首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wza is a highly conserved multimeric outer membrane protein complex required for the surface expression of the serotype K30 group 1 capsular polysaccharide in Escherichia coli. Here we present the first three-dimensional structure of this type of polysaccharide exporter at a 15.5-A resolution obtained using single particle averaging on a dataset of cryo-negatively stained protein. Previous structural studies on purified Wza have revealed a homo-oligomeric ring structure that is most probably composed of eight subunits. Symmetry analysis of the three-dimensional structure combined with biochemical two- and three-dimensional crystallographic data strongly suggest that Wza is an octameric complex with a C4 quasi-rotational symmetry and is organized as a tetramer of dimeric subunits. Wza is best described as a stack of two 4-A high rings with differing diameters providing a mushroom-like aspect from the side. The larger ring has a distinctive square shape with a diameter of 115 A, whereas the smaller is almost circular with a diameter of 90 A. In the center of the complex and enclosed by the four symmetrical arms is a small elliptical cagelike cavity of approximately 40 A in diameter. The central cavity is effectively sealed at the top and bottom of the complex but has small inter-arm holes when viewed from the side. We discuss the structure of this complex and implications in the surface translocation of cell-surface polysaccharide.  相似文献   

2.
The late steps in assembly of capsular polysaccharides (CPS) and their translocation to the bacterial cell surface are not well understood. The Wza protein was shown previously to be required for the formation of the prototype group 1 capsule structure on the surface of Escherichia coli serotype K30 (Drummelsmith, J., and Whitfield, C. (2000) EMBO J. 19, 57-66). Wza is a conserved outer membrane lipoprotein that forms multimers adopting a ringlike structure, and collective evidence suggests a role for these structures in the export of capsular polymer across the outer membrane. Wza was purified in the native form and with a C-terminal hexahistidine tag. WzaHis6 was acylated and functional in capsule assembly, although its efficiency was slightly reduced in comparison to the native Wza protein. Ordered two-dimensional crystals of WzaHis6 were obtained after reconstitution of purified multimers into lipids. Electron microscopy of negatively stained crystals and Fourier filtering revealed ringlike multimers with an average outer diameter of 8.84 nm and an average central cavity diameter of 2.28 nm. Single particle analysis yielded projection structures at an estimated resolution of 3 nm, favoring a structure for the WzaHis6 containing eight identical subunits. A derivative of Wza (Wza*) in which the original signal sequence was replaced with that from OmpF showed that the native acylated N terminus of Wza is critical for formation of normal multimeric structures and for their competence for CPS assembly, but not for targeting Wza to the outer membrane. In the presence of Wza*, CPS accumulated in the periplasm but was not detected on the cell surface. Chemical cross-linking of intact cells suggested formation of a transmembrane complex minimally containing Wza and the inner membrane tyrosine autokinase Wzc.  相似文献   

3.
In Gram‐negative bacteria, β‐barrel proteins are integrated into the outer membrane by the β‐barrel assembly machinery, with key components of the machinery being the Omp85 family members BamA and TamA. Recent crystal structures and cryo‐electron microscopy show a diverse set of secretion pores in Gram‐negative bacteria, with α‐helix (Wza and GspD) or β‐strand (CsgG) transmembrane segments in the outer membrane. We developed assays to measure the assembly of three distinct secretion pores that mediate protein (GspD), curli fibre (CsgG) and capsular polysaccharide (Wza) secretion by bacteria and show that depletion of BamA and TamA does not diminish the assembly of Wza, GspD or CsgG. Like the well characterised pilotins for GspD and other secretins, small periplasmic proteins enhance the assembly of the CsgG β‐barrel. We discuss a model for integral protein assembly into the bacterial outer membrane, focusing on the commonalities and differences in the assembly of Wza, GspD and CsgG.  相似文献   

4.
Group 1 capsular polysaccharides (CPSs) of Escherichia coli and some loosely cell-associated exopolysaccharides (EPSs), such as colanic acid, are assembled by a Wzy-dependent polymerization system. In this biosynthesis pathway, Wza, Wzb, and Wzc homologues are required for surface expression of wild-type CPS or EPS. Multimeric complexes of Wza in the outer membrane are believed to provide a channel for polymer export; Wzc is an inner membrane tyrosine autokinase and Wzb is its cognate phosphatase. This study was performed to determine whether the Wza, Wzb, and Wzc proteins for colanic acid expression in E. coli K-12 could function in the E. coli K30 prototype group 1 capsule system. When expressed together, colanic acid Wza, Wzb, and Wzc could complement a wza-wzb-wzc defect in E. coli K30, suggesting conservation in their collective function in Wzy-dependent CPS and EPS systems. Expressed individually, colanic acid Wza and Wzb could also function in K30 CPS expression. In contrast, the structural requirements for Wzc function were more stringent because colanic acid Wzc could restore translocation of K30 CPS to the cell surface only when expressed with its cognate Wza protein. Chimeric colanic acid-K30 Wzc proteins were constructed to further study this interaction. These proteins could restore K30 biosynthesis but were unable to couple synthesis to export. The chimeric protein comprising the periplasmic domain of colanic acid Wzc was functional for effective K30 CPS surface expression only when coexpressed with colanic acid Wza. These data highlight the importance of Wza-Wzc interactions in group 1 CPS assembly.  相似文献   

5.
Gram-negative bacteria need to be able to transport a large variety of macromolecules across their outer membranes. In Escherichia coli, the passage of the group 1 capsular polysaccharide is mediated by an integral outer membrane protein, Wza. The crystal structure of Wza, determined recently, reveals a novel transmembrane alpha-helical barrel and a large central cavity within the core of the vase-shaped protein complex. The structure has similarities with that of the secretin protein, PilQ, which mediates the transition of type IV pili across the outer membrane. We propose that the large internal chamber, which can accommodate the secreted assembled macromolecule, is likely to be a common feature found in other outer membrane proteins involved in secretion processes.  相似文献   

6.
The group 1 K30 antigen from Escherichia coli (O9a:K30) is present on the cell surface as both a capsular structure composed of high-molecular-weight K30 polysaccharide and as short K30 oligosaccharides linked to lipid A-core in a lipopolysaccharide molecule (K30LPS). To determine the molecular processes that are responsible for the two forms of K antigen, the 16 kb chromosomal cps region has been characterized. This region encodes 12 gene products required for the synthesis, polymerization and translocation of the K30 antigen. The gene products include four glycosyltransferases responsible for synthesis of the K30 repeat unit; a PST (1) exporter (Wzx), required to transfer lipid-linked K30 units across the plasma membrane to the periplasmic space; and a K30-antigen polymerase (Wzy). These gene products are typical of those seen in O-antigen biosynthesis gene clusters and they interact with the lipopolysaccharide translocation pathway to express K30LPS on the cell surface. The same gene products also provide the biosynthetic intermediates for the capsule assembly pathway, although they are not in themselves sufficient for synthesis of the K30 capsule. Three additional genes, wza, wzb and wzc, encode homologues to proteins that are encoded by gene clusters involved in expression of a variety of bacterial exopolysaccharides. Mutant analysis indicates that Wza and Wzc are required for wild-type surface expression of the capsular structure but are not essential for polymerization and play no role in the translocation of K30LPS. These surface expression components provide the key feature that distinguishes the assembly systems for O antigens and capsules.  相似文献   

7.
Pseudomonas aeruginosa is a gram-negative bacterium, opportunistic pathogen, which causes severe acute or chronic infections, as is the case with cystic fibrosis patients. Chronic infections are frequently accompanied by the development of the bacterial population into a specialized community called biofilm. The pelA-G gene cluster of P. aeruginosa has been shown to be involved in pellicle production and biofilm formation. The pel genes have been proposed to contribute to the formation of the exopolysaccharide-containing pellicle. However, the function and the subcellular localization of the seven different Pel proteins are poorly understood. Based on bioinformatics analysis, we have previously considered that PelF is a putative glycosyltransferase (GT4 family), whereas PelG is a Wzx-like polysaccharide transporter from the PST family. In this study we have further characterized the PelC protein. We have shown that PelC is an outer membrane lipoprotein. The N-terminal signal peptide of the PelC lipoprotein is sufficient to target the protein into the membranes. However, by constructing various PelC hybrid proteins we also proposed that efficient and functional outer membrane insertion of PelC requires not only the signal peptide and the lipid modification, but also requires the C-terminal domain of PelC. Because the gene encoding the outer membrane lipoprotein PelC is part of a putative gene cluster involved in exopolysaccharide biogenesis, we suggest that PelC is a new member of the outer membrane auxiliary (OMA) family of lipoprotein whose Wza, involved in Escherichia coli capsular polysaccharide transport, is an archetype.  相似文献   

8.
The cell surface expression of group 2 capsular polysaccharides involves the translocation of the polysaccharide from its site of synthesis on the inner face of the cytoplasmic membrane onto the cell surface. The transport process is independent of the repeat structure of the polysaccharide, and translocation across the periplasm requires the cytoplasmic membrane-anchored protein KpsE and the periplasmic protein KpsD. In this paper we establish the topology of the KpsE protein and demonstrate that the C terminus interacts with the periplasmic face of the cytoplasmic membrane. By chemical cross-linking we show that KpsE is likely to exist as a dimer and that dimerization is independent of the other Kps proteins or the synthesis of capsular polysaccharide. No interaction between KpsD and KpsE could be demonstrated by chemical cross-linking, although in the presence of both KpsE and Lpp, KpsD could be cross-linked to a 7-kDa protein of unknown identity. In addition, we demonstrate that KpsD is present not only within the periplasm but is also in both the cytoplasmic and outer membrane fractions and that the correct membrane association of KpsD was dependent on KpsE, Lpp, and the secreted polysaccharide molecule. Both KpsD and KpsE showed increased proteinase K sensitivity in the different mutant backgrounds, reflecting conformational changes in the KpsD and KpsE proteins as a result of the disruption of the transport process. Collectively the data suggest that the trans-periplasmic export involves KpsD acting as the link between the cytoplasmic membrane transporter and the outer membrane with KpsE acting to facilitate this transport process.  相似文献   

9.
The export of large negatively charged capsular polysaccharides across the outer membrane represents a significant challenge to Gram negative bacteria. In the case of Escherichia coli group 2 capsular polysaccharides, the mechanism of export across the outer membrane was unknown, with no identified candidate outer membrane proteins. In this paper we demonstrate that the KpsD protein, previously believed to be a periplasmic protein, is an outer membrane protein involved in the export of group 2 capsular polysaccharides across the outer membrane. We demonstrate that KpsD and KpsE are located at the poles of the cell and that polysaccharide biosynthesis and export occurs at these polar sites. By in vivo chemical cross-linking and MALDI-TOF-MS analysis we demonstrate the presence of a multi-protein biosynthetic/export complex in which cytoplasmic proteins involved in polysaccharide biosynthesis could be cross-linked to proteins involved in export across the inner and outer membranes. In addition, we show that the RhsA protein, of previously unknown function, could be cross-linked to the complex and that a rhsA mutation reduces K5 biosynthesis suggesting a role for RhsA in coupling biosynthesis and export.  相似文献   

10.
The capsular K5 polysaccharide, a representative of group II capsular antigens of Escherichia coli, has been cloned previously, and three gene regions responsible for polymerization and surface expression have been defined (I. S. Roberts, R. Mountford, R. Hodge, K. B. Jann, and G. J. Boulnois, J. Bacteriol. 170:1305-1310, 1988). In this report, we describe the immunoelectron microscopic analysis of recombinant bacteria expressing the K5 antigen and of mutants defective in either region 1 or region 3 gene functions, as well as the biochemical analysis of the K5 capsular polysaccharide. Whereas the K5 clone expressed the K5 polysaccharide as a well-developed capsule in about 25% of its population, no capsule was observed in whole mount preparations and ultrathin sections of the expression mutants. Immunogold labeling of sections from the region 3 mutant revealed the capsular K5 polysaccharide in the cytoplasm. With the region 1 mutant, the capsular polysaccharide appeared associated with the cell membrane, and, unlike the region 3 mutant polysaccharide, the capsular polysaccharide could be detected in the periplasm after plasmolysis of the bacteria. Polysaccharides were isolated from the homogenized mutants with cetyltrimethylammonium bromide. The polysaccharide from the region 1 mutant had the same size as that isolated from the capsule of the original K5 clone, and both polysaccharides were substituted with phosphatidic acid. The polysaccharide from the region 3 mutant was smaller and was not substituted with phosphatidic acid. These results prompt us to postulate that gene region 3 products are involved in the translocation of the capsular polysaccharide across the cytoplasmic membrane and that region 1 directs the transport of the lipid-substituted capsular polysaccharide through the periplasm and across the outer membrane.  相似文献   

11.
Pseudomonas aeruginosa is an opportunistic pathogen, which causes numerous infections and can adopt a versatile lifestyle. During chronic infection, P. aeruginosa becomes established as a bacterial community known as a biofilm. Biofilm formation results from the production of a matrix mainly comprised of exopolysaccharides. P. aeruginosa possesses several gene clusters which contribute to the formation of the matrix, including the pel genes. Among the pel genes, pelC encodes an outer membrane protein, which may serve as a transporter of polysaccharide to the bacterial cell surface. Whereas outer membrane proteins usually display an amphipathic β-barrel fold, we show that PelC requires a C-terminal amphipathic α-helix for outer membrane insertion and function. Such a structural feature has only previously been reported for the Wza outer membrane protein of Escherichia coli, and our data suggest that this characteristic may be found in a large family of proteins, particularly outer membrane proteins specialized in polysaccharide transport.  相似文献   

12.
We report the 1.9 ? resolution crystal structure of enteropathogenic Escherichia coli GfcC, a periplasmic protein encoded by the gfc operon, which is essential for assembly of group 4 polysaccharide capsule (O-antigen capsule). Presumed gene orthologs of gfcC are present in capsule-encoding regions of at least 29 genera of Gram-negative bacteria. GfcC, a member of the DUF1017 family, is comprised of tandem β-grasp (ubiquitin-like) domains (D2 and D3) and a carboxyl-terminal amphipathic helix, a domain arrangement reminiscent of that of Wza that forms an exit pore for group 1 capsule export. Unlike the membrane-spanning C-terminal helix from Wza, the GfcC C-terminal helix packs against D3. Previously unobserved in a β-grasp domain structure is a 48-residue helical hairpin insert in D2 that binds to D3, constraining its position and sequestering the carboxyl-terminal amphipathic helix. A centrally located and invariant Arg115 not only is essential for proper localization but also forms one of two mostly conserved pockets. Finally, we draw analogies between a GfcC protein fused to an outer membrane β-barrel pore in some species and fusion proteins necessary for secreting biofilm-forming exopolysaccharides.  相似文献   

13.
The translocation of polymers through pores has been examined for almost two decades with an emphasis on nucleic acids. There are also interesting circumstances in biology where polypeptides and polysaccharides pass through transmembrane pores, and our laboratory has been investigating examples of them. Single-molecule nucleic acid sequencing by nanopore technology is an emerging approach for ultrarapid genomics. Strand sequencing with engineered protein nanopores is a viable technology which has required advances in four areas: nucleic acid threading, nucleobase identification, controlled strand translocation, and nanopore arrays (Bayley, 2012). The latter remain a pressing need and our attempts to improve arrays will be described. In several physiological situations, folded proteins pass through transmembrane pores. We have developed a model system comprising mutant thioredoxins as the translocated proteins, and staphylococcal alpha-hemolysin, as the pore. Our findings support a mechanism in which there is local unfolding near the terminus of the polypeptide that enters the pore. The remainder of the protein then unfolds spontaneously and diffuses through the pore into the recipient compartment (Rodriguez-Larrea & Bayley, 2013). We have also examined the pore formed by the E. coli outer membrane protein Wza, which transports capsular polysaccharide from its site of synthesis to the outside of the cell. We made mutant open forms of the pore and screened blockers for them by electrical recording in planar bilayers. The most effective blocker binds in the alpha-helix barrel of Wza, a site accessible from the external medium, and therefore, a prospective target for antibiotics (Kong et al., 2013).  相似文献   

14.
Summary capR (lon) mutants of Escherichia coli K-12 are mucoid on minimal agar because they produce large quantities of capsular polysaccharide. When such mutants are transformed to tetracycline resistance by plasmid pMC44, a hybrid plasmid that contains a 2 megadalton (Mdal) endonuclease EcoR1 fragment of E. coli K-12 DNA joined to the cloning vehicle-pSC101, capsular polysaccharide synthesis is inhibited and the transformed colonies exhibit a nonmucoid phenotype. Re-cloning of the 2 Mdal EcoR1 fragment onto plasmid pHA105, a min-colE1 plasmid, yielded plasmid pFM100 which also inhibited capsular polysaccharide synthesis in the capR mutants. A comparison of the polypeptides specified by both plasmids pFM100 and pMC44 in minicells demonstrated that seven polypeptide bands were specified by the 2 Mdal DNA, one of which was previously demonstrated to be outer membrane protein a; also known as 3b or M2 (40 kilodaltons, Kdal). Plasmid mutants no longer repressing capsular polysaccharide synthesis were either unable to specify the 40 K dal outer membrane protein a or were deficient in synthesis of 25 K dal and 14.5 K dal polypeptides specified by the 2 Mdal DNA fragment. Studies with a minicell-producing strain that also contained a capR mutation indicated that the capR gene product regulated processing of at least one normal protein, the precursor of outer membrane protein a.  相似文献   

15.
16.
17.
In Escherichia coli with group II capsules, the synthesis and cellular expression of capsular polysaccharide are encoded by the kps gene cluster. This gene cluster is composed of three regions. The central region 2 encodes proteins involved in polysaccharide synthesis, and the flanking regions 1 and 3 direct the translocation of the finished polysaccharide across the cytoplasmic membrane and its surface expression. The kps genes of the K5 polysaccharide, which is a group II capsular polysaccharide, have been cloned and sequenced. Region 1 contains the kpsE, -D, -U, -C, and -S genes. In this communication we describe the KpsE protein, the product of the kpsE gene. A truncated kpsE gene was fused with a truncated beta-galactosidase gene to generate a fusion protein containing the first 375 amino acids of beta-galactosidase and amino acids 67 to 382 of KpsE (KpsE'). This fusion protein was isolated and cleaved with factor Xa, and the purified KpsE' was used to immunize rabbits. Intact KpsE was extracted from the membranes of a KpsE-overexpressing recombinant strain with octyl-beta-glucoside. It was purified by affinity chromatography with immobilized anti-KpsE antibodies. Cytofluorometric analysis using the anti-KpsE antibodies with whole cells and spheroplasts, as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting (immunoblotting) of proteins from spheroplasts and membranes before and after treatment with proteinase K, indicated that the KpsE protein is associated with the cytoplasmic membrane and has an exposed periplasmic domain. By TnphoA mutagenesis and by constructing beta-lactamase fusions to the KpseE protein, it was possible to determine the topology of the KpsE protein within the cytoplasmic membrane.  相似文献   

18.
Abstract In Escherichia coli with group II capsules, the synthesis of capsular polysaccharide and its cellular expression are encoded by the kps gene cluster, which is composed of three regions. The central region 2 encodes proteins involved in polysaccharide synthesis, and the flanking regions 1 and 3 direct the translocation of the finished polysaccharide across the cytoplasmic membrane and its surface expression. The kps genes of E. coli with the group II capsular K5 polysaccharide, have been cloned and sequenced. Region 1 contains the kps E, D, U, C and S genes. In this communication we describe the overexpression of the kps D and kps U genes as well as the isolation of the KpsU protein from the recombinant bacteria by chloroform treatment. The purified KpsU protein exhibited CMP-Kdo-synthetase activity. The N-terminal sequence and two internal peptide sequences of the isolated protein are in agreement with that previously predicted from the DNA sequence of the kps U gene. The kinetic data of the CMP-Kdo-synthetase participating in K5 capsule expression (K-CMP-Kdo-synthetase) differ from those described for the CMP-Kdo-synthetase, participating in lipopolysaccharide synthesis (L-CMP-Kdo-synthetase).  相似文献   

19.
Neisseria meningitidis serogroup B and Escherichia coli K1 bacteria produce a capsular polysaccharide (CPS) that is composed of α2,8-linked polysialic acid (PSA). Biosynthesis of PSA in these bacteria occurs via an ABC (ATP-binding cassette) transporter-dependent pathway. In N. meningitidis, export of PSA to the surface of the bacterium requires two proteins that form an ABC transporter (CtrC and CtrD) and two additional proteins, CtrA and CtrB, that are proposed to form a cell envelope-spanning export complex. CtrA is a member of the outer membrane polysaccharide export (OPX) family of proteins, which are proposed to form a pore to mediate export of CPSs across the outer membrane. CtrB is an inner membrane protein belonging to the polysaccharide co-polymerase (PCP) family. PCP proteins involved in other bacterial polysaccharide assembly systems form structures that extend into the periplasm from the inner membrane. There is currently no structural information available for PCP or OPX proteins involved in an ABC transporter-dependent CPS biosynthesis pathway to support their proposed roles in polysaccharide export. Here, we report cryo-EM images of purified CtrB reconstituted into lipid bilayers. These images contained molecular top and side views of CtrB and showed that it formed a conical oligomer that extended ∼125 Å from the membrane. This structure is consistent with CtrB functioning as a component of an envelope-spanning complex. Cross-complementation of CtrA and CtrB in E. coli mutants with defects in genes encoding the corresponding PCP and OPX proteins show that PCP-OPX pairs require interactions with their cognate partners to export polysaccharide. These experiments add further support for the model of an ABC transporter-PCP-OPX multiprotein complex that functions to export CPS across the cell envelope.  相似文献   

20.
In Escherichia coli K-12, RcsC and RcsB are thought to act as the sensor and effector components, respectively, of a two-component regulatory system which regulates expression of the slime polysaccharide colanic acid (V. Stout and S. Gottesman, J. Bacteriol. 172:659-669, 1990). Here, we report the cloning and DNA sequence of a 4.3-kb region containing rcsC and rcsB from E. coli O9:K30:H12. This strain does not produce colanic acid but does synthesize a K30 (group I) capsular polysaccharide. The rcsB gene from E. coli K30 (rcsBK30) is identical to the rcsB gene from E. coli K-12 (rcsBK-12). rcsCK30 has 16 nucleotide changes, resulting in six amino acid changes in the predicted protein. To examine the function of the rcs regulatory system in expression of the K30 capsular polysaccharide, chromosomal insertion mutations were constructed in E. coli O9:K30:H12 to independently inactivate rcsBK30 and the auxiliary positive regulator rcsAK30. Strains with these mutations maintained wild-type levels of K30 capsular polysaccharide expression and still produced a K30 capsule, indicating that the rcs system is not essential for expression of low levels of the group I capsular polysaccharide in lon+ E. coli K30. However, K30 synthesis is increased by introduction of a multicopy plasmid carrying rcsBK30. K30 polysaccharide expression is also markedly elevated in an rcsBK30-dependent fashion by a mutation in rcsCK30, suggesting that the rcs system is involved in high levels of synthesis. To determine whether the involvement of the rcs system in E. coli K30 expression is typical of group I (K antigen) capsules, multicopy rcsBK30 was introduced into 22 additional strains with structurally different group I capsules. All showed an increase in mucoid phenotype, and the polysaccharides produced in the presence and absence of multicopy rcsBK30 were examined. It is has been suggested that E. coli strains with group I capsules can be subdivided based on K antigen structure. For the first time, we show that strains with group I capsules can also be subdivided by the ability to produce colanic acid. Group IA contains capsular polysaccharides (including K30) with repeating-unit structures lacking amino sugars, and expression of group IA capsular polysaccharides is increased by multicopy rcsBK30. Group IB capsular polysaccharides all contain amino sugars. In group IB strains, multicopy rcsBK30 activates synthesis of colanic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号