, and stimulate fatty acid degradation. In addition, the n-3/n-6 PUFA content of cell and organelle membranes, as well as membrane microdomains strongly influences membrane function and numerous cellular processes such as cell death and survival.  相似文献   

6.
The aim of this work was to characterise the lipid and fatty acid composition of chylomicron remnants enriched in n-3 or n-6 polyunsaturated fatty acids (PUFA) and to investigate their influence on the fatty acid profiles of the lipids of rat hepatocytes cultured in monolayers. Chylomicrons were prepared from the lymph collected from the thoracic duct of rats given an oral dose of fish or corn oil (high in n-3 and n-6 PUFA, respectively), and remnants were prepared in vitro from such chylomicrons using rat plasma containing lipoprotein lipase. The fatty acids predominating in the oils abounded also in their respective chylomicrons and remnants, especially in triacylglycerols. Chylomicrons as well as remnants contained small amounts of phospholipids and long-chain PUFA that were minor in, or absent from, the dietary oils, evidently provided by the intestinal epithelium. The incubation of hepatocytes for 6 h, with either n-3 or n-6 PUFA-rich remnants (0.25-0.75 mM triacylglycerol) resulted in a dose-dependent increase in the amount of triacylglycerols and phospholipids in the cells, which was not affected further by increasing the incubation time to 19 h. Whereas hepatocyte triacylglycerols mostly incorporated the PUFA predominating in each remnant type, the fatty acid profile of cell phospholipids was virtually unchanged. In addition, irrespective of whether they were enriched in n-3 or n-6 PUFA, remnants promoted a relative decrease in the amount of cholesteryl esters, a minor hepatocyte lipid class poor in PUFA. The results demonstrate that the hepatocyte fatty acid profile is modulated in a lipid-class specific way by the amount and type of dietary PUFA delivered to cells in chylomicron remnants.  相似文献   

7.
Patients and models of cystic fibrosis (CF) exhibit consistent abnormalities of polyunsaturated fatty acid composition, including decreased linoleate (LA) and docosahexaenoate (DHA) and variably increased arachidonate (AA), related in part to increased expression and activity of fatty acid desaturases. These abnormalities and the consequent CF-related pathologic manifestations can be reversed in CF mouse models by dietary supplementation with DHA. However, the mechanism is unknown. This study investigates this mechanism by measuring the effect of exogenous DHA and eicosapentaenoate (EPA) supplementation on fatty acid composition and metabolism, as well as on metabolic enzyme expression, in a cell culture model of CF. We found that both DHA and EPA suppress the expression and activity of Δ5- and Δ6-desaturases, leading to decreased flux through the n-3 and n-6 PUFA metabolic pathways and decreased production of AA. The findings also uncover other metabolic abnormalities, including increased fatty acid uptake and markedly increased retroconversion of DHA to EPA, in CF cells. These results indicate that the fatty acid abnormalities of CF are related to intrinsic alterations of PUFA metabolism and that they may be reversed by supplementation with DHA and EPA.  相似文献   

8.
In the present study, the lipid raft composition of a canine mastocytoma cell line (C2) was analyzed. Lipid rafts were well separated from non-raft plasma membranes using a detergent-free isolation technique. To study the influence of n-3 and n-6 polyunsaturated fatty acids (PUFA) on raft fatty acid composition in comparison to non-raft cell membrane, C2 were supplemented with one of the following: α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, linoleic acid or arachidonic acid. Enrichment of the culture medium with a specific PUFA resulted in an increase in the content of this fatty acid both in rafts and non-raft membranes. Contents of cholesterol and protein were found not to be affected by the changes in the fatty acid profiles. In conclusion, our data provide strong evidence that PUFA modulate lipid composition and physiological properties of membrane micro domains of mast cells which in turn may have effects on mast cell function.  相似文献   

9.
The eukaryotic cell membrane possesses numerous complex functions, which are essential for life. At this, the composition and the structure of the lipid bilayer are of particular importance. Polyunsaturated fatty acids may modulate the physical properties of biological membranes via alteration of membrane lipid composition affecting numerous physiological processes, e.g. in the immune system. In this systematic study we present fatty acid and peptide profiles of cell membrane and membrane rafts of murine macrophages that have been supplemented with saturated fatty acids as well as PUFAs from the n-3, the n-6 and the n-9 family. Using fatty acid composition analysis and mass spectrometry-based peptidome profiling we found that PUFAs from both the n-3 and the n-6 family have an impact on lipid and protein composition of plasma membrane and membrane rafts in a similar manner. In addition, we found a relation between the number of bis-allyl-methylene positions of the PUFA added and the unsaturation index of plasma membrane as well as membrane rafts of supplemented cells. With regard to the proposed significance of lipid microdomains for disease development and treatment our study will help to achieve a targeted dietary modulation of immune cell lipid bilayers.  相似文献   

10.
Long chain n-3 PUFA docosahexaenoic acid (DHA) is important for heart and brain function. Investigations of biologically plausible mechanisms using animal models associate cardioprotection with DHA incorporation into myocardial membranes that are largely derived from supra-physiological fish oil (FO) intake. We measured the incorporation of DHA into myocardial membranes of rats from low dietary FO intake within human dietary range and quantitatively assessed the influence of dietary n-6 PUFA. With rats fed diets containing 0.16%–5% FO, equal to 0.12%–8.7% energy (%en) as eicosapentaenoic acid (EPA) and DHA (EPA+DHA), and either 1.5%en or 7.5%en n-6 PUFA (linoleic acid) for four weeks, dietary n-6:n-3 PUFA ratios ranged from 74 to 0.3. Myocardial DHA concentration increased in a log-linear fashion with a dietary threshold of 0.019%en as EPA+DHA and half maximal dietary [EPA+DHA] equal to 0.29%en (95% CI, 0.23–0.35). Dietary linoleic acid intake did not influence myocardial DHA. Myocardial membranes are sensitive to absolute dietary intake of long chain n-3 PUFA at low %en in the rat, equivalent to a human intake of one meal of fatty fish per week or less. The dietary ratio of n-6:n-3 PUFA has no influence on long chain n-3 PUFA cellular incorporation from dietary fish oil.  相似文献   

11.
Essential polyunsaturated fatty acids (PUFA) cannot be synthesised in the body and must be ingested by food. A balanced intake of both n-6 and n-3 PUFA is essential for good health. PUFA are the basic constituents of phospholipid membranes and determine cellular membrane fluidity and modulate enzyme activities, carriers and membrane receptors. They are also precursors of active metabolites known collectively as eicosanoids (prostaglandins, prostacyclins, thromboxanes and leukotrienes) which regulate our cellular functions. Studies indicate that n-3 PUFA have anti-inflammatory, antithrombotic, antiarrhythmic actions and immuno-modulating properties. Erythrocyte fatty acid status is a reflection of dietary fat intake. It also explores PUFA metabolism and gives information about the integration of these fatty acids into cellular membranes. Thus, erythrocyte fatty acid analysis can detect PUFA insufficiencies and imbalances from the diet, but also metabolic abnormalities and lipid peroxidation. It can be helpful in the prevention and the control of chronic diseases in which PUFA alterations have been observed as coronary heart diseases, hypertension, cancer, diabetes, inflammatory and auto-immune disorders, atopic eczema, Alzheimer dementia, major depression, schizophrenia, multiple sclerosis, etc.  相似文献   

12.
Omega (n)-3 polyunsaturated fatty acids (PUFA) are known to regulate lipid metabolism and inflammation; however, the regulation of maternal lipid metabolism and cytokines profile by n-3 PUFA during different gestation stages, and its impact on fetal sustainability is not known. We investigated the effects of maternal diet varying in n-3 PUFA prior to, and during gestation, on maternal metabolic profile, placental inflammatory cytokines, and fetal outcomes. Female C57BL/6 mice were fed either a high, low or very low (9, 3 or 1% w/w n-3 PUFA) diet, containing n-6:n-3 PUFA of 5:1, 20:1 and 40:1, respectively for two weeks before mating, and throughout pregnancy. Animals were sacrificed prior to mating (NP), and during pregnancy at gestation days 6.5, 12.5 and 18.5. Maternal metabolic profile, placental cytokines and fetal outcomes were determined. Our results show for the first time that a maternal diet high in n-3 PUFA prevented dyslipidemia in NP mice, and maintained the expected lipid profile during pregnancy. However, females fed the very low n-3 PUFA diet became hyperlipidemic prior to pregnancy, and carried this profile into pregnancy. Maternal diet high in n-3 PUFA maintained maternal plasma progesterone and placental pro-inflammatory cytokines profile, and sustained fetal numbers throughout pregnancy, while females fed the low and very-low n-3 PUFA diet had fewer fetuses. Our findings demonstrate the importance of maternal diet before, and during pregnancy, to maintain maternal metabolic profile and fetus sustainability. These findings are important when designing dietary strategies to optimize maternal metabolism during pregnancy for successful pregnancy outcome.  相似文献   

13.
Four different luminal surfaces of rat urothelium differing in their fatty acid composition were prepared by dietary induction. In order to induce lipid changes, each of four groups of rat received a basal diet rich in one of the unsaturated n-3, n-6 or n-9 fatty acid families and a commercial (control) diet. The effects of the dietary regime on the fatty acid composition of luminal urothelial membranes and their relation to the mobility of fluorescent probes were studied. In comparison with the control diet membrane, all three fatty acid-rich diets induced a decrease of the percentage amount of saturated fatty acid while that of the unsaturated fatty acids was increased. Accordingly, all three diets increased the unsaturation index in comparison with the control diet. The anisotropy across each membrane fraction was assessed using the n-(9-anthroyloxy) fatty acid fluorescent probes 3-AS, 7-AS and 12-AS, which locate at different depths in the membrane. Two different anisotropy profiles were observed. One profile showed the highest anisotropy at the C7 depth, whereas the other exhibited a continuous decrease of the anisotropy from the surface to the center of the bilayer. The molecular properties (isomerization) of 18:2n-9 fatty acid may account, at least in part, for the observed V-shaped profile (the ascending trend) of the membrane anisotropy values as a function of the respective 18:2n-9 fatty acid contents. Nevertheless, the minimum value of the profile did not correspond to the minimum 18:2n-9 fatty acid content, but rather to the higher amount of docosahexaenoic (22:6n-3) fatty acid. Thus, a modulating role of the 22:6n-3 fatty acid on the rigidifying effect of 18:2n-9 fatty acid is suggested, possibly mediated by relationships between fatty acid composition, saturated and unsaturated chain lengths, and freedom of motion of the phospholipid acyl chains.  相似文献   

14.
Rats were fed on diets more or less enriched with n-3 and n-6 unsaturated fatty acids, before removal of the small intestine. The global protein, cholesterol and phospholipid contents of enterocyte microsomes were measured. Fatty acids of the total lipid extracts were determined. Acyl coenzyme A: cholesterol acyl transferase (ACAT) was chosen as the enzyme whose activity reflects metabolic changes induced by lipid diets. Fluorescence measurements using diphenylhexatriene as the membrane probe were performed. As dietary fat may change the fatty acid composition of membranes, the order parameter S calculated from fluorescence measurements was studied with regard to dietary fatty acid composition. The S values, distributed over a large range, were not different between rat groups. They were positively correlated with the ratios of cholesterol and proteins to phospholipids and the molar percentage of saturated fatty acids. ACAT activity was negatively correlated with S. Variations in S values among rats, whatever the diet, could in part be attributed to individual factors.  相似文献   

15.
Four strains of rat (Dark Agouti, DA; Ginger Hooded, GH; Portion, P; Hooded Wistar, HW) were fed elemental diets containing different sources of fat at the 10% (w/w) level. The dietary fats used included the following oils; olive (rich in oleate), sunflower (rich in linoleate), linseed (rich in alpha-linolenate) and fish (rich in eicosapentaenoate and docosahexaenoate). Differences between strains in response to individual diets were modest compared with the much greater differences achieved by the dietary treatments. In general, the changes in polyunsaturated fatty acid (PUFA) levels in the plasma lipids of all rat strains followed the major PUFA in the diet. There were, however, strong interactions between dietary n-6 and n-3 PUFA which affected not only the level of particular PUFA in lipid fractions but also the lipid fraction in which a particular PUFA appeared. Our findings indicate that a response to dietary fats in the plasma lipids of one strain of rat can be expected to occur with relatively minor variations in other commonly used rat strains.  相似文献   

16.
Sudden Cardiac Death resulting from sustained ventricular fibrillation or malignant cardiac arrhythmia has been linked to the type of dietary fat intake in several economically well developed countries where high levels of saturated fatty acids are common. Experimental studies with the small non-human primate marmoset monkey have clearly demonstrated the health benefit of substituting polyunsaturated fatty acids (PUFA's) for dietary saturated fatty acids. Heart rate and blood pressure are lowered, while the left ventricular ejection fraction and the electrical threshold for the induction of ventricular fibrillation are both increased after prolonged feeding of PUFA enriched diets. All these changes in heart function reduce the risk of developing malignant cardiac arrhythmias.The fatty acid composition of cardiac membrane phospholipids is profoundly altered by these changes in dietary lipid intake. In particular the proportions of arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexae noic acid (DHA) are altered in such a way that the production of myocardial eicosanoids is affected. Although the changes in proportion of these long-chain PUFA's in cardiac phosphatidyl ethanolamine and phosphatidyl inositol are not identical, the shift in balance between these substrates or inhibitors of cyclo-oxygenase activity leads to relatively greater production of prostacyclin (PGI2) than thromboxane (TXA2).The effect of the omega-3 PUFA's of fish oil is proportionally greater than that of linoleic acid (LA; 18:2, 6) rich sunflower seed oil, particularly during ischaemia, and probably reflects the different nutritionally induced changes in cardiac membrane fatty acid composition by these different types of dietary PUFA's. (Mol Cell Biochem 116: 19–25, 1992).  相似文献   

17.
Dietary fatty acid incorporation and changes in various lipid and phospholipid classes in the mussel Mytilus galloprovincialis subjected to three different dietary regimens were analysed and compared. Group A was unfed; group B received a diet consisting of 100% Thalassiosira weissflogii, exhibiting the typical fatty acid composition of diatoms, and group C received a diet consisting of 100% wheat germ conferring a 18:2:n-6 abundance. Biochemical analyses of diets and mussels were carried out at the beginning and at the end of the 30-day experimental period. Starvation and T. weissflogii based diet poorly affected mussel growth and fatty acid composition which remained unchanged. On the contrary, the wheat germ-based diet increased the condition index and deeply affected the fatty acid profile of all lipid and phospholipid classes. The high dietary 18:2n-6 level drastically reduced tissue content of 20:4n-6, 20:5n-3 and 22:6n-3. The biosynthesis of Non Methylene Interrupted (NMI) dienoic fatty acid appeared to be insensitive to the high input of 16:1n-7 and 18:1n-9 respectively from diet B and C, and to the PUFA shortage of diet C. Nevertheless the two NMI trienoic derivatives, 20:3Δ5,11,14 and 22:3Δ7,13 16, were found higher in C with respect to other groups, presumably due to the high 18:2n-6 content of this diet.  相似文献   

18.
Lipids are the main structural/functional components of the sperm, and their composition may undergo a series of modifications in relation to either physiologic events (capacitation and acrosome reaction) and/or diet. The goals of the current study were (1) to investigate whether a flaxseed (FS) dietary supplementation could affect the lipid and fatty acid profile of sperm subfractions and of prostatic granules (PGs) and (2) to evaluate the effects of dietary FS on rabbit buck semen quality. Accordingly, 20 adult New Zealand White rabbits were fed ad libitum a control diet (CO) or a diet supplemented with 5% extruded FS. Integration of diet with FS, as a consequence of the linolenic acid (C18:3n-3; LNA; 56%), increased the dietary n-3/n-6 ratio and resulted in a substantial rearrangement of sperm fatty acid composition at the subcellular level, mainly of polyunsaturated fatty acid (PUFA)n-3 (8.3% vs. 14.3%, P < 0.05). The lipid and fatty acid profiles of sperm tail membrane were the most affected, undergoing the following significant changes: (1) a reduction by half of linoleic acid (C18:2n-6; LA) and docosapentaenoic acid (22:5n-6; DPA), and a reduction of cholesterol (−70%); (2) a concomitant increase of LNA (+65%), docosahexaenoic acid (22:6n-3; DHA; +83%), and of oleic acid (C18:1n-9, +61%). As a consequence, the sperm of FS-fed rabbits had a twice higher n-3/n-6 ratio and phospholipid/cholesterol ratio compared with the control sperm. These changes might have been on the basis of the higher responsiveness to hypo-osmotic solution and, hence, the higher sperm track speed observed for the FS group. Also, the membrane integrity and viability of the LNA-enriched sperm were both improved. On the other hand, the presence of lignans in FS might have accounted for the reduction of sperm cholesterol in the semen of FS-treated rabbits. The responsiveness of sperm to acrosome reaction was not affected by the dietary treatment probably due to supranutritional level of vitamin E and to the higher number of PGs, which are known to play a key role in sperm capacitation. In conclusion, our data showed for the first time that the integration of FS into the rabbit diet may improve sperm quality by modifying the sperm lipid composition and that the sperm subfractions and the PGs respond differently to the FS-induced lipid manipulation.  相似文献   

19.
Valencak TG  Ruf T 《Aging cell》2007,6(1):15-25
Although generally considered as beneficial components of dietary fats, polyunsaturated fatty acids (PUFA) have been suspected to compromise maximum lifespan (MLSP) in mammals. Specifically, high amounts of phospholipid PUFAs are thought to impair lifespan due to an increase in the susceptibility of membranes to lipid peroxidation and its damaging effect on cellular molecules. Also, there is evidence from in vitro studies suggesting that highly unsaturated PUFAs elevate basal metabolic rate (BMR). Previous comparative studies in this context were based on small sample sizes, however, and, except for one study, failed to address possible confounding influences of body weight and taxonomic relations between species. Therefore, we determined phospholipid membrane composition in skeletal muscle from 42 mammalian species to test for a relation with published data on MLSP, and with literature data on BMR (30 species). Using statistical models that adjust for the effects of body weight and phylogeny, we found that among mammals, MLSP indeed decreases as the ratio of n-3 to n-6 PUFAs increases. In contrast to previous studies, we found, however, no relation between MLSP and either membrane unsaturation (i.e. PUFA content or number of double bonds) or to the very long-chain, highly unsaturated docosahexaenoic acid (DHA). Similarly, our data set gave no evidence for any notable relation between muscle phospholipid fatty acid composition and BMR, or MLSP and BMR in mammals. These results contradict the 'membrane pacemaker theory of aging', that is, the concept of a direct link between high amounts of membrane PUFAs, elevated BMR, and thus, impaired longevity.  相似文献   

20.
Age and diet-induced variations of phospholipid hydroperoxide glutathione peroxidase (PHGPx) activity and alpha-tocopherol concentration in the liver microsomal membrane were studied in male Wistar rats fed a semipurified diet either balanced in n-6 and n-3 polyunsaturated fatty acids (PUFA) (Control) or deprived of alpha-linolenic acid, i.e. n-3 PUFA (Deficient) over two generations. The animals were studied at the age of 6 months (adult) or 24 months (old). Both PHGPx activity and vitamin E level were significantly higher in 24-month old rats as compared to 6-month old rats. By contrast, the thiobarbituric acid reactive substances (TBARS) following stimulated in vitro peroxidation of membrane lipids were markedly lower (P < 0.01) with aging. The fatty acid composition of microsomal membrane phospholipids (PL) was also considerably modified by age. In particular, the levels of arachidonic acid and total n-6 PUFA were lower (P < 0.001) whereas n-3 PUFA levels were higher (P < 0.001) in most PL main classes. The alpha-linolenic acid deficiency markedly influenced these age-related changes. The higher PHGPx activity in the old rats as compared to the adult rats was only significant in those fed the control diet. In the 6-month old rats (but not in the 24-month old rats), the deficient diet led to a higher membrane vitamin E level and to lower TBARS production than the control diet. The results suggest that the nature of dietary PUFA may influence the age-related variations in this pair of membrane antioxidants and also in the fatty acid composition of microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号