首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various plasma proteins, for example, transferrin, are synthesized not only in the liver, but also in the brain. The proportion of transferrin mRNA in total RNA from different regions of brains from various mammalian species was studied by Northern blot analysis. Absolute amounts of transferrin mRNA were determined in brain, choroid plexus, and liver from rats, sheep, and pigs by hybridization in solution followed by ribonuclease protection assay. Corrections for differences in yields of RNA were made using internal RNA standards. Large proportions of transferrin mRNA in total RNA and high absolute levels of transferrin mRNA in choroid plexus were found only in rats. Small proportions of transferrin mRNA were observed in RNA from choroid plexus from mice, dogs, and rabbits, while no transferrin mRNA at all was detected in choroid plexus from humans, sheep, pigs, cows, and guinea pigs. In further analysis of sheep and pigs, various amounts of transferrin mRNA were found in many parts of the brain, in contrast to the absence of transferrin mRNA from choroid plexus. In conclusion, a striking species specificity was observed for the pattern of cerebral expression of the transferrin gene.  相似文献   

2.
A chicken liver cDNA library was constructed in bacteriophage lambda gt10. A full-length transthyretin cDNA clone was identified by screening with rat transthyretin cDNA and was sequenced. A three-dimensional model of chicken transthyretin was obtained by computer-graphics-based prediction from the derived amino acid sequence for chicken transthyretin and from the structure of human transthyretin determined by X-ray diffraction analysis [Blake, C.C.F., Geisow, M.J., Oatley, S.J., Rérat, B. & Rérat, C. (1978) J. Mol. Biol. 121, 339-356]. The similarity of the amino acid sequences of chicken and human transthyretins was 75% overall and 100% for the central channel containing the thyroxine-binding site. Also, the organization of the transthyretin gene into exons and introns and the tissue specificity of expression of the transthyretin gene were similar in chicken and mammals, despite an evolutionary distance of about 3 x 10(8) years from their common ancestor, the Cotylosaurus. By far the highest levels of transthyretin mRNA were found in choroid plexus. The data suggest a fundamental role for the cerebral expression of transthyretin in all vertebrates. It has been proposed that this role is the transport of thyroxine from the bloodstream to the brain [Schreiber, G., Aldred, A.R., Jaworowski, A., Nilsson, C., Achen, M.G. & Segal, M.B. (1990) Am. J. Physiol. 258, R338-R345].  相似文献   

3.
4.
The complete amino acid sequence of a basic non-histone protein, H6, isolated from the chromatin of rainbow trout (Salmo gairdnerii) testis cells, has been determined. Protein H6, first described by D. T. Wigle and G. H. Dixon [J. Biol. Chem. 246, 5636--5644 (1971)] was extracted with 5% trichloracetic acid and purified by ion-exchange chromatography on carboxymethyl-cellulose (CM-52). Sequence analysis was performed by automatic Edman degradation of the amino terminus of the intact protein and a series of large fragments derived by cleavage with chymotrypsin, staphylococcal protease and with mild acid to cleave at aspartic acid residues. Protein H6 possesses 69 residues and shows considerable similarities to the 89-residue calf thymus HMG-17 protein previously sequenced [Walker, J. M., Hastings, J. R. B. & Johns, E. W. (1977) Eur. J. Biochem. 76, 461--468]. B. Levy W. and G. H. Dixon [Proc. Natl Acad. Sci. U.S.A. 74, 2810--2814 (1977)] have shown that H6 is selectively solubilized when trout testis nuclei (or chromatin) are digested with DNase I under conditions which preferentially hydrolyze that portion of DNA enriched in transcribed sequences [Levy, W. B. & Dixon, G. H. (1977) Nucleic Acids Res. 4, 883--898]. Recently H6 has been located as a stoichiometric component of a distinct subset of trout testis nucleosomes that are complexed with a core nucleosome comprising 140 base pairs of DNA and the inner histones H2A, H2B, H3 and H4 [Levy, W. B., Connor, W. & Dixon, G. H. (1979) J. Biol. Chem., in the press].  相似文献   

5.
Expression of plasma protein genes in various parts of the rat brain was studied by hybridizing radioactive cDNA to RNA in cytoplasmic extracts. No mRNA could be detected in brain for the beta subunit of fibrinogen, major acute phase alpha 1-protein, alpha 1-acid glycoprotein and albumin. However, per g tissue, the choroid plexus contained at least 100 times larger amounts of prealbumin mRNA than the liver and about the same amount of transferrin mRNA as liver. No prealbumin mRNA was found in other areas of the brain. The results obtained suggest very active synthesis of prealbumin in choroid plexus, which would be an important link in the transport of thyroid hormones from the blood to the brain via the cerebrospinal fluid.  相似文献   

6.
Tissue patterns of gene expression were analyzed by measuring mRNA levels and incorporation of radioactive amino acids for cystatin C and beta 2-microglobulin, the two extracellular proteins in the brain with the highest ratio of concentration in cerebrospinal fluid over that in blood plasma. The primary structure of rat cystatin C mRNA from choroid plexus was determined by nucleotide sequencing of cloned cDNA and the tissue patterns of gene expression were analysed by RNA blot analysis and in situ hybridization. Cystatin C was found to be composed of 120 amino acids and to contain a potential site for N-linked glycosylation. The tissue with the highest cystatin C mRNA level was the choroid plexus of the brain. Cystatin C mRNA was also detected in lower levels in other areas of the brain, testis, epididymis, seminal vesicles, prostate, ovary, submandibular gland, and, in trace amounts, in liver. Choroid plexus pieces in culture secreted radioactive cystatin C when incubated with radioactive leucine. Rat beta 2-microglobulin cDNA was cloned and identified by nucleotide sequencing and comparison of the obtained sequence with that of mouse and human beta 2-microglobulin cDNA. Tissue levels of beta 2-microglobulin mRNA in the rat were measured by hybridization to rat beta 2-microglobulin cDNA. The highest levels of beta 2-microglobulin mRNA were observed in liver and choroid plexus. Other parts of the brain and testis contained lower levels of beta 2-microglobulin mRNA.  相似文献   

7.
8.
For nearly 50 years, succinyl-CoA synthetase in animals was thought to be specific for guanine nucleotides. Recently, we purified and characterized both an ADP-forming succinyl-CoA synthetase from pigeon breast muscle and the GDP-forming enzyme from liver (Johnson, J. D., Muhonen, W. W., and Lambeth, D. O. (1998) J. Biol. Chem. 273, 27573-27579). Using the sequences of the pigeon enzymes as queries in BLAST searches, we obtained genetic evidence that both enzymes are expressed in a wide range of animal species (Johnson, J. D., Mehus, J. G., Tews, K., Milavetz, B. I., and Lambeth, D. O. (1998) J. Biol. Chem. 273, 27580-27586). Here we extend those observations by presenting data from Western and Northern blots and enzymatic assays showing that both proteins are widely expressed in mammals with the relative amounts varying from tissue to tissue. We suggest that both succinyl-CoA synthetases catalyze the reverse reaction in the citric acid cycle in which the ADP-forming enzyme augments ATP production, whereas the GDP-forming enzyme supports GTP-dependent anabolic processes. Widely accepted shuttle mechanisms are invoked to explain how transport of P-enolpyruvate across mitochondrial membranes can transfer high energy phosphate between the cytosol and mitochondrial matrix.  相似文献   

9.
We have constructed a nearly full length cDNA clone, pGTA/C44, complementary to the rat liver glutathione S-transferase Yb1 mRNA. The nucleotide sequence of pGTA/C44 has been determined, and the complete amino acid sequence of the Yb1 subunit has been deduced. The cDNA clone contains an open reading frame of 654 nucleotides encoding a polypeptide comprising 218 amino acids with Mr = 25,919. The NH2-terminal sequence deduced from DNA sequence analysis of pGTA/C44 is in agreement with the first 19 amino acids determined for purified glutathione S-transferase A, a Yb1 homodimer, by Frey et al. (Frey, A. B., Friedberg, T., Oesch, F., and Kreibich, G. (1983) J. Biol. Chem. 258, 11321-11325). The DNA sequence of pGTA/C44 shares significant sequence homology with a cDNA clone, pGT55, which is complementary to a mouse liver glutathione S-transferase (Pearson, W. R., Windle, J. J., Morrow, J. F., Benson, A. M., and Talalay, P. (1983) J. Biol. Chem. 258, 2052-2062). We have also determined 37 nucleotides of the 5'-untranslated region and 348 nucleotides of the 3'-untranslated region of the Yb1 mRNA. The Yb1 mRNA and subunit do not share any sequence homology with the rat liver glutathione S-transferase Ya or Yc mRNAs or their corresponding subunits. These data provide the first direct evidence that the Yb1 subunit is derived from a gene or gene family which is distinct from the Ya-Yc gene family.  相似文献   

10.
Calmodulin was isolated in large quantities from ram testis by a simple procedure involving sequentially ammonium sulfate fractionation, heat treatment, anion exchange chromatography on DEAE-cellulose and gel filtration on Sephacryl S-200. Divalent cations (Mg2+ and/or Ca2+) were present throughout the purification which was entirely performed in the absence of chelators. The final yield was approx. 90 mg per kg testis. Ram testis calmodulin appears to be essentially identical to the brain homologous protein by the following criteria: ultraviolet absorption spectrum, amino acid composition showing a single residue of ?-N-trimethyl lysine, and tryptic peptide maps obtained by high performance liquid chromatography. Turkey gizzard myosin light-chain kinase, the activation of which is extremely specific for calmodulin (Walsh, M.P., Vallet, B., Cavadore, J.C. and Demaille, J.G. (1980) J. Biol. Chem. 255, 335–337), was indeed activated by ram testis calmodulin in the presence of calcium. The isolated protein migrated at different rates upon sodium dodecyl sulfate polyacrylamide gel electrophoresis, depending on the absence or presence of divalent metals which probably induce different conformations. The relative migration rates were Ca2+ > Mn2+ > Mg2+ > EDTA. In the presenceof divalent metals, the observed doublet may be ascribed to the equilibrium between ion-free and ion-saturated forms, which exhibited different Stokes radii, as already suggested (Grab, D.J., Berzins, K., Cohen, R.S. and Siekevitz, P. (1979) J. Biol. Chem. 254, 8690–8696).  相似文献   

11.
12.
1. Human APP cDNA hybridized to a 3.5 kb mRNA in liver and brain RNA from chickens, pigeons, quail and ducks as well as in RNA from choroid plexus of chicken and quail. In contrast to all other species hitherto examined a 1.6 kb mRNA hybridizing to APP cDNA was found in abundant amounts in RNA from chicken and quail livers. 2. In the chicken, before hatching, the levels of APP mRNA in total RNA from liver and choroid plexus were higher than those in RNA from liver and choroid plexus of adults. However, RNA from the rest of the brain of chicken embryos contained less APP mRNA than RNA from brain of adults. 3. In the chicken, between 10 and 40 days after hatching, APP mRNA levels in RNA from liver were higher than adult levels, APP mRNA levels in RNA from choroid plexus were similar to adult levels and APP mRNA levels in RNA from the rest of brain were below the adult levels.  相似文献   

13.
14.
The sites of synthesis of transthyretin in the brain were investigated using in situ hybridization with [35S]-labeled recombinant cDNA probes specific for transthyretin mRNA. Autoradiography of hybridized coronal sections of rat brain revealed specific cellular localization of transthyretin mRNA in choroid plexus epithelial cells of the lateral, third, and fourth ventricles. Transferrin mRNA was also investigated and, in contrast to transthyretin mRNA, was localized mainly in the lateral ventricles. Our results indicate that substantial synthesis of transthyretin and transferrin mRNA may occur in the choroid plexus.  相似文献   

15.
Alkaline phosphatase of matrix vesicles isolated from fetal bovine epiphyseal cartilage was purified to apparent homogeneity using monoclonal antibody affinity chromatography. The enzyme from the butanol extract of matrix vesicles bound specifically to the immobilized antibody-Sepharose in the presence of 2% Tween 20 whereas the major portion of nonspecific protein was removed by this single step. Of various agents tested, 0.6 M 2-amino-2-methyl-1-propanol, pH 10.2, was the most effective in eluting 80-100% of the enzyme initially applied. Both Tween 20 and 2-amino-2-methyl-1-propanol associated with the eluted enzyme were effectively removed by the sequential application of DEAE-cellulose and Sepharose CL-6B chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme preparation treated with sodium dodecyl sulfate and mercaptoethanol showed the presence of a dominant band (using silver staining) corresponding to a molecular weight of 81,000. This molecular weight was nearer reported values for rat liver (Ohkubo, A., Langerman, N., and Kaplan, M. M. (1974) J. Biol Chem. 249, 7174-7180) and porcine kidney (Cathala, G., Brunel, C., Chapplet-Tordo, D., and Lazdunski, M. (1975) J. Biol. Chem. 250, 6040-6045) alkaline phosphatase, than to previously reported values for chicken (Cyboron, G. W., and Wuthier, R. E. (1981) J. Biol. Chem. 256, 7262-7268) and fetal calf (Fortuna, R., Anderson, H. C., Carty, R. P., and Sajdera, S. W. (1980) Calcif. Tissue Int. 30, 217-225) cartilage matrix vesicle alkaline phosphatase. The purified alkaline phosphatase was activated by micromolar Mg2+. The amino acid composition of cartilage alkaline phosphatase was found to be similar to that previously described for porcine kidney (Wachsmuth, E. D., and Hiwada, K. (1974) Biochem. J. 141, 273-282). Double immunoprecipitation data indicated that monoclonal antibody against cartilage alkaline phosphatase cross-reacted with fetal bovine liver or kidney enzyme but failed to react with calf intestinal or rat cartilage enzyme. Thus these observations suggest that alkaline phosphatase of matrix vesicles from calcifying epiphyseal cartilage is a liver-kidney-bone isozyme.  相似文献   

16.
We have compared the plasma clearance rate of radioactive iron in cows both as ferric chloride and as iron specifically bound to transferrin. We have also repeated the transfusion experiment of Dern et al. (Dern, R.J., Monti, A. and Glynn, M.F. (1963) J. Lab. Clin. Med. 61, 280–291) using goats. The results show that neither non-specifically bound iron (Bates, G.W. and Schlabach, M.R. (1973) J. Biol. Chem. 248, 3228–3232) nor the iron bound to the two different sites in transferrin (Awai, M., Chipman, B and Brown, E.B. (1975) J. Lab. Clin. Med. 85, 769–784) can be identified as distinguishable iron pools by this technique.  相似文献   

17.
Previously reported inhibitions of heart lactate dehydrogenase (Guppy, M., and Hochachka, P.W. (1978) J. Biol. Chem. 253, 8465-8469) and muscle pyruvate kinase (Kemp, R.G. (1973) J. Biol. Chem. 248, 3963-3967) by creatine phosphate are due to oxalate which is a contaminant found in some commercial preparations of creatine phosphate.  相似文献   

18.
Two different photoaffinity analogs of 4-hydroxy coumarin, 3-(p-azidobenzyl)-4-hydroxycoumarin (AzBHC) and 3-(4-azido-5-iodosalicylamido)-4-hydroxycoumarin (AzISAHC), are being used in the identification of warfarin-binding proteins present in mammalian tissue (Myszka, D. G., and Swenson, R. P. (1990) Biochem. Biophys. Res. Commun. 172, 415-422; Myszka, D. G., and Swenson, R. P. (1991) J. Biol. Chem. 266, 4789-4797). In this study, [14C]AzBHC, but not [125I]AzISAHC, was observed to specifically label a 15,000-dalton protein present in both the microsomal and cytosolic fractions of rat liver. Pretreatment of the crude protein samples with warfarin or dicoumarol completely protected the 15-kDa protein from modification by [14C]AzBHC, indicating that this photoaffinity reagent is specifically labeling a coumarin-binding protein. 4-Hydroxycoumarin itself and AzISAHC were unable to block the incorporation of this photoaffinity probe. The 15-kDa protein was isolated by two-dimensional electrophoresis and subjected to amino-terminal sequence analysis. The first 20 amino acid residues analyzed were found to be identical with the amino-terminal sequence of rat liver fatty acid-binding protein (L-FABP) (Gordon J. I., Alpers, D. H., Ockner, R. K., and Strauss, A. W. (1983) J. Biol. Chem. 258, 3356-3363). Photoaffinity labeling and protection experiments carried out on purified preparations of L-FABP paralleled the labeling results obtained in the microsomes and cytosol, confirming that L-FABP is capable of specifically binding AzBHC, warfarin, and dicoumarol. Oleic acid, an established ligand for L-FABP, can compete with the binding of the photoaffinity probe; however, it was less effective in protecting the protein than warfarin. The specificity of labeling of crude liver fractions by warfarin photoaffinity analogs reported here as well as the high concentration of FABP in liver tissue together suggest that this protein may represent a major hepatic receptor responsible for the uptake and/or transport of various oral 4-hydroxycoumarin-based anticoagulant drugs.  相似文献   

19.
A C Anusiem  M Kelleher 《Biopolymers》1984,23(7):1147-1167
Interest in the thermodynamics of the iron-binding site in hemoproteins has increased in recent years due to refinements in x-ray crystallographic studies of hemoproteins [see Deathage, J. F., Lee, R. S., Anderson, C. M. & Moffat, K. (1976) J. Mol. Biol. 104 , 687–706; Heidner, E. J., Ladner, R. C. & Perutz, M. F. (1976) J. Mol. Biol. 104 , 707–722; Deathage, J. F., Lee, R. S. & Moffat, K. (1976) J. Mol. Biol. 104 , 723–728; Ladner, R. C., Heidner, E. J. & Perutz, M. F. (1976) J. Mol. Biol. 114 , 385–414; Fermi, G. & Perutz, M. F. (1977) J. Mol. Biol. 114 , 421–431; Takano, T. (1977) J. Mol. Biol. 110 , 537–568 and 569–589], the synthesis and x-ray analysis of model heme compounds [see Scheidt, W. R. (1977) Acc. Chem. Res. 10 , 339–345; Kastner, M. E., Scheidt, W. R., Mashino, T. & Reed, C. A. (1978) J. Am. Chem. Soc. 100 , 666–667; Mashiko, T., Kastner, M. E., Spartalian, K., Scheidt, W. R. & Reed, C. A. (1978) J. Am. Chem. Soc. 100 , 6354–6362; Hill, H. A. O., Skite, P. P., Buchler, J. W., Luchr, H., Tonn, M., Gregson, A. K. & Pellizer, G. (1979) Chem. Commun. 4 , 151–152; and Scheidt, W. R., Cohen, I. A. & Kastner, M. E. (1979) Biochemistry 18 , 3546–3556], and the numerous data on heme–protein interactions that account for the differences observed in ligand binding between the various species of animals. Numerous probes have been used and provide information about the structure and thermodynamics of the binding site, but no single probe can provide the complete picture [see Iizuka, T. & Yonetani, T. (1970) Adv. Biophys. 1 , 157–182; Smith, D. W. & Williams, R. J. P. (1970) Struct. Bond. 7 , 1–45; and Spiro, T. G. (1975) Biochim. Biophys. Acta 416 , 169–189].  相似文献   

20.
Human gamma-glutamyl transpeptidase (GGT)1 is composed of two subunits derived from a single precursor (Nash, B., and Tate, S.S. (1984) J. Biol. Chem. 259, 678-685; Finidori, J., Laperche, Y., Tsapis, R., Barouki, R., Guella?n, G., and Hanoune, J. (1984) J. Biol. Chem. 259, 4687-4690) consisting of 569 amino acids (Laperche, Y., Bulle, F., Aissani, T., Chobert, M.N., Aggerbeck, M., Hanoune, J., and Guella?n, G. (1986) Proc Natl. Acad. Sci. U.S.A. 83, 937-941). In the present study we report the cloning of an altered form of this precursor from human liver. We have isolated two clones, one 2,632 base pairs (bp) long from a fetal liver cDNA library and one 926 bp long from an adult liver cDNA library, each containing a 22-bp insertion that introduces a premature stop codon and shortens the open reading frame to 1,098 bp when compared with known human cDNA sequences specific for GGT. Sequence analysis of a human genomic GGT clone shows that this insertion of 22 bp is generated by a splicing event involving an alternative 3'-acceptor site. By polymerase chain reaction experiments we demonstrate that the alternatively spliced mRNA is present in polysomes from the microsomal fraction of a human hepatoma cell line (Hep G2) and thus could encode an altered GGT molecule of 39,300 Da (366 amino acids) encompassing most of the heavy subunit which is normally 41,500 Da (380 amino acids). The altered mRNA is detected in various human tissues including liver, kidney, brain, intestine, stomach, placenta, and mammary gland. This report is the first demonstration of an alternative primary sequence in the mRNA coding for GGT, a finding that could be related to the presence of some inactive forms of GGT detected in human tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号