首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenylate cyclase activity in the rat lung membranes washed with 150 microM-EGTA was stimulated by calmodulin in the presence of 100 microM-Ca2+. The calmodulin activation of the enzyme was concentration-dependent; however, at high concentrations the activation was diminished. Activation of adenylate cyclase by calmodulin was immediate, reversible and due to an increase in the Vmax. without apparent effect on the affinity of the enzyme for ATP. The rat lung supernatant produced additive activation of the adenylate cyclase that was already maximally stimulated by calmodulin, indicating that either calmodulin and cytoplasmic factors act at different sites on adenylate cyclase or different adenylate cyclases may be involved. The data further support our previous conclusion that calmodulin is not involved in the activation of adenylate cyclase by cytoplasmic factors in rat lungs.  相似文献   

2.
Calmodulin antagonists inhibited hormone-stimulated cyclic AMP accumulation in both cultured cells and cell lysates of mouse B16 melanoma. Particulate preparations of B16 melanoma contained 34-45% of total cell calmodulin, which could not be dissociated by extensive washing irrespective of the presence of EGTA in the buffer. The adenylate cyclase activity in such preparations was unaffected by the addition of exogenous calmodulin. However, the rare-earth-metal ion La3+, which can mimic or replace Ca2+ in many systems, produced an immediate inhibition of agonist-stimulated adenylate cyclase activity and preincubation of particulate preparations was La3+ followed by washing with La3+-free buffer dissociated calmodulin (96% loss) from particulate preparations. The loss of calmodulin from particulate preparations was associated with a decrease in agonist responsiveness (74%) and a marked change in the Ca2+-sensitivity of the enzyme, low concentrations of calcium (approx. 10 nM) now failing to stimulate enzyme activity, high concentrations of calcium (greater than or equal to 100 nM) producing greater-than-normal inhibition of enzyme activity. Direct activation of adenylate cyclase by the addition of pure calmodulin was now demonstrable in such calmodulin-depleted particulate preparations. Half-maximal stimulation of agonist-responsive adenylate cyclase occurred at 80 nM-calmodulin in the presence of 10 microM free Ca2+. Maximal stimulation by calmodulin (at 300-600 nM) restored enzyme activity to 89 +/- 5% (mean +/- S.E.M., n = 7) of the activity in untreated, calmodulin-intact, preparations.  相似文献   

3.
1. A particulate guanylate cyclase from crayfish hepatopancreas membranes was investigated with respect to its dependence on Ca2+ and calmodulin. Addition of Ca2+ to EGTA-treated membranes increased cyclase activity by 100%. 2. Calmodulin stimulated the activity about 5-fold. 3. This effect could be abolished by the calmodulin antagonist compound 48/80. 4. These results present evidence that the particulate guanylate cyclase of crayfish hepatopancreas is a Ca2+/calmodulin-dependent enzyme. 5. The implications of this observation upon glycogen metabolism of crustaceans are discussed.  相似文献   

4.
Regulation of ciliary adenylate cyclase by Ca2+ in Paramecium.   总被引:2,自引:0,他引:2       下载免费PDF全文
In the ciliated protozoan Paramecium, Ca2+ and cyclic nucleotides are believed to act as second messengers in the regulation of the ciliary beat. Ciliary adenylate cyclase was activated 20-30-fold (half-maximal at 0.8 microM) and inhibited by higher concentrations (10-20 microM) of free Ca2+ ion. Ca2+ activation was the result of an increase in Vmax., not a change in Km for ATP. The activation by Ca2+ was seen only with Mg2+ATP as substrate; with Mn2+ATP the basal adenylate cyclase activity was 10-20-fold above that with Mg2+ATP, and there was no further activation by Ca2+. The stimulation by Ca2+ of the enzyme in cilia and ciliary membranes was blocked by the calmodulin antagonists calmidazolium (half-inhibition at 5 microM), trifluoperazine (70 microM) and W-7 (50-100 microM). When ciliary membranes (which contained most of the ciliary adenylate cyclase) were prepared in the presence of Ca2+, their adenylate cyclase was insensitive to Ca2+ in the assay. However, the inclusion of EGTA in buffers used for fractionation of cilia resulted in full retention of Ca2+-sensitivity by the ciliary membrane adenylate cyclase. The membrane-active agent saponin specifically suppressed the Ca2+-dependent adenylate cyclase without inhibiting basal activity with Mg2+ATP or Mn2+ATP. The ciliary adenylate cyclase was shown to be distinct from the Ca2+-dependent guanylate cyclase; the two activities had different kinetic parameters and different responses to added calmodulin and calmodulin antagonists. Our results suggest that Ca2+ influx through the voltage-sensitive Ca2+ channels in the ciliary membrane may influence intraciliary cyclic AMP concentrations by regulating adenylate cyclase.  相似文献   

5.
Abalone sperm adenylate cyclase activity is particulate in nature and displays a high Mg2+-supported activity (Mg2+/Mn2+ = 0.8) as compared to other sperm adenylate cyclases. Approximately 90% of the enzyme activity in crude homogenates is inhibited by EGTA in a concentration-dependent manner which is overcome by added micromolar free Ca2+. The EGTA-inhibited Ca2+-stimulated enzyme activity is also inhibited by phenothiazines. Added calmodulin, however, has no effect on enzyme activity prepared from crude homogenates. Preparation of a twice EGTA-extracted 48,000 X g pellet fraction yields a particulate enzyme activity that can be stimulated 10-65% by added calmodulin in the presence of micromolar free Ca2+. Detergent extraction (1% Lubrol PX) of the EGTA-washed 48,000 X g pellet solubilizes 2-5% of the total particulate adenylate cyclase activity, and this solubilized enzyme is activated up to 125% by calmodulin. The ability of the different enzyme preparations to be stimulated by calmodulin is inversely proportional to the endogenous calmodulin concentration. Calmodulin stimulation of the Lubrol PX-solubilized enzyme is specific to this Ca2+-binding protein and is mediated as an effect on the velocity of the enzyme. This stimulation is completely Ca2+ dependent and is fully reversible. These data suggest that the control of sperm cAMP synthesis by changes in Ca2+ conductance may be mediated via this Ca2+-binding protein.  相似文献   

6.
Calcium (Ca2+) ion concentrations that are achieved intracellularly upon membrane depolarization or activation of phospholipase C stimulate adenylate cyclase via calmodulin (CaM) in brain tissue. In the present study, this range of Ca2+ concentrations produced unanticipated inhibitory effects on the plasma membrane adenylate cyclase activity of GH3 cells. Ca2+ concentrations ranging from 0.1 to 0.8 microM exerted an increasing inhibition on enzyme activity, which reached a plateau (35-45% inhibition) at around 1 microM. This inhibitory effect was highly cooperative for Ca2+ ions, but was neither enhanced nor dependent upon the addition of CaM (1 microM) to EGTA-washed membranes. The inhibition was greatly enhanced upon stimulation of the enzyme by vasoactive intestinal peptide (VIP) and/or GTP. Prior exposure of cultured cells to pertussis toxin did not affect the inhibition of plasma membrane adenylate cyclase activity by Ca2+, although in these membranes, hormonal (somatostatin) inhibition was significantly attenuated. Maximally effective concentrations of Ca2+ and somatostatin produced additive inhibitory effects on adenylate cyclase. The addition of phosphodiesterase inhibitors demonstrated that inhibitory effects of Ca2+ were not mediated by Ca2(+)-dependent stimulation of a phosphodiesterase activity. These observations provide a mechanism for the feedback inhibition by elevated intracellular Ca2+ levels on cAMP-facilitated Ca2+ entry into GH3 cells, as well as inhibitory crosstalk between Ca2(+)-mobilizing signals and adenylate cyclase activity.  相似文献   

7.
Calcium-dependent adenylate cyclase of pituitary tumor cells   总被引:7,自引:0,他引:7  
Effects of Ca2+ and calmodulin on the adenylate cyclase activity of a prolactin and growth hormone-producing pituitary tumor cell strain (GH3) were examined. The adenylate cyclase activity of homogenates was stimulated approx. 60% by submicromolar free Ca2+ concentrations and inhibited by higher (microM range) concentrations of the cation. A 2-3-fold stimulation of the activity in response to Ca2+ was observed at physiologic concentrations of KCl, with both the stimulatory and inhibitory responses occurring at respectively higher free Ca2+ concentrations. Calmodulin in incubations at low KCl concentrations increased the enzyme activity at all Ca2+ concentrations tested. In incubations conducted at physiologic KCl concentrations, both the inhibitory and stimulatory responses to Ca2+ were shifted by calmodulin to lower respective concentrations of the cation, without significant change occurring in the maximal rate of enzymic activity at optimal free Ca2+ X Mg2+ concentrations in the incubation also influenced the Ca2+ concentration dependence of adenylate cyclase; at high Mg2+ more Ca2+ was required to obtain maximal activity. Trifluoperazine inhibited adenylate cyclase of GH3 cells only in the presence of Ca2+; as Ca2+ concentrations in the assay were increased, higher drug concentrations were required to inhibit the enzyme. Ca2+ was also observed to reduce the extent of enzyme destabilization which occurred during pretreatments at warm temperatures. Vasoactive intestinal polypeptide and phorbol myristate acetate, which stimulate prolactin secretion in intact GH3 cells, enhanced enzyme activity 4- and 2.5-fold, respectively, without added Ca2+. Increasing free Ca2+ concentrations reduced the enhancement by VIP and eliminated the stimulation by PMA.  相似文献   

8.
Inhibition of a Low Km GTPase Activity in Rat Striatum by Calmodulin   总被引:1,自引:0,他引:1  
In rat striatum, the activation of adenylate cyclase by the endogenous Ca2+-binding protein, calmodulin, is additive with that of GTP but is not additive with that of the nonhydrolyzable GTP analog, guanosine-5'-(beta, gamma-imido)triphosphate (GppNHp). One possible mechanism for this difference could be an effect of calmodulin on GTPase activity which has been demonstrated to "turn-off" adenylate cyclase activity. We examined the effects of Ca2+ and calmodulin on GTPase activity in EGTA-washed rat striatal particulate fractions depleted of Ca2+ and calmodulin. Calmodulin inhibited GTP hydrolysis at concentrations of 10(-9)-10(-6) M but had no effect on the hydrolysis of 10(-5) and 10(-6) M GTP, suggesting that calmodulin inhibited a low Km GTPase activity. The inhibition of GTPase activity by calmodulin was Ca2+-dependent and was maximal at 0.12 microM free Ca2+. Maximal inhibition by calmodulin was 40% in the presence of 10(-7) M GTP. The IC50 for calmodulin was 100 nM. In five tissues tested, calmodulin inhibited GTP hydrolysis only in those tissues where it could also activate adenylate cyclase. Calmodulin could affect the activation of adenylate cyclase by GTP in the presence of 3,4-dihydroxyphenylethylamine (DA, dopamine). Calmodulin decreased by nearly 10-fold the concentration of GTP required to provide maximal stimulation of adenylate cyclase activity by DA in the striatal membranes. The characteristics of the effect of calmodulin on GTPase activity with respect to Ca2+ and calmodulin dependence and tissue specificity parallel those of the activation of adenylate cyclase by calmodulin, suggesting that the two activities are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The mechanism of calmodulin dependent regulation of adenylate cyclase has been studied in human platelet membranes. Calmodulin activated adenylate cyclase exhibited a biphasic response to both Mg2+ and Ca2+. A stimulatory effect of Mg2 on adenylate cyclase was observed at all Mg2+ concentrations employed, although the degree of activation by calmodulin was progressively decreased with increasing concentrations of Mg2+. These results demonstrate that the Vmax of calmodulin dependent platelet adenylate cyclase can be manipulated by varying the relative concentrations of Mg2+ and Ca2+. The activity of calmodulin stimulated adenylate cyclase was always increased 2-fold above respective levels of activity induced by GTP, Gpp(NH)p and/or PGE. The stimulatory influence of calmodulin was not additive but synergistic to the effects of PGE1, GTP and Gpp(NH)p. GDP beta S inhibited GTP-and Gpp(NH)p stimulation of adenylate cyclase but was without effect on calmodulin stimulation. Since the inhibitory effects of GDP beta S have been ascribed to apparent reduction of active N-protein-catalytic unit (C) complex formation, these results suggest that the magnitude of calmodulin dependent adenylate cyclase activity is proportional to the number of N-protein-C complexes, and that calmodulin interacts with preformed N-protein-C complex to increase its catalytic turnover. Our data do not support existence of two isoenzymes of adenylate cyclase (calmodulin sensitive and calmodulin insensitive) in human platelets.  相似文献   

10.
TSH (thyrotropin)-stimulated human thyroid adenylate cyclase has a biphasic response to Ca2+, being activated by submicromolar Ca2+ (optimum 22nM), with inhibition at higher concentrations. Calmodulin antagonists caused an inhibition of TSH-stimulated adenylate cyclase in a dose-dependent manner. Inhibition of TSH-and TSIg-(thyroid-stimulating immunoglobulins)-stimulated activity was more marked than that of basal, NaF- or forskolin-stimulated activity. This inhibition was not due to a decreased binding of TSH to its receptor. Addition of pure calmodulin to particulate preparations of human non-toxic goitre which had not been calmodulin-depleted had no effect on adenylate cyclase activity. EGTA was ineffective in removing calmodulin from particulate preparations, but treatment with the tervalent metal ion La3+ resulted in a loss of up to 98% of calmodulin activity from these preparations. Addition of La3+ directly to the adenylate cyclase assay resulted in a partial inhibition of TSH- and NaF-stimulated activity, with 50% inhibition produced by 5.1 microM and 4.0 microM-La3+ respectively. Particulate preparations with La3+ showed a decrease of TSH- and NaF-stimulated adenylate cyclase activity (approx. 40-60%). In La3+-treated preparations there was a decrease in sensitivity of TSH-stimulated adenylate cyclase to Ca2+ over a wide range of Ca2+ concentrations, but most markedly in the region of the optimal stimulatory Ca2+ concentration. In particulate preparations from which endogenous calmodulin had been removed by La3+ treatment, the addition of pure calmodulin caused an increase (73 +/- 22%; mean +/- S.E.M., n = 8) in TSH-stimulated thyroid adenylate cyclase activity. This was seen in 8 out of 13 experiments.  相似文献   

11.
We have examined the inhibitory regulation by Ca2+ of the adenylate cyclase activity associated with microsomes isolated from bovine aorta smooth muscle. In the presence of 2 mM MgCl2, Ca2+ (0.8-100 microM) inhibited in a noncompetitive manner activation of the enzyme by GTP, Gpp[NH]p, or forskolin. In all instances the value for half-maximal inhibition was between 2 and 3 microM. In contrast, Ca2+ inhibited the activation by MgCl2 (2-50 mM), alone or in the presence of GTP, in a competitive manner. The inhibition of adenylate cyclase by 10 microM Ca2+ was reversed in the presence of either 5 or 25 microM calmodulin or troponin C. These data show that (i) Ca2+, at concentrations similar to those which activate smooth muscle contraction, inhibits the stimulation of adenylate cyclase by several activators; (ii) Ca2+ and Mg2+ compete for a common site on the smooth muscle adenylate cyclase complex; and (iii) the reversal of Ca2+-dependent inhibition by Ca2+-binding proteins may be produced by chelation of the metal by these proteins.  相似文献   

12.
Ca2+, through the mediation of calmodulin, stimulates the activity of brain adenylate cyclase. The growing awareness that fluctuating Ca2+ concentrations play a major role in intracellular signalling prompted the present study, which aimed to investigate the implications for neurotransmitter (receptor) regulation of enzymatic activity of this calmodulin regulation. The role of Ca2+/calmodulin in regulating neurotransmitter-mediated inhibition and stimulation was assessed in a number of rat brain areas. Ca2+/calmodulin stimulated adenylate cyclase activity in EGTA-washed plasma preparations from each region studied--from 1.3-fold (in striatum) to 3.4-fold (in cerebral cortex). The fold-stimulation produced by Ca2+/calmodulin was decreased in the presence of GTP, forskolin, or Mn2+. In EGTA-washed membranes, receptor-mediated inhibition of adenylate cyclase was strictly dependent upon Ca2+/calmodulin stimulation in all regions, except striatum. A requirement for Mg2+ in combination with Ca2+/calmodulin to observe neurotransmitter-mediated inhibition was also observed. In contrast, receptor-mediated stimulation of activity was much greater in the absence of Ca2+/calmodulin. The findings demonstrate that ambient Ca2+ concentrations, in concert with endogenous calmodulin, may play a central role in dictating whether inhibition or stimulation of adenylate cyclase by neurotransmitters may proceed.  相似文献   

13.
The Ca2+-dependent regulation of human platelet membrane adenylate cyclase has been studied. This enzyme exhibited a biphasic response to Ca2+ within a narrow range of Ca2+ concentrations (0.1-1.0 microM). At low Ca2+ (0.08-0.3 microM) adenylate cyclase was stimulated (Ka = 0.10 microM), whereas at higher Ca2+ (greater than 0.3 microM) the enzyme was inhibited to 70-80% control (Ki = 0.8 microM). Membrane fractions, prepared by washing in the presence of LaCl3 to remove endogenous calmodulin (approximately equal to 70-80% depletion), exhibited no stimulation of adenylate cyclase by Ca2+ but did show the inhibitory phase (Ki = 0.4 microM). The activation phase could be restored to La3+-washed membranes by addition of calmodulin (Ka = 3.0 nM). Under these conditions it was apparent that calmodulin reduced the sensitivity of adenylate cyclase to Ca2+ (Ki = 0.8 microM). Prostaglandin E1 (PGE1) did not alter Ki or Ka values for Ca2+. Calmodulin did not alter the EC50 for PGE1 stimulation of adenylate cyclase but increased the Vmax (1.5-fold). The calmodulin antagonist trifluoperazine potently inhibited adenylate cyclase in native membranes (80%) and to a much lesser extent in La3+-washed membranes (15%). This inhibition was due to interaction of trifluoperazine with endogenous calmodulin since trifluoperazine competitively antagonized the stimulatory effect of calmodulin on adenylate cyclase in La3+-washed membranes. We propose that biphasic Ca2+ regulation of platelet adenylate cyclase functions to both dampen (low Ca2+) and facilitate (high Ca2+) the haemostatic function of platelets.  相似文献   

14.
Calcium-independent activation of adenylate cyclase by calmodulin   总被引:4,自引:0,他引:4  
Adenylate cyclase of Bordetella pertussis is stimulated by calmodulin by two distinct interactions. At low activator concentrations (approximately equal to 1 nM) the process is Ca2+-dependent (i.e. inhibited by EGTA added before calmodulin). High activator concentrations (approximately equal to 0.1-10 microM) stimulate adenylate cyclase also in the presence of EGTA, an effect not accounted for by residual Ca2+ or low concentrations of Ca X calmodulin, which thus appears to be due to calcium-free calmodulin. Some calmodulin dose-response curves show both phases of stimulation, separated by a plateau of activity, and half-maximal activating concentrations differ by 100-300-fold. Both effects are on the V and not the Km for ATP and are not mimicked by 10(5)-fold greater concentrations of parvalbumin or by various polyanions. In addition, adenylate cyclase stimulation at high calmodulin concentrations is greater in the presence of EGTA than in its absence. This enhancement is also produced by 1,10-phenanthroline and 8-hydroxyquinoline but not by non-chelating isomers. These compounds are poor Ca2+ chelators, stimulate at any calmodulin concentration (unlike EGTA), and suggest regulation of this adenylate cyclase by a second metal ion.  相似文献   

15.
1. Ca2+ and cAMP both act as intracellular second messengers of receptor activation. In neuronal tissue, Ca2+ acting via calmodulin can elevate cAMP levels. This regulation by Ca2+ provides a means whereby the elevation of intracellular [Ca2+] might modulate cAMP generation. 2. In the present studies, the impact of the Ca2+/calmodulin regulation on receptor-mediated stimulation of activity is compared in striatum and hippocampus--regions of differing sensitivity to Ca2+/camodulin. Ca2+/calmodulin stimulated striatal and hippocampal adenylate cyclase activity by 1.4- and 2.7-fold respectively, while dopamine and vasoactive intestinal peptide (VIP) stimulated the enzyme activity of these respective regions by 1.3- and 2-fold. 3. In the presence of Ca2+/calmodulin, the dopamine dose-response curve in the striatum was shifted upward, without alteration of the slope of the curve or of the maximal stimulation of activity elicited by dopamine. In the hippocampus, the ability of VIP to stimulate adenylate cyclase activity was reduced by the presence of calmodulin. 4. The dose dependence of these actions of calmodulin was examined. In the striatum, the stimulation of adenylate cyclase activity by 0.1 to 0.3 microM calmodulin obscured dopamine stimulation, while 1 to 10 microM was additive with the dopamine stimulation. In the hippocampus, all concentrations of calmodulin (0.1 to 10 microM) reduced VIP-mediated stimulation of enzyme activity. 5. These data suggest that the ratio of calmodulin-sensitive to calmodulin-insensitive adenylate cyclase activity varies in different rat brain regions and that, in those regions in which this ratio is low (e.g., rat striatum and most peripheral systems), calmodulin- and receptor-mediated activation of adenylate cyclase activity will be additive, while in those systems in which this ratio is high (e.g., most of the central nervous system), calmodulin will reduce receptor-mediated stimulation of enzyme activity.  相似文献   

16.
Salivary-gland homogenates contain 5-hydroxytryptamine-stimulated adenylate cyclase. Half-maximal stimulation was obtained with 0.1 microM-5-hydroxytryptamine in the presence of added guanine nucleotides. Gramine antagonized the stimulation of cyclase caused by 5-hydroxytryptamine. In the presence of hormone, guanosine 5'-[gamma-thio]triphosphate produced a marked activation of adenylate cyclase activity. Stimulation of adenylate cyclase by forskolin or fluoride did not require the addition of guanine nucleotides or hormone. In the presence of EGTA, Ca2+ produced a biphasic activation of cyclase activity. Ca2+ at 1-100 microM increased activity, whereas 2000 microM-Ca2+ inhibited cyclase activity. The neuroleptic drugs trifluoperazine and chlorpromazine non-specifically inhibited adenylate cyclase activity even in the absence of Ca2+. The cyclic AMP phosphodiesterase activity in homogenates was not affected by Ca2+ or exogenous calmodulin. This enzyme was also inhibited by trifluoperazine in the absence of Ca2+. These results indicate that Ca2+ elevates adenylate cyclase activity, but had no effect on cyclic AMP phosphodiesterase of salivary-gland homogenates.  相似文献   

17.
Studies in bovine and rat brain membranes have suggested that calmodulin can potentiate neurotransmitter- and GTP-stimulated adenylate cyclase activities. To examine whether calmodulin and the stimulatory G-protein, Gs, are potentiative at a calmodulin-sensitive adenylate cyclase, Gs was purified from rabbit liver and reconstituted with a partially purified calmodulin-sensitive adenylate cyclase from bovine brain. Activated Gs (G*s) stimulated basal adenylate cyclase activity and enhanced the stimulation by calmodulin. The potentiation of the calmodulin-stimulated adenylate cyclase activity was dose-dependent with respect to G*s concentration. At the highest concentration of G*s tested (3 nM), a 2-fold enhancement of the calmodulin-stimulated adenylate cyclase activity was observed at all concentrations of calmodulin. The synergistic activation of adenylate cyclase by calmodulin and Gs was dependent on the presence of Ca2+ and occurred at physiologically relevant Ca2+ concentrations. The potentiation was not observed when either a nonactivated Gs or a mixture of activated Gi/Go was used. G*s was not able to stimulate or potentiate a calmodulin-stimulated adenylate cyclase purified from membranes pretreated with the nonhydrolyzable GTP analog, guanyl-5'-yl beta,gamma-imidodiphosphate. Photochemical cross-linking of 125I-calmodulin-diazopyruvamide to proteins having an Mr corresponding to the known Mr of adenylate cyclase was not enhanced by G*s. The results demonstrate that the guanyl nucleotide-dependent enhancement of calmodulin-stimulated adenylate cyclase activity is mediated by G*s and suggest that G*s modulates the enzymatic turnover of the calmodulin-stimulated activity.  相似文献   

18.
The effect of calcium (Ca2+) on the adenylate cyclase activity and calmodulin level of cerebral cortex was determined in pentobarbital dependent rats and age matched controls. Female Sprague-Dawley rats were made dependent and maintained on pentobarbital by eating a mixture of pentobarbital and rat chow (350 mg pentobarbital/30 g chow). Ca2+ activated then inhibited the adenylate cyclase activity associated with a 20,000 X g particulate fraction from pentobarbital dependent and age matched control rats. The values for one-half maximal stimulation and inhibition by Ca2+ did not differ significantly in either cortical preparation. However, the ability of Ca2+ to activate adenylate cyclase from pentobarbital dependent animals was significantly decreased (p less than 0.05) when compared to control animals. Pentobarbital (10(-4) - 10(-3) added to particulate fractions from naive control rats did not alter the ability of Ca2+ to activate adenylate cyclase. The calmodulin levels in the particulate fraction from pentobarbital dependent animals (30.2 +/- 6.7 ng calmodulin/mg protein) did not differ significantly when compared to control (33.0 +/- 4.7 ng/mg). By contrast, the calmodulin levels (37.9 +/- 5.9 ng/mg) in the 20,000 X g supernatant from cortex of pentobarbital dependent animals was significantly greater than the level in the supernatant from control animals (28.6 +/- 2.6 ng/mg). The ability of forskolin, dopamine, GTP or forskolin plus GTP (all at a concentration of 100 microM) to activate adenylate cyclase was significantly decreased in particulate preparations from pentobarbital dependent animals. In summary, our data show that alterations in calmodulin levels and a decreased responsivity of adenylate cyclase occur in animals physically dependent on pentobarbital.  相似文献   

19.
Beef brain cortex adenylate cyclase (ATP pyrophosphate-lyase (cyclizing) EC 4.6.1.1) activity is 84--88% inhibited by 5 - 10(-5) M ethyleneglycol-bis-(beta-aminoethyl ether)N,N'-tetraacetic acid in the absence of F- but only 50--60% inhibited by 5 - 10(-5) M ethyleneglycol-bis-(beta-aminoethyl ether)N,N'-tetraacetic acid in the presence of F-. In either case, further increase in EGTA concentration did not alter the degree of inhibition. The inhibition can be completely reversed in both cases by addition of 3 - 10(-5) M Ca2+, (yielding a [free Ca2+] of approximately 2 - 10(-6) M) and 5 - 10(-5) M Mn2+ or Co2+ and partially by 5 - 10(-5) M Sr2+ but not by addition of 5 - 10(-5) M Ba2+, Zn2+, Ni2+ or Fe2+. A [free Ca2+] of 7.2 - 10(-5) M markedly inhibited cyclase activity in the presence of F-. Solubilization by 1.8% Triton X-100 resulted in an enzyme preparation no longer stimulated by NaF and 100% inhibited by the addition of 5 - 10(-5) M ethyleneglycol-bis-(beta-aminoethyl ether)N,N'-tetraacetic acid either in the absence or presence of NaF. However, in contrast to ethyleneglycol-bis-(beta-aminoethyl ether)N,N'-TETRAACETIC ACID, EDTA had no measurable effect on adenylate cyclase either in the presence or absence of NaF and ethyleneglycol-bis-(beta-aminoethyl ether)N,N'-tetraacetic acid did not affect ATPase or phosphodiesterase activities. The data is rationalized by the postulation of two independent enzyme components in brain cortex: one component is about six-fold activated by NaF and the NaF effect is enhanced by low concentrations of Ca2+ and Mg2+. A second component is totally Ca2+ dependent and inhibited by high concentrations of F-. Mn2+, Co2+ and Sr2+ appear to be in vitro Ca2+ substitutes for both enzyme systems. On this basis, Triton X-100 treatment results in about a three-fold increase in specific activity of the Ca2+ dependent cyclase component but a complete abolition of the NaF stimulated component.  相似文献   

20.
Adenylate cyclase activity measured by the formation of cyclic AMP in rat brain membranes was inhibited by a shellfish toxin, domoic acid (DOM). The inhibition of enzyme was dependent on DOM concentration, but about 50% of enzyme activity was resistant to DOM-induced inhibition. Rat brain supernatant resulting from 105,000×g centrifugation for 60 min, stimulated adenylate cyclase activity in membranes. Domoic acid abolished the supernatant-stimulated adenylate cyclase activity. The brain supernatant contains factors which modulate adenylate cyclase activity in membranes. The stimulatory factors include calcium, calmodulin, and GTP. In view of these findings, we examined the role of calcium and calmodulin in DOM-induced inhibition of adenylate cyclase in brain membranes. Calcium stimulated adenylate cyclase activity in membranes, and further addition of calmodulin potentiated calcium-stimulated enzyme activity in a concentration dependent manner. Calmodulin also stimulated adenylate cyclase activity, but further addition of calcium did not potentiate calmodulin-stimulated enzyme activity. These results show that the rat brain membranes contain endogenous calcium and calmodulin which stimulate adenylate cyclase activity. However, calmodulin appears to be present in membranes in sub-optimal concentration for adenylate cyclase activation, whereas calcium is present at saturating concentration. Adenylate cyclase activity diminished as DOM concentration was increased, reaching a nadir at about 1 mM. Addition of calcium restored DOM-inhibited adenylate cyclase activity to the control level. Similarly, EGTA also inhibited adenylate cyclase activity in brain membranes in a concentration dependent manner, and addition of calcium restored EGTA-inhibited enzyme activity to above control level. The fact that EGTA is a specific chelator of calcium, and that DOM mimicked adenylate cyclase inhibition by EGTA, indicate that calcium mediates DOM-induced inhibition of adenylate cyclase activity in brain membranes. While DOM completely abolished the supernatant-, and Gpp (NH)p-stimulated adenylate cyclase activity, it partly blocked calmodulin-, and forskolin-stimulated adenylate cyclase activity in brain membranes. These results indicate that DOM may interact with guanine nucleotide-binding (G) protein and/or the catalytic subunit of adenylate cyclase to produce inhibition of enzyme in rat brain membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号