首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Crustaceans of the order Notostraca (Branchiopoda) are distributed worldwide and are known for the remarkable morphological stasis between their extant and Permian fossil species. Moreover, these crustaceans show relevant ecological traits and a wide range of reproductive strategies. However, genomic studies on notostracans are fairly limited. Here, we present the genome sequences of two notostracan taxa, Lepidurus arcticus and Lepidurus apus lubbocki. Taking advantage of the small genome sizes (~0.11 pg) of these taxa, genomes were sequenced for one individual per species with one run on the Illumina HiSeq X platform. We finally assembled 73.2 Mbp (L. arcticus) and 90.3 Mbp (L. apus lubbocki) long genomes. Assemblies cover up to 84% of the estimated genome size, with a gene completeness >97% for both genomes. In total, 13%–16% of the assembled genomes consist of repeats, and based on read mapping, L. apus lubbocki shows a significantly lower transposable element content than L. arcticus. The analysis of 2,376 orthologous genes indicates an ~7% divergence between the two Lepidurus taxa, with a nucleotide substitution rate significantly lower than that of Daphnia taxa. Ka/Ks analysis suggests purifying selection in both branchiopod lineages, raising the question of whether the low substitution rate of Lepidurus is correlated with morphological conservation or is linked to specific biological traits. Our analysis demonstrates that, in these organisms, it is possible to obtain high‐quality draft genomes from single individuals with a relatively low sequencing effort. This result makes Lepidurus and Notostraca interesting models for genomic studies at taxonomic, ecological and evolutionary levels.  相似文献   

2.
Samraoui  Boudjéma  Dumont  H.J. 《Hydrobiologia》2002,486(1):119-123
Between 1995 and 1999, we surveyed the large branchiopods (Crustacea, Branchiopoda) of Numidia, the coastal plain of northeastern Algeria. Samples from ca 100 sites yielded two species of Anostraca (Chirocephalus diaphanus, new to Numidia, and Tanymastix stagnalis), one notostracan (Lepidurus apus lubbocki) and one spinicaudatan (Cyzicus tetracerus). The absence of Streptocephalus torvicornis buchetiis noteworthy. An annotated check-list of all large branchiopods known from Algeria is also presented and discussed. Several species appear to be in danger of extinction.  相似文献   

3.
Z. Kuller  A. Gasith 《Hydrobiologia》1996,335(2):147-157
Rain-pool habitats are gradually disappearing in Israel as a result of agricultural and urban development. Present and past records of notostracan distribution here reveal a difference in the occurrence of Triops cancriformis and Lepidurus apus lubbocki, the former rather rare, and support the suggestion that species of Triops are more thermophilic than Lepidurus, with optimal hatching temperature 8–12°C higher. The limited distribution of T. cancriformis in Israel may be partly attributed to sub-optimal temperatures (<20°C) in early winter.All populations of T. cancriformis in Israel were monosexual female. Resting Notostraca eggs float and become exposed to light, needed for hatching, and to warm day-time temperatures at the water surface which enhance embryonic development. Exposure to higher temperatures may be particularly important for the thermophilic T. cancriformis in Israel, where deep water temperatures in early winter are often below hatching values.  相似文献   

4.
The germ cell lineage is first recognized as a population of mitotically proliferating primordial germ cells that migrate toward the gonadal ridge. Shortly after arriving at the gonadal ridge, the germ cells begin to initiate a commitment to gamete production in the developing gonad. The mechanisms controlling this transition are poorly understood. We recently reported that a mouse germ cell nuclear antigen 1 (GCNA1) is initially detected in both male and female germ cells as they reach the gonad at 11.5 days postcoitum (dpc). GCNA1 is continually expressed in germ cells through all stages of gametogenesis until the diplotene/dictyate stage of meiosis I. Since GCNA1 expression commences soon after primordial germ cells arrive at the gonadal ridge, we wanted to determine whether the gonadal environment was essential for induction of GCNA1 expression. By examining GCNA1 expression in germ cells that migrate ectopically into the adrenal gland, we determined that both the gonadal and adrenal gland environments allow GCNA1 expression. We also examined GCNA1 expression in Ftz-F1 null mice, which are born lacking gonads and adrenal glands. During embryonic development in the Ftz-F1 null mice, the gonad and most germ cells undergo apoptotic degeneration at about 12.5 dpc. While most of the germ cells undergo apoptosis without expressing GCNA1, a few surviving germs cells, especially outside the involuting gonad clearly express GCNA1. Thus, although the Ftz-F1 gene is essential for gonadal and adrenal development, induction of GCNA1 expression in germ cells does not require Ftz-F1 gene products. The finding that germ cell GCNA1 expression is not restricted to the gonadal environment and is not dependent on the Ftz-F1 gene products suggests that GCNA1 expression may be initiated in the germ cell lineage by autonomous means. Mol. Reprod. Dev. 48:154–158, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.

Background  

Dmrt1 is a highly conserved gene involved in the determination and early differentiation phase of the primordial gonad in vertebrates. In the fish medaka dmrt1bY, a functional duplicate of the autosomal dmrt1a gene on the Y-chromosome, has been shown to be the master regulator of male gonadal development, comparable to Sry in mammals. In males mRNA and protein expression was observed before morphological sex differentiation in the somatic cells surrounding primordial germ cells (PGCs) of the gonadal anlage and later on exclusively in Sertoli cells. This suggested a role for dmrt1bY during male gonad and germ cell development.  相似文献   

6.
Mantovani B. Cesari M. & Scanabissi F. (2004). Molecular taxonomy and phylogeny of the 'living fossil' lineages Triops and Lepidurus (Branchiopoda: Notostraca). — Zoologica Scripta , 33 , 367–374.
European Triops cancriformis and Lepidurus apus were analysed for 12S and 16S mitochondrial genes and compared to North American and Japanese taxa. There are no cryptic species among European T. cancriformis populations , which are highly homogeneous in comparison to conspecific Japanese samples. T. cancriformis differs from congeneric taxa all over its range, which can be explained by its antiquity. In contrast, the parapatric subspecies L. apus apus and L. apus lubbocki are morphologically conserved and differ substantially at the mtDNA level. The genetic distance values between them are of the same order of magnitude as those observed between American Lepidurus species. Their subspecific status therefore requires further analysis. L. apus apus is more closely related to a L. arcticus sample from Iceland than to L. apus lubbocki . It is also related to a Canadian L. couesii population. Further analyses of populations from the whole range of L. arcticus and the European range of L. couesii are needed to understand the relationships among these notostracan taxa. When considering the two genera, it is clear that Lepidurus is a well supported monophyletic unit, while Triops is polyphyletic, embodying very divergent taxa.  相似文献   

7.
Over the first 4 days of their life, primordial germ cells invade the endoderm, migrate into and through the developing hindgut, and traverse to the genital ridge where they cluster and ultimately inhabit the nascent gonad. Specific signal–receptor combinations between primordial germ cells and their immediate environment establish successful migration and colonization. Here we demonstrate that disruption of a cluster of six genes on murine chromosome 8, as exemplified by the Fused Toes (Ft) mutant mouse model, results in severely decreased numbers of primordial germ cells within the early gonad. Primordial germ cell migration appeared normal within Ft mutant embryos; however, germ cell counts progressively decreased during this time. Although no difference in apoptosis was detected, we report a critical decrease in primordial germ cell proliferation by E12.5. The six genes within the Ft locus include the IrxB cluster (Irx3, -5, -6), Fts, Ftm, and Fto, of which only Ftm, Fto, and Fts are expressed in primordial germ cells of the early gonad. From these studies, we have discovered that the Ft locus on mouse chromosome 8 is associated with cell cycle deficits within the primordial germ cell population that initiates just before translocation into the genital ridge.  相似文献   

8.
The structure of the gonad of the European eel (Anguilla anguilla [L.]), an “undifferentiated” gonochoristic teleost, was investigated by transmission electron microscopy from 6–8 cm elvers to 22 cm yellow eels with juvenile hermaphroditic gonads. The pear-shaped gonads of 6–8 cm elvers assume, in 12–15 cm eels, a lamellar shape and enlarge by migration of germ cells, which we refer to as primary primordial germ cells. In the gonads of ∼ 16 cm eels, the primary primordial germ cells multiply, giving rise to clusters of germ cells that have ultrastructural characteristics of the primary primordial germ cells but show giant mitochondria, enlarged Golgi complexes, and round bodies not limited by membranes. We refer to these as secondary primordial germ cells. In 16–18 cm eels, syncytial clones of oogonia interconnected by cytoplasmic bridges are also observed. In 18–22-cm-long eels, the gonads contain primordial germ cells, oogonial clones, early oocyte cysts, single oocytes in early growth stages, and primary spermatogonia. Such germ cells are present in the same cross section where they are either intermingled or are in areas of predominantly female germ cells close to areas with predominantly male germ cells. These gonads are juvenile hermaphroditic and should be considered ambisexual because in larger eels they differentiate either into an ovary or into a testis. Somatic cells always envelop the germ cells following their migration into the gonad. These somatic cells first show similar ultrastructural features and then differentiate either into early Sertoli cells investing spermatogonia, or into early follicular (granulosa) cells investing the early previtellogenic oocytes. In eels ∼ 14 cm long, primitive steroid-producing cells also migrate into the gonad. In the ambisexual gonad they differentiate either into immature Leydig cells in the male areas, or into early special cells of the theca in the female areas. Nerve fibers are joined to the steroid-producing cells. Gonad development and differentiation are also associated with structural changes of the connective tissue characterized by the progressive appearance and deposition of collagen fibrils first in the mesogonadium, then in the gonad vascular region, and then in the germinal region. The collagen-rich areas are massive in the male areas and reduced in the female ones. J. Morphol. 231:195–216, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
We investigated the mechanism by which germline cells are recruited in every asexual reproductive cycle of the budding tunicate Polyandrocarpa misakiensis using a vasa homolog (PmVas) as the germline-specific probe. A presumptive gonad of Polyandrocarpa arose as a loose cell aggregate in the ventral hemocoel of a 1-week-old developing zooid. It developed into a compact clump of cells and then separated into two lobes, each differentiating into the ovary and the testis. The ovarian tube that was formed at the bottom of the ovary embedded the oogonia and juvenile oocytes, forming the germinal epithelium. PmVas was expressed strongly by loose cell aggregates, compact clumps, and peripheral germ cells in the testis and germinal epithelium. No signals were detected in growing buds and less than 1-week-old zooids, indicating that germ cells arise de novo in developing zooids of P. misakiensis. Cells of the loose cell aggregates were 5–6 μm in diameter. They looked like undifferentiated hemoblasts in the hemocoel. To examine the involvement of PmVas in the germline recruitment at postembryonic stages, both growing buds and 1-week-old developing zooids were soaked with double-stranded PmVas RNA. The growing buds developed into fertile zooids expressing PmVas, whereas the 1-week-old zooids developed into sterile zooids that did not express PmVas. In controls (1-week-old zooids) soaked with double-stranded lacZ RNA, the gonad developed normally. These results strongly suggest that in P. misakiensis, PmVas plays a decisive role in switching from coelomic stem cells to germ cells.  相似文献   

10.
The Vasa family of proteins comprises several conserved DEAD box RNA helicases important for mRNA regulation whose exact function in the germline is still unknown. In Caenorhabditis elegans, there are six known members of the Vasa family, and all of them are associated with P granules. One of these proteins, VBH‐1, is important for oogenesis, spermatogenesis, embryo development, and the oocyte/sperm switch in this nematode. We decided to extend our previous work in C. elegans to sibling species Caenorhabditis remanei to understand what is the function of the VBH‐1 homolog in this gonochoristic species. We found that Cre‐VBH‐1 is present in the cytoplasm of germ cells and it remains associated with P granules throughout the life cycle of C. remanei. Several aspects between VBH‐1 and Cre‐VBH‐1 function are conserved like their role during oogenesis, spermatogenesis, and embryonic development. However, Cre‐vbh‐1 silencing in C. remanei had a stronger effect on spermatogenesis and spermatid activation than in C. elegans. An unexpected finding was that silencing of vbh‐1 in the C. elegans caused a decrease in germ cell apoptosis in the hermaphrodite gonad, while silencing of Cre‐vbh‐1 in C. remanei elicited germ cell apoptosis in the male gonad. These data suggest that VBH‐1 might play a role in germ cell survival in both species albeit it appears to have an opposite role in each one. genesis 1–18 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG) is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR), Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target.  相似文献   

12.
In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG) is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR), Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target.  相似文献   

13.
Nanos is expressed in the primordial germ cells (PGCs) and also the germ cells of a variety of organisms as diverse as Drosophila, medaka fish, Xenopus and mouse. In Nanos3‐deficient mice, PGCs fail to incorporate into the gonad and the size of the testis and ovary is thereby dramatically reduced. To elucidate the role of Nanos in an amphibian species, we cloned Nanos3 cDNA from the testis of the R. rugosa frog. RT‐PCR analysis showed strong expression of Nanos3 mRNA in the testis of adult R. rugosa frogs, but expression was not sexually dimorphic during gonadal differentiation. In Nanos3‐knockdown tadpoles produced by the CRISPR/Cas9 system, the number of germ cells decreased dramatically in the gonads of both male and female tadpoles before sex determination and thereafter. This was confirmed by three dimensional imaging of wild‐type and Nanos3 knockdown gonads using serial sections immunostained for Vasa, a marker specific to germ cells. Taken together, these results suggest that Nanos3 protein function is conserved between R. rugosa and mouse.  相似文献   

14.
15.
Nemerteans possess serially arranged gonads that lie between the midgut pouches. In both sexes the gonads are lined with an epithelium. During maturity, they gain contact to the exterior by a ciliated duct, which is generally assumed to be a derivative of the gonad. Gonad lining and sperm ultrastructure are little known in heteronemerteans, a group of nemerteans belonging to the Anopla, one of the two large nemertean subgroups. Reproduction biology in heteronemertean Lineus viridis allows predicting a modified sperm type, so-called introsperm for this taxon. Nothing is known on the fate of the testes at the end of the reproductive period of this perennial species. In order to test the predictions and to broaden the data base, males of L. viridis were collected at different times of the year. Histological and ultrastructural data show that the gonad wall is lined with different aciliated endothelial cells and germ cells, while the gonoduct is formed by densely ciliated cells. The testes are completely filled with sperm cells during maturity; there is no hint at ongoing spermiogenesis at this time. The sperm consists of head, midpiece and tail. Externally, head and midpiece cannot be discriminated. The acrosome is cup-shaped and lies anterior to the nucleus which contains 6–8 lateral ridges. Three long mitochondria mark the midpiece. They line the posterior section of the nucleus and extend up to the level of the ciliary basal structures. The sperm morphology corroborates the predictions derived from the mode of reproduction. At the end of the reproductive period the male gonads change cellular composition, while the gonoduct degenerates. Provided that both sexes show the same growth rate, male offspring acquire sexual maturity earlier than female offspring, since L. viridis males are always smaller than the females. In contrast to the males, females keep their gonads and gonoducts during most time of the year. Since large males were never found within the studied population, these data indicate that L. viridis might be a consecutive hermaphrodite.  相似文献   

16.
Summary We transplanted pole cells betweenDrosophila melanogaster, D. mauritiana andD. ananassae to investigate the ability of germ cells to develop in the gonad of a heterospecific host, and to study the interaction between somatic follicle cells and the cells of the germ line in producing the species-specific chorion. FemaleD. mauritiana germ cells in aD. melanogaster ovary produced functional eggs with normal development potential. The same is true for the reciprocal combination. FemaleD. ananassae pole cells in aD. melanogaster host only developed to a very early stage and degenerated afterwards. None of the interspecific combinations of male pole cells led to functional sperm. We could not determine at what stage the transplanted male pole cells were arrested. The cooperation of follicle cells and the oocyte-nurse cell complex in producing the chorion was studied using the germ-line-dependent mutationfs(1) K10 ofD. melanogaster, which causes fused respiratory appendages and an abnormal chorion morphology. Wild-type femaleD. mauritiana germ cells in a mutantfs(1) K10 D. melanogaster ovary led to the production of wild-type eggs withD. melanogaster-specific, short respiratory appendages. On the other hand,D. melanogaster fs(1) K10 germ cells in aD. mauritiana ovary induced the formation of eggs with mutant fused appendages which were, however, typicallyD. mauritiana in length. When.D. mauritiana pole cells developed in aD. melanogaster ovary, the chorion exhibited a new imprint pattern that differs from both species-specific patterns.  相似文献   

17.
Planarians are highly regenerative organisms with the ability to remake all their cell types, including the germ cells. The germ cells have been suggested to arise from totipotent neoblasts through epigenetic mechanisms. Nanos is a zinc-finger protein with a widely conserved role in the maintenance of germ cell identity. In this work, we describe the expression of a planarian nanos-like gene Smednos in two kinds of precursor cells namely, primordial germ cells and eye precursor cells, during both development and regeneration of the planarian Schmidtea mediterranea. In sexual planarians, Smednos is expressed in presumptive male primordial germ cells of embryos from stage 8 of embryogenesis and throughout development of the male gonads and in the female primordial germ cells of the ovary. Thus, upon hatching, juvenile planarians do possess primordial germ cells. In the asexual strain, Smednos is expressed in presumptive male and female primordial germ cells. During regeneration, Smednos expression is maintained in the primordial germ cells, and new clusters of Smednos-positive cells appear in the regenerated tissue. Remarkably, during the final stages of development (stage 8 of embryogenesis) and during regeneration of the planarian eye, Smednos is expressed in cells surrounding the differentiating eye cells, possibly corresponding to eye precursor cells. Our results suggest that similar genetic mechanisms might be used to control the differentiation of precursor cells during development and regeneration in planarians. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Callichirus major inhabits the intertidal region of marine ecosystems and it is frequently used as live bait for fishing. This study aimed to describe the functional anatomy of the male reproductive system by microscopic techniques. The animals were collected along the Corujão beach, Piuma—ES, Brazil, and, in laboratory, the males were classified into two phases: immature (IM) and developed (DE) based on the macroscopic characteristics of the gonads. The gonad and vas deferens were dissected for histological routine and histochemical tests. Histologically, it was noted that in both phases, the more distal region of gonads has ovarian characteristics, showing developing oocytes. Also, different male germ cells were identified: spermatogonium (SPG), spermatocytes I and II (SPTCI, SPTCII), initial and final spermatid (IS, FS) and sperm (SPZ). Accessory cells with spherical or pyramidal nuclei were also present inside the testicular lobules. According to the vas deferens structure, three regions can be characterized: proximal (PVD), middle (MVD) and distal (DVD). In the lumen of the vas deferens, a spermatophoric matrix highly reactive for histochemical tests was observed. The presence of female germ cells in males suggests the occurrence of intersexuality or hermaphroditism in this species.  相似文献   

19.
Increased reproduction is frequently associated with a reduction in longevity in a variety of organisms. Traditional explanations of this 'cost of reproduction' suggest that trade-offs between reproduction and longevity should be obligate. However, it is possible to uncouple the two traits in model organisms. Recently, it has been suggested that reproduction and longevity are linked by molecular signals produced by specific reproductive tissues. For example, in Caenorhabditis elegans, lifespan is extended in worms that lack a proliferating germ line, but which possess somatic gonad tissue, suggesting that these tissues are the sources of signals that mediate lifespan. In this study, we tested for evidence of such gonadal signals in Drosophila melanogaster. We ablated the germ line using two maternal effect mutations: germ cell-less and tudor. Both mutations result in flies that lack a proliferating germ line but that possess a somatic gonad. In contrast to the findings from C. elegans, we found that germ line ablated females had reduced longevity relative to controls and that the removal of the germ line led to an over-proliferation of the somatic stem cells in the germarium. Our results contrast with the widely held view that it is downstream reproductive processes such as the production and/or laying of eggs that are costly to females. In males, germ line ablation caused either no difference, or a slight extension, in longevity relative to controls. Our results indicate that early acting, upstream reproductive enabling processes are likely to be important in determining reproductive costs. In addition, we suggest that the specific roles and putative patterns of molecular signalling in the germ line and somatic tissues are not conserved between flies and worms.  相似文献   

20.
The social structure of the false clownfish (Amphiprion ocellaris) typically consists of a pair of functional brooders within a population of individuals which remain as protandrous hermaphrodites usually incapable of breeding. This situation often hampers the commercial scale production of large numbers of clownfish offspring and broodstock. To enhance breeding outputs, protandrous hermaphrodites must be converted to functional brooders with a distinct sex prior to pairing and breeding. In this study, 17β-estradiol (E2) was used to feminize juveniles of A. ocellaris, with groups of fish incubated at 0.1, 0.2, and 0.4 mgL?1 E2 for 15 days. The gender was substantiated on the basis of gonad histological profiles after 15, 30, and 60 days, work that includes verification of the safety levels of this hormone used in this application. All the treatments employed induced feminization, as shown by histology profiles revealing degenerate male germ cells and testes tissues and several developed ovarian cells at different stages (oogonia, previtellogenic and vitellogenic) 30 days after E2 incubation. Conversely, gonad profiles of non-treated fish did not change. The gonads possessed both ovarian and testicular tissues, a typical characteristic indicating that the fish are still ambisexual. Although E2 was effective in promoting gonad maturation, incubation of fish in high concentrations adversely affected fish survival. Mortalities occurred when E2 exceeded 0.1 mgL?1. The latter concentration is considered the most appropriate level for inducing feminization and at the same time, maintaining the well-being of the organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号