首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The mutagenic specificities of ethylnitrosourea (ENU), X-rays (+/-)7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7, 8,9,10-tetrahydrobenzo[a]pyrene (BPDE), ICR-191, and N-acetoxy-2-acetylaminofluorene (N-AcO-AAF) were analyzed and compared in diploid human fibroblasts and Salmonella typhimurium. In the human fibroblasts, we compared the frequency of diphtheria toxin (DT)-resistant mutants, presumably induced in the gene coding for elongation factor-2, with the frequency of 6-thioguanine (TG) resistance induced by mutations in the gene coding for hypoxanthine(guanine)phosphoribosyltransferase (HPRT). Recovery of DT-resistant (DTr) cells requires that the mutant EF-2 retain the ability to carry on protein synthesis since the normal EF-2 will be inactivated by DT selection. Therefore, the DTr mutation cannot involve major changes in the gene. In contrast, cells can acquire TG resistance by any mechanism which eliminates HPRT activity, e.g., base substitution, frameshift, deletion, loss of chromosomes. Each agent was assessed by calculating the ratio of the slopes of the dose-response plots (induced variant frequency as a function of dose of the agent used) for the two markers (DTr/TGr variants.). In S. typhimurium we examined the reversion frequency in four histidine-requiring strains bearing forward mutations of the frameshift (TA1538, TA98) or missense (TA1535, TA100) type. ENU, which was predominantly a base substitution mutagen in the bacteria, gave a ratio of DTr to TGr variants of 1.5. As expected of an agent inducing gross chromosomal changes, X-rays induced no revertants in bacteria and in human cells gave a ratio of 0.1. ICR-191 which was predominantly a frameshift mutagen in bacteria gave a ratio of 0.15. In the set of bacterial strains containing the plasmid pKM101, BPDE reverted both frameshift and base substitution mutations. It did not cause reversions in the other set of strains. In human cells BPDE gave a response similar to ENU, i.e., a ratio of DTr/TGr variants of 1.5. As reported by others, N-AcO-AAF was predominantly a frameshift mutagen in bacteria. However, in the human cells it gave a ratio of DTr/TGr variants of 1.5, similar to ENU and BPDE. These results suggest that in human cells, BPDE and N-AcO-AAF, like ENU, yield predominantly base substitutions, while ICR-191 and X-rays largely produce mutations by mechanisms which result in more extensive alterations in the gene.  相似文献   

4.
Seven l-arabinose-negative mutations are described that map in three genetically distinct regions immediately adjacent to the araO (operator) region of the l-arabinose operon. All seven mutants revert spontaneously, exhibit a cis-dominant, trans-recessive polarity effect upon the expression of l-arabinose isomerase (gene araA), and fail to respond to amber, ochre, or UGA suppressors. Three of these mutants exhibit absolute polarity and are not reverted by the mutangens 2-aminopurine, diethyl sulfate, and ICR-191. These may have arisen as a consequence of an insertion mutation in gene araB or in the initiator region of the l-arabinose operon. The four remaining mutants exhibit strong but not absolute polarity on gene araA and respond to the mutagens diethyl sulfate and ICR-191. Three of these mutants are suppressible by two independently isolated suppressors that fail to suppress known nonsense codons. Partially polar Ara(+) revertants with lesions linked to ara are obtained from three of the same four mutants. These polar mutants, their external suppressors, and their partially polar revertants are discussed in terms of the mechanism of initiation of expression of the l-arabinose operon.  相似文献   

5.
Histidinol dehydrogenase from three differing revertants of ICR-191A-induced frameshift hisD3018 has been purified and examined for amino acid replacements. The enzyme from one spontaneously arising revertant, R7, contains an extra proline residue, whereas that from another, R5, contains an extensive frameshifted sequence, four amino acid residues of which have been identified to date. The amino acid replacement data are in agreement with the in vitro code word assignments and allow the characterization of the hisD3018 frameshift as an addition of one nucleotide pair, most likely guanine plus cytosine. Enzymatic data for those ICR-191A-induced revertants of hisD3018 arising within the hisD gene indicate that the enzyme is wild type and, therefore, that ICR-191A can cause deletions as well as additions of single base pairs. The wild-type amino acid sequence is restored in enzyme from an N-methyl-N′-nitro-N-nitrosoguanidine (NG)-induced revertant, R29, suggesting that NG is a base-deleting as well as a base-substituting mutagen. The unusual response of hisD3018 to external suppressors is considered in terms of reinitiation of protein synthesis out of phase, coupled with suppression of a nonpermissive missense codon so generated, and of an alternative hypothesis invoking a true frameshift suppressor transfer ribonucleic acid with an extended or deleted anticodon.  相似文献   

6.
We describe an assay for the quantification of reverse mutations at the hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus in Chinese hamster ovary cells utilizing the selective agent L-azaserine (AS). Conditions are defined in terms of optimal AS concentration, cell density, and phenotypic expression time. After treatment, replicate cultures of 106 cells are allowed a 48-h phenotypic expression time in 100-mm plates. AS (10 μM) is then added directly to the growing culture and AS-resistant (ASr) cells form visible colonies. This assay is used to quantify ICR-191-, ICR-170-, and N-ethyl-N-nitrosourea-induced reversion of independently isolated HGPRT? clones. The ASr phenotype is characterized both physiologically and biochemically. All ASr clones isolated are stably resistant to AS and aminopterin but sensitive to 6-thioguanine. They also have re-expressed HGPRT enzyme. In addition, several revertants are shown to contain altered HGPRT. The data provide further evidence that ICR-191 and ICR-170 cause structural gene mutations in mammalian cells and also suggest that ICR-191, ICR-170, and N-ethyl-N-nitrosourea induce similar types of mutations in Chinese hamster ovary cells.  相似文献   

7.
Evidence is presented to show that presumptive frameshift mutations induced in Haemophilus influenzae by ICR-191 are fixed very rapidly, essentially at the time of treatment. DNA synthesis during treatment is essential for fixation, but DNA synthesis after treatment has no effect. The conclusion is drawn that the mutagen acts at the replication fork, possibly to stabilize misannealings arising in association with the discontinuities in the newly synthesized DNA. These results agree with earlier results on Escherichia coli showing that ICR-191 produces peak mutation frequencies in synchronized cultures at times when the replication fork has reached the locus being studied. They are in sharp contrast to the earlier results in H. influenzae with nitroso compounds and hydrazine that suggest these agents produce randomly distributed, reparable pre-mutational damage that still can be fixed (converted to final mutation) for some time after treatment when the replication fork reaches them. No evidence for such persistent pre-mutational lesions was found with ICR-191. A defect in incision appeared to have very little influence on mutation induction by ICR-191 though it caused much more lethality. The interpretation of the mutation data was made somewhat uncertain, however, by an unexplained plating-density effect on the expression of the mutants in this strain. In contrast, incision deficiencies in E. coli and Salmonella typhimurium have been reported to cause a large increase in mutation induction and to allow lesions at some distance from the replication fork to produce mutations.  相似文献   

8.
Externally suppressible frameshift mutant of Salmonella typhimurium   总被引:6,自引:3,他引:3       下载免费PDF全文
Prototrophic revertants of ICR-191A-induced frameshift mutant hisD3018 have been induced spontaneously by ICR-191A and N-methyl-N'-nitro-N-nitrosoguanidine (NG) treatment. In each case two genetically distinct prototroph classes were differentiated by transducibility into his deletion recipients: (i) transducible, generally fast-growing revertants within the hisD gene producing from 10 to 100% of normal amounts of histidinol dehydrogenase and (ii) nontransducible slow-growing prototrophs with very low levels of enzyme activity of which at least some arose by external suppression. These nontransducible revertants, whether arising spontaneously or in the presence of ICR-191A or NG, contain histidinol dehydrogenase which is electrophoretically similar to the wild-type enzyme.  相似文献   

9.
The process of segreation or phenotypic expression of two recessive drug-resistant loci from heterozygous Chinese hamster ovary hybrid lines is examined. The spontaneous segregation rates of phytohaemagglutinin resistance (Phar) and a temperature-dependent 8-azaguanine-resistant locus (Azarts) from heterozygous quasitetraploid lines using Luria-Delbruck fluctuation analysis were 5 X 10(-5) and 10(-5) events/cell/generation, respectively. In quasihexaploid lines, the latter rates increased 40- and 200-fold, respectively, and were dependent on the number of presumptive drug-sensitive allelel. The mutagens EMS, MNNG, ICR-170, ICR-191, and gamma rays significantly increased the frequency of segregation events. The mutagen-induced frequency of dominant mutations to ouabain (Ouar) and alpha-amanitin (Amar) rsistance in the same hybrid line was much lower in comparison to segregation events and was mutagen specific. The chromosome number per metaphase cell was more variable than DNA content in quasitetraploid lines. These properties of marker segregation are consistent with mechanisms of either restricted chromosome loss, rearrangement, or mutation.  相似文献   

10.
The acridine half-mustard ICR-170-induced reversion of the mutant am15, which has a single base-pair deletion, at a frequency of between 9 and 28 X 10(-6). In each of three classes of revertants, the mutagen had induced the insertion of a -G- -C- base pair at a -G-G- -C-C- site. The mutant am6, which has a single base pair insertion, is known to be revertible, with UV light, by deletion of a -G- -C- base pair at a -G-G-G- -C-C-C- site. This mutant reverted with ICR-170 at a frequency of 0.1 X 10(-6). These results show that ICR-170 is able to induce addition frameshifts in Neurospora crassa within short, monotonous runs of G:C base pairs, but indicate a lack of deletion activity at such sequences.  相似文献   

11.
The majority of the mutations induced by ICR-170 in both the CYC1 gene (J. F. Ernst et al. Genetics 111:233-241, 1985) and the HIS4 gene (L. Mathison and M. R. Culbertson, Mol. Cell. Biol. 5:2247-2256, 1985) of the yeast Saccharomyces cerevisiae were recently shown to be single G . C base-pair insertions at monotonous runs of two or more G . C base pairs. However, not all sites were equally mutable; in both the CYC1 and HIS4 genes there is a single highly mutable site where a G . C base pair is preferentially inserted at a [sequence in text]. Here we report the ICR-170 mutagen specificity at the SUP4-o tyrosine tRNA gene of yeast. Genetic fine structure analysis and representative DNA sequence determination of ICR-170-induced mutations revealed that there is also a single highly mutable site in SUP4-o and that the mutation is a G . C base-pair insertion at a monotonous run of G . C base pairs. Analysis of DNA sequences encompassing the regions of highly mutable sites for all three genes indicated that the mutable sites are at the bases of potential hairpin structures; this type of structure could not be found at any of the other, less mutable G . C runs in SUP4, CYC1, and HIS4. Based on these results and recent information regarding novel DNA structural conformations, we present a mechanism for ICR-170-induced mutagenesis. (i) ICR-170 preferentially binds to DNA in the beta conformation; factors that increase the temporal stability of this structure, such as adjacent stem-and-loop formation, increase the frequency of ICR-170 binding; (ii) the observed mutagen specificity reflects formation of a preferred ICR-170 intercalative geometry at [sequence in text] sites; (iii) during replication or repair, ICR-170 remains associated with the single-stranded template; (iv) stuttering or strand slippage by the polymerization complex as it encounters the mutagen results in nucleotide duplication; (v) subsequent replication or mismatch repair fixes the insertion into the genome. This mechanism accounts for both the IRC-170 mutagenic specificity and the molecular basis of the highly mutable sites in S. cerevisiae.  相似文献   

12.
Genetic Studies of Leucine Biosynthesis in Bacillus subtilis   总被引:27,自引:20,他引:7       下载免费PDF全文
The mutations in a series of leucine auxotrophs isolated after treatment with nitrosoguanidine, ultraviolet light, and ICR-191 have been mapped between ilvC and pheA on the Bacillus subtilis chromosome. A fine structure map of the region was constructed by transformation. Analysis of several strains by assaying levels of their leucine bioysnthetic enzymes has shown that the region encodes three enzymes. The order of the genes with respect to the biosynthetic steps catalyzed by the gene products is 1–3–2.  相似文献   

13.
Summary A series of temperature-resistant revertants were isolated from strains of Escherichia coli K12 carrying a temperature-sensitive mutation in the dnaA gene. Four independent revertants were found which still carry the original ts mutation. The ability of these strains to grow at high temperature is due to a suppressor mutation, called sin. All four sin mutations are located between the genes metD and proA on the genetic map of E. coli, which suggests that they all affect the same gene. The sin suppressors, which were isolated for their ability to suppress one dnaA mutation, are also able to suppress three other temperature-sensitive dnaA mutations, but they are not able to suppress mutations in either of the two genes dnaB or dnaC. The sin suppressors alone do not confer any particular phenotype on bacteria, but they are deficient in the enzyme RNase H. On the basis of these findings we propose that the function of the dnaA protein is to protect a DNA-RNA hybrid at the origin of replication against RNase H.  相似文献   

14.
The insertion of IS1 elements into lacZ results in the loss of beta-galactosidase activity, and such insertions exert a severe polar effect on the expression of the distal genes of the operon. In addition to these properties, the mutation lacZ::IS1-MS319 has the unique property of reversion to Lac+ (ts) spontaneously or after treatment with the frameshift mutagen ICR-191; such revertants retain the IS1 element. We have determined that the site of integration of IS1 into lacZ is at position 4338, 18 nucleotides from the end of the sequence encoding the C-terminus of beta-galactosidase. Reversion to Lac+ promoted by ICR-191 results from the loss of a G residue from a GGG sequence located at the junction of lacZ and IS1. As a result an active, but temperature-sensitive, lacZ-IS1 fusion protein is formed containing six amino acids derived from IS1 which replace six amino acids encoded by lacZ. The IS1 element in MS319 is a new member of the iso-IS1 family, which we designate IS1T.  相似文献   

15.
We have investigated the ability of chlorophyllin (CHL) to interact with acridine mutagen ICR-191 (2-methoxy-6-chloro-9-(3-(2-chloroethyl)aminopropylamino)acridine) and also its ability to decrease binding of ICR-191 to DNA in a simple three-component competition system: CHL-ICR–DNA. Our data indicate a strong association of ICR-191 with CHL, stronger even than the association of ICR-191 with DNA. Calculations based on the measured affinity data show that a two- to three-fold excess of CHL reduces by about two-fold the concentration of the mutagen-DNA complex. We also exposed human leukemic HL-60 cells to ICR-191 in the absence and presence of CHL and measured the mutagen-induced DNA damage. The extent of DNA damage was assessed by analysis of histone H2AX phosphorylation. While ICR-191 induced significant increase in expression of phosphorylated H2AX (γH2AX), particularly in DNA replicating cells, this increase was totally abolished in the cells treated with ICR-191 in the presence of CHL.  相似文献   

16.
Three strains Salmonella typhimurium carrying frameshift mutations affecting the histidine genes (hisC3076, hisD3052 and hisC207) showed increased sensitivity to mutagenesis by ICR-191 (as judged by measuring back mutation to prototrophy), if they were made deficient in excision repair by deleting the uvrB gene. One frameshift strain, hisC3076, also showed increased sensitivity to mutagenesis by ICR-191 when it carried either of two different polA alleles, whereas the hidD305 and hisD207 frameshifts reduced sensitivity to mutagenesis in the presence of these alleles. Studies of spontaneous back mutation to prototrophy revealed siginificant mutator effects of the polA1 mutation on reversion of the hisD3052 frameshift and of the polA3 mutation on reversion of the hisC3076 frameshift. Other smaller mutator effects of the polA alleles on reversion of the his mutations may also be present. In an attempt to explain the complex interactions between different polA alleles and different frameshift mutations, it is tentatively suggested that deletion frameshift may arise mainly during DNA replication, while addition frameshifts may arise mainly during post-replication repair.  相似文献   

17.
Nakamura T  Amanuma K  Aoki Y 《Mutation research》2005,578(1-2):272-283
To determine whether frameshift mutations can be detected in rpsL transgenic zebrafish (Brachydanio rerio), embryos, and adult fish were treated with 6-chloro-9-[3-(2-chloroethylamino)-propylamino]-2-methoxyacridine (ICR-191). Embryos exposed to 0, 10, or 20 microM ICR-191 in a water bath for 18 h exhibited induced mutant frequencies (MFs) of 14 x 10(-5), 16 x 10(-5), and 25 x 10(-5), respectively. Only embryos exposed to 20 microM ICR-191 showed a significant increase in MF. The mutational spectra differed between the control and ICR-191-treated groups and single G:C pair insertions, which are a marked characteristic of ICR-191 mutagenesis, were observed in both 10 and 20 microM-treated embryos. In adult fish treated with 1 microM ICR-191 in a water bath for 18 h, a significant increase in MFs was observed in both gill (12 x 10(-5) and 44 x 10(-5) in control and treated fish, respectively), and hepatopancreas (5 x 10(-5) and 29 x 10(-5), respectively) 2 weeks after exposure. Sequence analysis showed that 58% of mutations in gill and 94% of mutations in hepatopancreas were single G:C pair insertions, which is typical of mutations induced by ICR-191. Additionally, these mutations occurred predominantly at a single site (CC sequence at bps 140-141) in the rpsL gene. Three weeks after exposure, however, the increased MFs and prominent mutational spectra of ICR-treated fish were undetectable. These findings suggest that using our protocols the rpsL transgenic zebrafish mutation assay is more effective for adult fish than for embryos, but that frameshift mutations can be detected in both embryos and adults at appropriate sampling times after treatment with ICR-191.  相似文献   

18.
ICR-170-induced mutations in the CYC1 gene of the yeast Saccharomyces cerevisiae were investigated by genetic and DNA sequence analyses. Genetic analysis of 33 cyc1 mutations induced by ICR-170 and sequence analysis of eight representatives demonstrated that over one-third were frameshift mutations that occurred at one site corresponding to amino acid positions 29-30, whereas the remaining mutations were distributed more-or-less randomly, and a few of these were not frameshift mutations. The sequence results indicate that ICR-170 primarily induces G.C additions at sites containing monotonous runs of three G.C base pairs. However, some (Formula: see text) sites within the CYC1 gene were not mutated by ICR-170. Thus, ICR-170 is a relatively specific mutagen that preferentially acts on certain sites with monotonous runs of G.C base pairs.  相似文献   

19.
S R Sahasrabudhe  X Luo  M Z Humayun 《Biochemistry》1990,29(49):10899-10905
As the most nucleophilic atom in DNA, the guanine N7 atom is a major site of attack for a large number of chemical mutagens as well as chemotherapeutic agents. Paradoxically, while methylation of guanine N7 is believed to be largely nonmutagenic, aflatoxin B1, among the most potent mutagens, appears to exert its mutagenic activity through adduction at this site. On the basis of an analysis of the specificity of mutations induced by various adduct forms of aflatoxin B1, we have previously proposed mechanisms that can both resolve the paradox and account for the specificity of mutagenesis by aflatoxin B1. The hypothesized mechanisms specify how a bulky guanine N7 lesion can promote G.C to A.T transitions as well as frame-shift mutations. Since the proposed mechanisms are in principle lesion-independent, a simple test of the proposed mechanisms would be to examine the specificity of mutations induced by a structurally different bulky guanine N7 adduct. Toward this goal, M13 replicative form DNA was subjected to in vitro adduction with the acridine mutagen ICR-191 and transfected into Escherichia coli. Mutations in the LacZ(alpha) gene segments were scored and defined at the sequence level. The results show that ICR-191 adduction induces both base substitutions and frame shifts with near-equal efficiency. A clear majority of base substitutions were G.C to A.T transitions. On the other hand, unlike aflatoxin B1 which could induce both -1 and +1 frameshifts, ICR-191 appears to predominantly induce +1 frame shifts. This preference appears to arise by lesion-dependent mechanisms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Induction of Closely Linked Multiple Mutations by Nitrosoguanidine   总被引:88,自引:0,他引:88  
N-methyl-N-nitro-N-nitrosoguanidine (nitrosoguanidine) is a powerful and widely used mutagen. Using synchronized populations of Escherichia coliwe have shown that large numbers of mutations occur at specific loci when these loci are replicated1. This specificity makes it possible to use nitrosoguanidine to direct mutagenesis, to study the mode of replication of the chromosome and to map the chromosome1–4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号