首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It was shown that the glial fibrillary acidic protein (GFAP) content in developing (fetal) human brain is sharply increased. The expression of GFAP was observed already on the 7th-8th week after gestation, the GFAP concentration being less than 0.05% in comparison with adult brain. GFAP can be immunohistochemically detected in radial glial cells. At early stages of development the presence of antigenic determinants of 68 kDa and 100 kDa polypeptides interacting with monoclonal antibodies alongside with native GFAP (51 kDa) and its low molecular weight forms was demonstrated. These antigenic determinants cannot be detected at later stages of development and are absent in adult brain. The data obtained testify to changes in the gene expression of intermediate filament proteins at early stages of human brain ontogenesis.  相似文献   

2.
Glial fibrillary acidic protein was localized at the electron microscope level in the cerebellum of adult mice by indirect immunoperoxidase histology. In confirmation of previous studies at the light microscope level, the antigen was detectable in astrocytes and their processes, but not in neurons or their processes, or in oligodendroglia. Astrocytic processes were stained in white matter, in the granular layet surrounding synaptic glomerular complexes, and in the molecular layer in the form of radially oriented fibers and of sheaths surrounding Purkinje cell dendrites. Astrocytic endfeet impinging on meninges and perivascular membranes were also antigen positive. In astrocytic perikarya and processes, the immunohistochemical reaction product appears both as a diffuse cytoplasmic label and as elongated strands, which by their distribution and frequency could be considered glial filaments.  相似文献   

3.
Summary Expression of intermediate filament proteins was studied in human developing spinal cord using immunoperoxidase and double-label immunofluorescence methods with monoclonal antibodies to vimentin and glial fibrillary acidic protein (GFAP). Vimentin was found in the processes of radial glial cells in 6-week embryos, while GFAP appeared in vimentin-positive astroglial cells at 8–10 weeks. GFAP and vimentin were present in approximately equal amounts in differentiating astrocytes in 23-week spinal cord. In 30-week fetuses, astrocytes reacted strongly for GFAP, while both the reaction intensity and the number of vimentin-positive cells fluctuated predominantly in the grey matter. No clear-cut transition from vimentin to GFAP was noticed during the development of astrocytes. The majority of ependymal cells in 23-week fetuses contained vimentin but only a few of them reacted for GFAP. The expression of vimentin continued during the whole development of the ependymal layer, in contrast to the reactivity for GFAP which disappeared between the 30th week and term.  相似文献   

4.
Glial fibrillary acidic (GFA) protein has been synthesized in an RNA-dependent cell-free system derived from rabbit reticulocytes. The cell-free synthesized product appears to have the same size as GFA protein isolated from bovine spinal cord, thus showing that GFA protein does not undergo detectable proteolytic processing.  相似文献   

5.
6.
The reported expression of the cell surface-associated, mainly mesenchymal glycoprotein fibronectin by cultured glial cells is in discrepancy with recent work on brain tissue failing to demonstrate any glial or neuronal fibronectin. We have investigated the expression of fibronectin in relation to glial fibrillary acidic protein in cultured human glial and glioma cell lines as well as in cultures derived from newborn rat brain. Using double immunofluorescence technique we found that cells containing glial fibrillary acidic protein do not express fibronectin, and vice versa. The only exception to this rule was the occasional finding of fibronectin at points of cell-to-cell adhesion also in relation to cells containing glial fibrillary acidic protein. The results were also tested by polyacrylamide gel electrophoresis of the culture media of the human cell lines, and by subcultures from the brain of newborn rat, cultures stimulated with dibutyryl cyclic AMP (db-cAMP), and by vinblastine treatment of the cells. The lack of expression of fibronectin in cells containing glial fibrillary acidic protein, a gliospecific cytoskeletal protein, is discussed with reference to glio-mesenchymal interactions and glial markers in vitro.  相似文献   

7.
胶质原纤维酸性蛋白的研究进展   总被引:10,自引:0,他引:10  
星形胶质细胞(astrocyte,AS)约占正常成人中枢神经系统(central nervous system,CNS)细胞总数的40%,其重要功能日益受到重视,AS可特异性表达胶质原纤维酸性蛋白(glial fibrillary acidic protein,GFAP).GFAP是AS骨架蛋白特有的成分,可作为AS的特异性标记物,本文主要从分子生物学角度,就GFAP在复杂的细胞活动(如细胞骨架重建,髓鞘维持,细胞粘附和信号转导途径等)中的广泛作用,及GFAP转基因动物研究等做一综述。  相似文献   

8.
Monoclonal antibodies were used to immunocytochemically demonstrate the presence or absence of glial fibrillary acidic protein (GFAP) in smear preparations from human intracranial tumors. The results show that this approach may be of great help in the histogenetic classification of such tumors.  相似文献   

9.
Analysis of the expression of genes encoding myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) in human glial tumors was carried out for determination of the expression specificity of these genes according to tumor types and their malignancy. Low levels of MBP mRNA in astrocytoma specimens of malignancy grades II-IV and significantly higher levels in perifocal zones adjacent to them have been determined by Northern hybridization. Diffuse astrocytomas and anaplastic astrocytomas are characterized mostly by a low level of MBP gene expression and high level of GFAP gene expression, but distinct subtypes of diffuse and anaplastic astrocytomas with a high level of GFAP gene expression can also be detected that may be the reflection of different oncogenic pathways. Very low levels or even absence of MBP mRNA were revealed in oligodendroglioma and all oligoastrocytomas. Thus, Northern hybridization data are correlated with serial analysis of gene expression (SAGE). Obtained results show that MBP is a nonspecific marker for tumors of oligodendroglial origin, but determination of relative levels of MBP and GFAP mRNAs may be useful for glial tumor recognition. In such a way, these two genes together with YKL-40 and TSC-22, which we found previously, can be included into the gene panel for determination of so-called “gene signatures” of brain tumors. However, strict requirements in relation to a clinical value of these “gene signatures” cannot be formulated without verifying them on a large number of clinical samples of tumors and valid control.  相似文献   

10.
Glial fibrillary acidic protein, GFAP, is a major intermediate filament protein of glial cells and major cytoskeletal structure in astrocytes. The entorhinal cortex has a key role in memory function and is one of the first brain areas to reveal hallmark structures of Alzheimer's disease and therefore provides an ideal tissue to investigate incipient neurodegenerative changes. Here we have analyzed age- and disease-related occurrence and composition of GFAP in the human entorhinal cortex by using one- and two-dimensional electrophoresis, Western blots and immunocytochemistry combined with confocal microscopy. A novel monoclonal antibody, GF-02, was characterized that mainly reacted with intact GFAP molecules and indicated that more acidic and soluble GFAP forms were also more susceptible to degradation. GFAP and vimentin increased with aging and in Alzheimer's disease (AD). Two-dimensional electrophoresis and Western blots revealed a complex GFAP pattern, both in aging and AD with different modification and degradation forms. Immunohistochemistry indicated that reactive astrocytes mainly accumulated in relation to neurofibrillary tangles and senile plaques in deeper entorhinal cortex layers. GFAP may be used as an additional but not exclusive diagnostic tool in the evaluation of neurodegenerative diseases because its levels change with age and respond to senile plaque and tangle formation.  相似文献   

11.
The appearance of the glial fibrillary acidic protein (GFAP) during embryonic and postnatal development of the rat brain and spinal cord and in rat sciatic nerve during postnatal development was examined by the immunoblot technique. Cytoskeletal proteins were isolated from the central and peripheral nervous system and separated by SDS slab gel electrophoresis or two-dimensional gel electrophoresis. Proteins from the acrylamide gels were transferred to nitrocellulose sheets which were treated with anti-bovine GFAP serum and GFAP was identified by the immunoblot technique. GFAP was present in the embryonic rat brain and spinal cord at 14 and 16 days of gestation respectively. The appearance of GFAP at this stage of neural development suggests that the synthesis of GFAP may be related to the proliferation of radial glial cells from which astrocytes are derived. It is also feasible that GFAP provides structural support for the radial glial cell processes analogous to its role in differentiated astrocytes. GFAP was found to be present in rat sciatic nerves at birth and at all subsequent stages of development. These results indicate that some cellular elements in the rat sciatic nerve, such as Schwann cells, are capable of synthesizing GFAP which is immunochemically indistinguishable from its counterpart in the central nervous system. Thus it appears that GFAP is present both in the central and peripheral nervous system of the rat when the glial cells synthesizing GFAP are still undergoing differentiation.  相似文献   

12.
Immunohistochemical staining for glial fibrillary acidic protein (GFAP) was employed as a tool for quantification of astrocytes in the rat brain. One-micron-methacrylate sections were prepared from 70-micron slices stained for GFAP by using a preembedding staining procedure. Numbers/unit area of astrocytes and nonastrocytes were determined for cortex, corpus callosum, and hippocampal neuropil. In each, counts from GFAP-stained, toluidine-blue-counterstained sections were compared with counts obtained from sections stained with toluidine blue alone. Numbers of nonastrocytes and total glia in all three regions were comparable in both groups of sections. Astrocyte counts in the cortex and hippocampus also showed no significant differences between the two groups. In contrast, the number of astrocytes in the corpus callosum was significantly lower in GFAP-stained, toluidine-blue-counterstained sections than in sections stained with toluidine blue alone. GFAP immunohistochemistry is a useful tool for the quantification of astrocytes in semi-thin plastic sections of rat brain.  相似文献   

13.
14.
Specificity of the glial fibrillary acidic protein for astroglia.   总被引:10,自引:0,他引:10  
Glial fibrillary acidic protein (GFA) is the main constituent of glial filaments and the close similarity of GFA and neurofilament protein has been recently reported. However, the immunofluorescence staining of peripheral nerve which may be observed with GFA antisera is not due to cross-reaction between GFA and neurofilament protein. Staining of peripheral axons was also observed with control sera obtained by injecting the rabbits with nonimmunogenic GFA preparations isolated with the same procedure. Immune GFA antisera and control sera reacted with sodium dodecyl sulfate extracts of sciatic nerve. However, the precipitin line formed with peripheral nerve crossed the line against GFA protein, thus indicating nonidentity between the two antigens. Buffer extract of sciatic nerves that had been incubated with spinal cord reacted by immunodiffusion with GFA antisera, thus indicating that redistribution of GFA occurred under these conditions.  相似文献   

15.
A procedure for the isolation of assembly-competent glial fibrillary acidic (GFA) protein from 2 m urea extracts of bovine spinal cord by anion-exchange chromatography is reported. The tissue was previously extracted with low-ionic-strength buffer. The procedure allowed the separation of nondegraded GFA protein from GFA protein comprising degraded species. As previously reported for neurofilament preparations obtained from porcine spinal cord (N. Geisler and K. Weber, J. Mol. Biol., 151, 565–571 (1981)), the procedure also allowed the simultaneous separation of the three neurofilament polypeptides (200,000; 150,000; and 70,000 daltons) contained in the 2 m urea extract. Brain filament proteins sequentially eluted at increasing salt concentration (25–200 mm NaCl) according to their isoelectric point. Proteins with higher pI eluted first. Tubulin eluted between the 200,000- and 150,000-dalton neurofilament polypeptides.  相似文献   

16.
The distribution of glial fibrillary acidic protein (GFAP) in normal human retina and in retinae with gliosis due to different diseases was studied by immunohistochemical methods. In normal retina, an evident GFAP-positivity is encountered only in the nerve fiber and ganglion cell layers; Müller cells do not stain. In retinal gliosis, together with an enhanced positivity of the perivascular and accessory glia, a strong staining for GFAP is observed in Müller cells, which extends from the inner to the outer limiting layers. A correlation between the intensity of immunohistochemical glial staining, its anatomical localization and the degree of retinal changes is suggested.  相似文献   

17.
Y Chen  Y X Zhang 《Acta cytologica》1989,33(6):922-928
Monoclonal antibodies were used to immunocytochemically demonstrate glial fibrillary acidic protein (GFAP) in 174 smear preparations of brain tumor tissue in order to investigate the presence and distribution of GFAP in a variety of intracranial tumors and to evaluate the value of this technique in the cytodiagnosis of brain tumors. GFAP-positive cells were found in the astrocytic tumors and in some of the oligodendrogliomas, ependymomas and medulloblastomas. In contrast, schwannomas, meningiomas, a primary lymphoma, a hemangiopericytoma pituitary adenomas, germinomas and metastatic tumors were negative for GFAP. The cytodiagnostic accuracy of the 174 brain tumors was raised from 90.8% to 97.1% when GFAP-immunoperoxidase staining was employed to aid the routine cytologic diagnosis. These findings indicate that immunoperoxidase staining for GFAP can be successfully applied to cytologic specimens and is a useful adjunct to routine cytologic diagnosis.  相似文献   

18.
A soluble immunoactive peptide with a molecular weight of 16 000 was isolated and purified from the cyanogen bromide digest of the insoluble 50 000 dalton glial fibrillary acidic protein by Sephacryl S-200 gel filtration followed by DEAE-Bio-gel A chromatography. The homogeneity of the peptide was established by SDS-polyacrylamide gel electrohporesis and isoelectric focusing. The peptide from several species showed immunocrossreaction with rabbit antibody to intact glial fibrillary acidic protein. The peptide has a pI value of 5.32. The amino acid sequence of 28 residues from the amino terminus of the calf peptide has been determined.  相似文献   

19.
The two-site immunoradiometric assay (two-site IRMA) for the brain-specific glial fibrillary acidic protein (GFA protein) is carried out by reaction of the GFA protein solution with a solid-phase anti(GFA) followed by a second reaction in which the insoluble product is incubated with purified, radioactive anti-(GFA). Unreacted labeled antibodies remain in solution and are washed away. As the amount of GFA increases, the radioactivity in the solid-phase increases. The most significant assay variables include (a) stability and reactivity of the solid-phase antibody, (b) washing the solid-phase, (c) nonspecific interference by serum proteins, and (d) a paradoxical fall in tube radioactivity which occurs at high dose (the “high-dose hook effect”). The assay becomes more sensitive and precise and the serum effect is minimized when the solid-phase antibody is separated from the matrix by an immunoglobulin “spacer-arm”. For a triplicate determination, the minimal detectable dose averaged 73 pg200 μl incubation. The assay precision enables a 500-fold assay range. GFA activity found in aged crude tissue or tissue-culture extracts, CSF, and used tissueculture media, often did not appear to be immunologically identical to the purified standard GFA protein. This may be explained by the known tendency of GFA protein to aggregate. The assay does not cross-react significantly with other common CNS proteins. Assay of various rat tissues confirms the localization of GFA protein only to the CNS.  相似文献   

20.
Glial fibrillary acidic protein (GFAP) is the major component of intermediate glial filaments in the central nervous system of many vertebrates and invertebrates. In vertebrates, this protein is mainly expressed in mature astrocytes and provides structural cell stability. The highly conserved structure and glial specificity of this protein have allowed studies of ontogeny and phylogeny using antibodies. The present study investigated the ontogenetic profile and molecular weight of GFAP in the snail, Megalobulimus abbreviatus, particularly in cerebral ganglia and subesophageal mass, by immunohistochemistry and immunoblotting. Our results confirm and extend previous studies about glial intermediate filaments in snails, showing: (i) a higher GFAP content in cerebral ganglia than in subesophageal mass; (ii) a developmental increase of GFAP immunocontent in cerebral ganglia, as described in Vertebrates; and (iii) an electrophoretic band for GFAP of approximately 55 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号