首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of neuroplasticity markers was analyzed in four brain regions, namely cerebral hemispheres (CH), cerebellum (CB), brain stem (BS) and diencephalon (DC) from insulin-induced hypoglycemic young adult rats. Significant decrease in neural cell adhesion molecule (NCAM) isoforms and growth-associated protein-43 (GAP-43) was observed following hypoglycemic injury from majority of brain regions studied. The glial fibrillary acidic protein (GFAP) level increased significantly in cerebral hemispheres and diencephalon regions, whereas, synaptophysin level increased in cerebellum, brain stem and diencephalon regions. The selective downregulation of the neuronal plasticity marker proteins (GAP-43 and NCAM), and enhanced expression of GFAP and synaptophysin suggests that in acute hypoglycemia, mechanisms other than energy failure may also contribute to neuronal cell damage in the brain.  相似文献   

2.
GFAP (Glial Fibrillary Acidic protein) was quantified in unfractionated homogenates of different brain regions from 10 Alzheimer patients versus 25 controls using immunoblot techniques and anti-human GFAP. There was a strong increase of GFAP in the brain regions that contained the characteristic Alzheimer lesions. This corresponds to the "astrocytic gliosis". Moreover, there was a 11 fold GFAP increase (p less than 0.001) in the other regions of the Alzheimer brains that do not present the Alzheimer pathology, such as caudate nucleus, cerebellum or brain stem. Different from the gliosis, the physiological signification of such an increase in the whole brain is unknown, but it might reflect the prominent part played by astrocytes during Alzheimer's disease (AD).  相似文献   

3.
The levels of the two isoforms of glutamate decarboxylase (GAD) were measured in 12 regions of adult rat brain and three regions of mouse brain by sodium dodecylsulfate-polyacrylamide gel electrophoresis and immunoblotting with an antiserum that recognizes the identical C-terminal sequence in both isoforms from both species. In rat brain the amount of smaller isoform, GAD65, was greater than that of the larger isoform, GAD67, in all twelve regions. GAD65 ranged from 77-89% of total GAD in frontal cortex, hippocampus, hypothalamus, midbrain, olfactory bulb, periaqueductal gray matter, substantia nigra, striatum, thalamus and the ventral tegmental area. The proportion of GAD65 was lower in amygdala and cerebellum but still greater than half of the total. There was a strong correlation between total GAD protein and GAD activity. In the three mouse brain regions analysed (cerebellum, cerebral cortex and hippocampus) the proportion of GAD65 (35,47, and 51% of total GAD) was significantly lower than in the corresponding rat-brain regions. The amount of GAD67 was greater than the amount of GAD65 in mouse cerebellum and was approximately equal to the amount of GAD65 in mouse cerebral cortex and hippocampus.  相似文献   

4.
Methylmercury distribution, biotransformation, and neurotoxicity in the brain of male Swiss albino mice were investigated. Mice were orally dosed with [203 Hg]methylmercury chloride (10 mg/kg) for 1 to 9 days. Methylmercury was evenly distributed among the posterior cerebral cortex, subcortex, brain stem, and cerebellum. The The anterior cerebral cortex had a significantly higher methylmercury concentration than the rest of the brain. The distribution of methylmercury's inorganic mercury metabolite was found to be uneven in the brain. The pattern of distribution was cerebellum greater than brain stem greater than subcortex greater than cerebral cortex. The order of the severity of histological damage was cerebral cortex greater than cerebellum greater than subcortex greater than brain stem. There was no correlation between methylmercury distribution in the brain and structural brain damage. However, there was a relationship between the distribution of methylmercury's inorganic mercury metabolite and structural damage in the anterior cerebral cortex (positive correlation) and the anterior subcortex (negative correlation). There was also a positive correlation between the fraction of methylmercury's metabolite of the total mercury present and structural brain damage in the anterior cerebral cortex. This study suggests that biotransformation may have a role in mediating methylmercury neurotoxicity.  相似文献   

5.
Regional Development of Glutamate Dehydrogenase in the at Brain   总被引:1,自引:0,他引:1  
The development of glutamate dehydrogenase enzyme activity in rat brain regions has been followed from the late foetal stage to the adult and through to the aged (greater than 2 years) adult. In the adult brain the enzyme activity was greatest in the medulla oblongata and pons greater than midbrain = hypothalamus greater than cerebellum = striatum = cortex. In the aged adult brain, glutamate dehydrogenase activity was significantly lower in the medulla oblongata and pons when compared to the 90-day-old adult value, but not in other regions. The enzyme-specific activity of nonsynaptic (free) mitochondria purified from the medulla oblongata and pons of 90-day-old animals was about twice that of mitochondria purified from the striatum and the cortex. The specific activity of the enzyme in synaptic mitochondria purified from the above three brain regions, however, remained almost constant.  相似文献   

6.
Glutathione content and glutamyl transpeptidase activity in different regions of adult female rat brain were determined at 10 and 30 min following intraventricular injection of LHRH and somatostatin. Hypothalamic glutathione levels were significantly elevated at 10 and 30 min after a single injection of a 0.1 micrograms dose of LHRH. On the contrary, glutathione levels significantly decreased in the hypothalamus, cerebral cortex and cerebellum at 10 and 30 min after 0.5 or 1 microgram dose. However, significant decrease in brain stem glutathione was evident at 30 min after 0.5 microgram and 10 min after the 1 microgram dose. Somatostatin at doses of 0.5 microgram and 1 microgram significantly decreased glutathione levels in all four brain regions both at 10 and 30 min following injection into the 3rd ventricle. Gamma-glutamyl transpeptidase activity in the hypothalamus and cerebral cortex was significantly elevated after intraventricular injection of LHRH. However, a significant increase in gamma-glutamyl transpeptidase activity in cerebellum and brain stem was seen only with 0.5 and 1 micrograms doses of LHRH. Somatostatin also significantly increased gamma-glutamyl transpeptidase activity in hypothalamus, cerebral cortex, brain stem and cerebellum. The decrease in glutathione levels with corresponding increase in gamma-glutamyl transpeptidase activity after intraventricular administration of LHRH and somatostatin suggests a possible interaction between glutathione and hypothalamic peptides.  相似文献   

7.
The E1 (epileptic) mouse is considered a model for complex partial seizures in humans. Seizures in E1 mice begin around 7-8 weeks of age and persist throughout life. To determine if astrocytic gliosis was present in adult seizing E1 mice, the distribution of glial fibrillary acidic protein (GFAP) was studied in the hippocampus using an antibody to GFAP. The mean number of GFAP-positive cells per square millimeter of hippocampus was approximately 15- to 40-fold higher in adult E1 mice than in nonseizing control C57BL/6J (B6) mice or in young nonseizing E1 mice. Relative GFAP concentration (expressed per milligram of total tissue protein) in hippocampus and cerebellum was estimated by densitometric scanning of peroxidase-stained western blots. GFAP concentration was 2.7-fold greater in hippocampus of adult seizing E1 mice than in the control B6 mice. No differences in GFAP content were detected between the strains in the cerebellum. Because gangliosides can serve as cell surface markers for changes in neuronal cytoarchitecture, they were analyzed to determine if the gliotic response in E1 mice was associated with changes in neural composition. Although the total ganglioside concentration of hippocampus, cerebral cortex, and cerebellum was similar in adult E1 and control B6 mice, a synaptic membrane enriched ganglioside, GD1a, was elevated in the adult E1 cerebral cortex and hippocampus. The findings indicate that E1 mice express a type of gliosis that is not accompanied by obvious neuronal loss.  相似文献   

8.
Abstract— Na+-dependent ‘binding’ of β-alanine and GABA was examined with synaptosomal-mitochondrial fractions of rat brain incubated for 10 min at 0°C. GABA was bound to a much greater extent than β-alanine to particles of cerebral cortex, whole cerebellum and brain stem. For cerebral cortex, the binding capacity (Bmax) for GABA was about 18 limes greater than that for β-alanine. and the affinity of the particles for GABA was about 2′ times greater than for β-alanine. The order of potency of GABA binding to brain regions was cerebral cortex > cerebellum > brain stem, whereas that for β-alanine was the reverse. If the binding of β-alanine is taken to indicate the glial component of the Na+-dependent binding process for GABA, then most of the GABA was bound to neuronal elements under the conditions employed.  相似文献   

9.
A study was made of the effect of ionizing radiation on the content and polypeptide composition of filamentous and soluble glial fibrillary acidic protein (GFAP) in different regions of rat brain. Ionizing radiation was shown to decrease considerably the level of soluble GFAP in cerebral cortex, cerebellum, middle brain and hippocampus. Polypeptide composition of soluble GFAP detected by the immunoblot method was found to be changed considerably in different brain areas of irradiated animals.  相似文献   

10.
Spontaneously hypertensive rats (SHR) were administered either 2.4 g/kg ethanol or an isocaloric glucose daily for 4 weeks and the levels of norepinephrine (NE), epinephrine (EP), dopamine (DA), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in different brain regions were determined. Results indicated a 3-fold increase in NE level in brain stem and hypothalamus and more than 2-fold increase in DA in corpus striatum in alcohol-treated rats as compared to controls. There was a significant increase in the level of DA in the corpus striatum but the levels in cerebral cortex, brain stem and hippocampus were decreased instead. Decreases in 5-HT levels were found in hypothalamus, brain stem, cortex and cerebellum of alcohol-treated brain as compared to untreated controls. These results indicate alterations of the biogenic amine contents in different regions of the SHR brain after chronic ethanol ingestion. Since stimulated release of biogenic amines in the SHR brain has been implicated in the regulation of blood pressure, changes due to ethanol ingestion may be a risk factor in hypertensive patients.  相似文献   

11.
The content of glutamate, GABA, aspartate, glycine and alanine was determined in the cerebellum, brain stem and cerebrum of three different mutant mice which have been named ‘staggerer’, ‘weaver’ and ‘nervous’ on the basis of neurological symptoms. In the ‘staggerer’ and ‘weaver’ mutants there is an almost complete absence of granule cells in the cerebellar cortex while in the ‘nervous’ mutant there is a loss of Purkinje cells (and to a lesser extent a loss of granule cells) in the cerebellar cortex. In the cerebellum of the ‘weaver’ mutant, the content of glutamate was signficantly lower (P < 0.025) than control values (8.77 ± 0.76 vs 12.0 ± 1.3 μmol/g tissue wet wt) and the contents of GABA and glycine were significantly greater than normal levels. In the cerebellum of the ‘staggerer’ mutant, the content of glutamate was significantly lower (6.62 ± 0.70 μmol/g) and the contents of glycine and alanine significantly higher than control values. In the cerebrum and brain stem regions of the staggerer mutant, weaver mutant and the normals the contents of the five amino acids were the same. The contents of glycine and alanine in the cerebellum, GARA and glycine in the brain stem and GABA and alanine in the cerebrum of the nervous mutants were higher than control values. The data are discussed in terms of a possible role for glutamate functioning as an excitatory transmitter when released from the cerebellar granule cells.  相似文献   

12.
Peripheral administration of monosodium-L-glutamate (MSG) has been found to be neurotoxic in neonatal rats. When administered in an acute, subconvulsive dose (500 mg/kg i.p.), MSG altered neurotrnnsmitter content in discrete brain regions of adult (6 month old) and aged (24 month old) male Fischer-344 rats. Norepinephrine (NE) content was reduced in both the hypothalamus (16%) and cerebellum (11%) of adult rats, but was increased in both the hypothalamus (7%) and cerebellum (14%) of aged rats after MSG treatment. MSG also altered the dopamine content in adult rats in both the posterior cortex and the striatum, causing a reduction (23%) and an increase (12%), respectively. Glycine content in the midbrain of aged rats increased (21%) after MSG injection. Of particular interest is the widespread monoamine and amino acid deficits found in the aged rats in many of the brain regions examined. NE content was decreased (11%) in the cerebellum of aged rats. Dopamine content was reduced in both the posterior cortex (35%) and striatum (10%) of aged rats compared to adult animals. Cortical serotonergic deficits were present in aged rats with reductions in both the frontal (13%) and posterior cortex (21%). Aged rats also displayed deficits in amino acids, particularly the excitatory amino acids. There were glutamate deficits (9–18% reductions) in the cortical regions (posterior and frontal) as well as midbrain and brain stem. Aspartate, the other excitatory amino acid transmitter, was reduced 10% in the brainstem of aged rats. These data indicate that an acute, subconvulsive, dose of MSG may elicit neurochemical changes in both adult and aged male Fisher-344 rats, and that there are inherent age-related deficits in particular neurotransmitters in aged male Fisher-344 rats as indicated by the reductions in both monoamines and amino acids.  相似文献   

13.
100 mg of taurine per kg body weight had been administered intraperitoneally and 30 min after the administration the animals were sacrificed. Glutamate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, glutaminase, glutamine synthetase, glutamate decarboxylase and GABA aminotransferase along with the content of glutamate and GABA in cerebral cortex, cerebellum and brain stem were studied and compared with the same obtained in the rats treated with normal saline in place of taurine. The results indicated a significant decrease in the activity of glutamate dehydrogenase in cerebral cortex and cerebellum and a significant increase in brain stem. Glutaminase and glutamine synthetase were found to increase significantly both in cerebral cortex and cerebellum. The activities of glutamate decarboxylase was found to increase in all the three regions along with a significant decrease in GABA aminotransferase while the content of glutamate showed a decrease in all the three brain regions, the content of GABA was observed to increase significantly. The above effects of taurine on the metabolism of glutamate and GABA are discussed in relation to the functional role of GABA and glutamate. The results indicate that taurine administration would result in a state of inhibition in brain.  相似文献   

14.
Adult neurogenesis has been described in dozens of brain regions in teleost fish, with the largest number of new neurons being generated in the cerebellum. Here, we characterized the cerebellar neural stem/progenitor cells (NSPCs) in the brown ghost knifefish (Apteronotus leptorhynchus), an established model system of adult neurogenesis. The majority of the new cerebellar cells arise from neurogenic niches located medially, at the interface of the dorsal/ventral molecular layers and the granular layer. NSPCs within these niches give rise to transit‐amplifying progenitors which populate the molecular layer, where they continue to proliferate during their migration toward target areas in the granular layer. At any given time, the majority of proliferating cells are located in the molecular layer. Immunohistochemical staining revealed that the stem cell markers Sox2, Meis1/2/3, Islet1, and, to a lesser extent, Pax6, are widely expressed in all regions of the adult cerebellum. A large subpopulation of these NSPCs coexpress S100, GFAP, and/or vimentin, indicating astrocytic identity. This is further supported by the specific effect of the gliotoxin l ‐methionine sulfoximine, which leads to a targeted decrease in the number of GFAP+ cells that coexpress Sox2 or the proliferation marker PCNA. Pulse‐chase analysis of the label size associated with new cells after administration of 5‐bromo‐2′‐deoxyuridine demonstrated that, on average, two additional cell divisions occur after completion of the initial mitotic cycle. Overall numbers of NSPCs in the cerebellum niches increase consistently over time, presumably in parallel with the continuous growth of the brain. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 39–65, 2015  相似文献   

15.
16.
Studies were conducted to ascertain any involvement of free radical mediated prooxidative processes in different brain regions following diazopam administration. A significant decrease in TBA reactive substance formation was observed in cerebral cortex, cerebellum and brain stem regions after single doses of 1.5, 3 and 6 mg/kg b.wt. For further studies rats were given diazepam (i.p.) at 3 mg/kg body weight dose and sacrificed after 1 h to follow changes in the pro/antioxidant status. An enhancement in the TBARS formation was found in the mitochondrial fractions from cerebral cortex and brain stem. This effect was highest in brain stem being 107% as compared to controls. In the post mitochondrial fraction, cerebellum showed 49% enhancement whereas decreased formation of thiobarbituric acid reactive substances was observed in cerebral cortex and brain stem. Isozymes of superoxide dismutase showed a decrease in activity which was region dependent. Even though, total thiols were not significantly altered, free thiols showed depletion in cerebellum (39.8%) and brain stem (50%). Glutathione reductase activity was also decreased in cerebellum and brain stem. The results indicate that a single dose of diazepam causes free radical mediated changes and the modulatory response of antioxidant defences appears to be region specific.  相似文献   

17.
Acute effects of intraperitoneal administration of ammonium chloride (200 mg/kg) on Na+,K+-ATPase and amino acid content of the glutamate family (glutamate, aspartate, alanine, glutamine, and GABA), as well as the enzymes involved in the metabolism of these amino acids, have been studied in the different regions of brain and liver in mice. A significant increase in the activity of Na+,K+-ATPase was observed in the cerebellum, cerebral cortex, and brain stem. A similar increase in the activity of glutamate dehydrogenase was observed in the brain stem, while a moderate increase in the activity of this enzyme was observed in the cerebral cortex and liver in the mice treated with ammonium chloride. In all three regions of brain, a 50% decrease was observed in the activity of alanine aminotransferase, while the activity of aspartate aminotransferase significantly rose in the brain stem. The activity of glutamine synthetase did not change much in the three regions of brain, and a significant fall was registered in the liver. The activity of tyrosine aminotransferase showed a rise in the cerebellum, brain stem, and in liver. Not much change was observed in the protein content in either brain or liver, whereas there was a 1.5-fold increase in the total RNA content in the liver of the animals treated with ammonium chloride. Under the experimental conditions, there was an increase only in the content of glutamine, of all the amino acids tested, in the cerebral cortex and liver. Similar results were obtained with homogenates of tissues enriched with ammonium chloride (in vitro) for the enzyme systems studied. These results are discussed, and the probable metabolic and functional significance of ammonia in brain is indicated.  相似文献   

18.
Acute and chronic ammonia toxicity was produced in the mice by intraperitoneal injection of ammonium chloride (200 mg/kg) and by exposure of mice to ammonia vapours (5% v/v) continuously for 2 days and 5 days respectively. The ammonia content was elevated in the cerebellum, cerebral cortex and brain stem and in liver. In acute ammonia intoxication there was a decrease in the monoamine oxidase (MAO) activity in all the three regions of brain. In chronic ammonia toxicity (2 days of exposure) a significant increase in the activity of MAO was observed in the cerebral cortex while in cerebellum and brain stem there was a significant decrease. In cerebral cortex and cerebellum there was a rise in the activity of MAO as a result of exposure to ammonia vapours for 5 days. A significant decrease was observed in the activity of glutamate decarboxylase (GAD) in all the three regions of the brain both in acute and chronic ammonia toxicity (2 days). There was a decrease in the activity of this enzyme only in the cerebral cortex in the animals exposed to ammonia for 5 days. The activity of GABA-aminotransferase (GABA-T) showed a significant rise in cerebellum and a fall in the brain stem in acute ammonia toxicity. In chronic ammonia toxicity GABA-T showed a rise in all the three regions of brain. Chronic ammonia toxicity produced a significant decrease in the content of glutamate in all the three regions without a significant change in the content of aspartate. GABA and glutamine. The content of alanine increased in all the three regions of brain under these experimental conditions. The ratio of glutamate + aspartate/GABA and glutamate/glutamine showed a decrease in all the three regions as a result of ammonia toxicity.  相似文献   

19.
In adult rats, when plasma osmolality increases, water flows across the blood-brain barrier down its concentration gradient from brain to plasma, and brain volume deceases. The brain responds to this stress by gaining osmotically active solutes, which limit water loss. This phenomenon is termed brain volume (water) regulation. We tested the hypothesis that brain volume regulation is more effective in young lambs and adult sheep than in fetuses, premature lambs, and newborn lambs. Brain water responses to acute hyperosmolality were measured in the cerebral cortex, cerebellum, and medulla of fetuses at 60 and 90% of gestation, premature ventilated lambs at 90% of gestation, newborn lambs, young lambs at 20-30 days of age, and adult sheep. After exposure of the sheep to increases in systemic osmolality with mannitol plus NaCl, brain water content and electrolytes were quantified. The ideal osmometer is a system in which impermeable solutes do not enter or leave in response to an osmotic stress. There were significant differences from an ideal osmometer in the cerebral cortex of fetuses at 90% of gestation, cerebral cortex, and cerebellum of newborn lambs, and cerebral cortex, cerebellum, and medulla of young lambs and adult sheep; however, there were no differences in the brain regions of fetuses at 60% of gestation and premature lambs, cerebellum and medulla of fetuses at 90% of gestation, and medulla of newborn lambs. We conclude that 1) brain water loss is maximal and brain volume regulation impaired in most brain regions of fetuses at 60 and 90% of gestation and premature lambs; 2) brain volume regulation develops first in the cerebral cortex of the fetuses at 90% of gestation and in the cerebral cortex and cerebellum of newborn lambs, and then it develops in the medulla of the lambs at 20-30 days of age; 3) brain water loss is limited and volume regulation present in the brain regions of young lambs and adult sheep; and 4) the ability of the brain to exhibit volume regulation develops in a region- and age-related fashion.  相似文献   

20.
Taurine is an important modulator of neuronal activity in the immature brain. In kittens, taurine deficiency causes serious dysfunction in the cerebellar and cerebral visual cortex. The processes of taurine transport in vitro were now studied for the first time in different brain areas in developing and adult cats. The uptake of taurine consisted initially of two saturable components, high- and low-affinity, in synaptosomal preparations from the developing cerebral cortex and cerebellum, but the high-affinity uptake component completely disappeared during maturation. The release of both endogenous and preloaded labeled taurine from brain slices measured in a superfusion system was severalfold stimulated with a slow onset by depolarizing K+ (50 mM) concentrations. K+ stimulation released markedly more taurine from the cerebral cortex, cerebellum and brain stem in kittens than in adult cats. The responses were largest in the cerebellum. Both uptake and release of taurine are thus highly efficient in the brain of kittens and may be of significance in view of the vulnerability of cats to taurine deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号