首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fatty acid transport protein (FATP) 4 is one of a family of six FATPs that facilitate long- and very long-chain fatty acid uptake. Mice lacking FATP4 are born with tight, thick skin and a defective epidermal barrier; they die neonatally due to dehydration and restricted movements. Both the skin phenotype and the lethality are rescued by transgene-driven expression of FATP4 solely in suprabasal keratinocytes. Here we show that Fatp4 mutants exhibit epidermal hyperplasia resulting from an increased number of proliferating suprabasal cells. In addition, barrier formation initiates precociously but never progresses to completion. To investigate possible mechanisms whereby Fatp4 influences skin development, we identified misregulated genes in Fatp4 mutants. Remarkably, three members of the epidermal growth factor (EGF) family (Ereg, Areg, and Epgn) showed increased expression that was associated with elevated epidermal activation of the EGF receptor (EGFR) and STAT3, a downstream effector of EGFR signaling. Both Tyrphostin AG1478, an EGFR tyrosine kinase inhibitor, and curcumin, an inhibitor of both STAT3 and EGFR, attenuated STAT3 activation/nuclear translocation, reduced skin thickening, and partially suppressed the barrier abnormalities. These data identify FATP4 activity as negatively influencing EGFR activation and the resulting STAT3 signaling during normal skin development. These findings have important implications for understanding the pathogenesis of ichthyosis prematurity syndrome, a disease recently shown to be caused by FATP4 mutations.  相似文献   

2.
Previous work has shown that the epidermal growth factor receptor (EGFR) tyrosine kinase moiety provides protection to normal human keratinocytes against apoptosis. This protection is, at least in part, due to EGFR-dependent expression of the antiapoptotic Bcl-2 family member, Bcl-x(L). Here we focused on intracellular signaling pathways relevant to keratinocyte survival and/or Bcl-x(L) expression. By using pharmacological inhibitors and dominant negative expression constructs, we observed that phosphatidylinositol 3-kinase/AKT and phospholipase C gamma/protein kinase C alpha activation were required for keratinocyte survival independently of EGFR activation or Bcl-x(L) expression. By contrast, MEK activity required EGFR activation and, as shown by use of the MEK inhibitor PD98059 and a dominant negative MEK construct, was necessary for Bcl-x(L) expression and survival. Consistent with an earlier study, blocking SRC kinase activities similarly led to down-regulation of Bcl-x(L) protein expression and impaired keratinocyte survival. In conclusion, our results demonstrate that EGFR-dependent MEK activity contributes to both Bcl-x(L) expression and survival of normal keratinocytes. Other signaling pathways (i.e. phosphatidylinositol 3-kinase/AKT and phospholipase C gamma/protein kinase C alpha) are obligatory to keratinocyte survival but not to Bcl-x(L) expression, and control of these pathways by EGFR activation is not rate-limiting to normal keratinocyte survival.  相似文献   

3.
EphA2 is a receptor tyrosine kinase that is engaged and activated by membrane-linked ephrin-A ligands residing on adjacent cell surfaces. Ligand targeting of EphA2 has been implicated in epithelial growth regulation by inhibiting the extracellular signal-regulated kinase 1/2 (Erk1/2)-mitogen activated protein kinase (MAPK) pathway. Although contact-dependent EphA2 activation was required for dampening Erk1/2-MAPK signaling after a calcium switch in primary human epidermal keratinocytes, the loss of this receptor did not prevent exit from the cell cycle. Incubating keratinocytes with a soluble ephrin-A1-Fc peptide mimetic to target EphA2 further increased receptor activation leading to its down-regulation. Moreover, soluble ligand targeting of EphA2 restricted the lateral expansion of epidermal cell colonies without limiting proliferation in these primary cultures. Rather, ephrin-A1-Fc peptide treatment promoted epidermal cell colony compaction and stratification in a manner that was associated with increased keratinocyte differentiation. The ligand-dependent increase in keratinocyte adhesion and differentiation relied largely upon the up-regulation of desmoglein 1, a desmosomal cadherin that maintains the integrity and differentiated state of suprabasal keratinocytes in the epidermis. These data suggest that keratinocytes expressing EphA2 in the basal layer may respond to ephrin-A1–based cues from their neighbors to facilitate entry into a terminal differentiation pathway.  相似文献   

4.
Ultraviolet (UV) irradiation causes photoageing through induction of matrix-degrading metalloproteinases (MMP), which are upregulated by activator protein-1 (AP-1) (Jun/Fos). The c-Jun kinase activity proves to be critically important in the regulation of AP-1 activity. Our previous studies showed that UV irradiation activates epidermal growth factor receptor (EGFR) and cytokine receptors leading to the activation of c-Jun kinase in cultured human skin keratinocytes in vitro and in human skin in vivo. However, the mechanism of UV-induced cell surface receptor activation and the crosstalk among growth factor receptor and cytokine receptors were not fully investigated. This study showed that UV (30 mJ/cm(2))-induced EGFR tyrosine phosphorylation in a manner similar to EGF (100 ng/ml), or IL-1beta (10 ng/ml) in cultured human keratinocytes. In all cases, EGFR tyrosine phosphorylation was completely inhibited by pretreatment of PD153035 (100 nM, 1 h). Also observed was that UV induced autophosphorylation of interleukin 1 receptor associated kinase (IRAK) in a manner analogous to IL-1beta or EGF. In both UV and EGF cases, the phosphorylation of IRAK was inhibited by pretreatment of PD153035. However, IL-1beta-induced IRAK activation was not affected by PD153035. In vitro kinase assay using GST-c-Jun as a substrate revealed that pretreatment of PD153035 completely inhibited UV- and IL-1-induced c-Jun kinase activity in cultured keratinocytes. Taken together, the above data suggest that EGFR plays dominant role in the crosstalk among growth factor receptor and cytokine receptors leading to the activation of c-Jun kinase upon UV irradiation, and that EGFR could be one of the targets for clinical and cosmetical prevention of UV-induced skin aging.  相似文献   

5.
The expression of distinct keratin pairs during epidermal differentiation is assumed to fulfill specific and essential cytoskeletal functions. This is supported by a great variety of genodermatoses exhibiting tissue fragility because of keratin mutations. Here, we show that the loss of K10, the most prominent epidermal protein, allowed the formation of a normal epidermis in neonatal mice without signs of fragility or wound-healing response. However, there were profound changes in the composition of suprabasal keratin filaments. K5/14 persisted suprabasally at elevated protein levels, whereas their mRNAs remained restricted to the basal keratinocytes. This indicated a novel mechanism regulating keratin turnover. Moreover, the amount of K1 was reduced. In the absence of its natural partner we observed the formation of a minor amount of novel K1/14/15 filaments as revealed by immunogold electron microscopy. We suggest that these changes maintained epidermal integrity. Furthermore, suprabasal keratinocytes contained larger keratohyalin granules similar to our previous K10T mice. A comparison of profilaggrin processing in K10T and K10(-/-) mice revealed an accumulation of filaggrin precursors in the former but not in the latter, suggesting a requirement of intact keratin filaments for the processing. The mild phenotype of K10(-/-) mice suggests that there is a considerable redundancy in the keratin gene family.  相似文献   

6.
《The Journal of cell biology》1996,135(6):1879-1887
The Distal-less-related homeodomain gene Dlx3 is expressed in terminally differentiated murine epidermal cells. Ectopic expression of this gene in the basal cell layer of transgenic skin results in a severely abnormal epidermal phenotype and leads to perinatal lethality. The basal cells of affected mice ceased to proliferate, and expressed the profilaggrin and loricrin genes which are normally transcribed only in the latest stages of epidermal differentiation. All suprabasal cell types were diminished and the stratum corneum was reduced to a single layer. These data indicate that Dlx3 misexpression results in transformation of basal cells into more differentiated keratinocytes, suggesting that this homeoprotein is an important regulator of epidermal differentiation.  相似文献   

7.
Cao C  Sun Y  Healey S  Bi Z  Hu G  Wan S  Kouttab N  Chu W  Wan Y 《The Biochemical journal》2006,400(2):225-234
AQP3 (aquaporin-3), known as an integral membrane channel in epidermal keratinocytes, facilitates water and glycerol movement into and out of the skin. Here, we demonstrate that AQP3 is also expressed in cultured human skin fibroblasts, which under normal wound healing processes migrate from surrounding tissues to close the wound. EGF (epidermal growth factor), which induced fibroblast migration, also induced AQP3 expression in a time- and dose-dependent manner. CuSO4 and NiCl2, previously known as AQP3 water transport inhibitors, as well as two other bivalent heavy metals Mn2+ and Co2+, inhibited EGF-induced cell migration in human skin fibroblasts. AQP3 knockdown by small interfering RNA inhibited EGF-induced AQP3 expression and cell migration. Furthermore, an EGFR (EGF receptor) kinase inhibitor, PD153035, blocked EGF-induced AQP3 expression and cell migration. MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK inhibitor U0126 and PI3K (phosphoinositide 3-kinase) inhibitor LY294002 also inhibited EGF-induced AQP3 expression and cell migration. Collectively, our findings show for the first time that AQP3 is expressed in human skin fibroblasts and that EGF induces AQP3 expression via EGFR, PI3K and ERK signal transduction pathways. We have provided evidence for a novel role of AQP3 in human skin fibroblast cell migration, which occurs during normal wound healing.  相似文献   

8.
9.
In many systems, the integration of converging regulatory signals that relay on G protein-coupled receptor (GPCR) activation into functional cellular pathways requires the involvement of receptor tyrosine kinase. In this report, we provide evidence that activation of GPCR by beta-adrenergic agonist leading to stimulation in gastric mucin secretion requires epidermal growth factor receptor (EGFR) participation. Using [(3)H]glucosamine-labeled gastric mucosal cells, we show that stimulatory effect of beta-adrenergic agonist, isoproterenol, on mucin secretion was inhibited by EGFR kinase inhibitor, PD153035, as well as wortmannin, a specific inhibitor of PI3K. Both inhibitors, moreover, blunted the mucin secretory responses to beta-adrenergic agonist-generated second messenger, cAMP as well as adenylate cyclase activator, forskolin. The gastric mucin secretory responses to isoproterenol, furthermore, were inhibited by PP2, a selective inhibitor of tyrosine kinase Src responsible for ligand-independent EGFR autophosphorylation, but not by ERK inhibitor, PD98059. The inhibition of ERK, moreover, did not cause attenuation in mucin secretion in response to cAMP and forskolin. The findings underline the role of EGFR as a convergence point in gastric mucin secretion triggered by beta-adrenergic GPCR activation, and demonstrate the requirement for Src kinase in EGFR transactivation.  相似文献   

10.
When human epidermal cells were seeded on floating rafts of collagen and fibroblasts, they stratified at the air-liquid interface. The suprabasal cells synthesized the large type II (K1) and type I (K10/K11) keratins characteristic of terminal differentiation in skin. At earlier times in culture, expression of the large type II keratins appeared to precede the expression of their type I partners. At later times, all suprabasal cells expressed both types, suggesting that the accumulation of a critical level of K1 keratin may be a necessary stimulus for K10 and K11 expression. Expression of the terminal differentiation-specific keratins was completely suppressed by adding retinoic acid to the culture medium, or by submerging the cultures in normal medium. In submerged cultures, removal of vitamin A by delipidization of the serum restored the keratinization process. In contrast, calcium and transforming growth factor-beta did not influence the expression of the large keratins in keratinocytes grown in the presence of retinoids, even though they are known to induce certain morphological features of terminal differentiation. Retinoic acid in the raft medium not only suppressed the expression of the large keratins, but, in addition, induced the synthesis of two new keratins not normally expressed in epidermis in vivo. Immunofluorescence localized one of these keratins, K19, to a few isolated cells of the stratifying culture. In contrast, the other keratin, K13, appeared uniformly in a few outer layers of the culture. Interestingly, K13 expression correlated well with the gradient of retinoid-mediated disruptions of intercellular interactions in the culture. These data suggest that K13 induction may in some way relate to the reduction in either the number or the strength of desmosomal contacts between suprabasal cells of stratified squamous epithelial tissues.  相似文献   

11.
12.
Communication between receptor tyrosine kinase and G protein-coupled receptor (GPCR)-mediated signaling is recognized as a common integrator linking diverse aspects of intracellular signaling systems. Here, we report that G protein-coupled beta-adrenergic receptor activation leading to stimulation of salivary phospholipid release occurs with the involvement of epidermal growth factor receptor (EGFR). Using sublingual gland acinar cells, we show that prosecretory effect of isoproterenol on phospholipid release was subjected to suppression by EGFR kinase inhibitor, PD153035, and wortmannin, an inhibitor of PI3K, but not by PD98059, an inhibitor of extracellular signal regulated kinase (ERK). Furthermore, wortmannin, but not the ERK inhibitor, caused the reduction in the acinar cell secretory responses to beta-adrenergic agonist-generated cAMP as well as adenyl cyclase activator, forskolin. The acinar cell phospholipid secretory responses to isoproterenol, moreover, were inhibited by PP2, a selective inhibitor of tyrosine kinase Src responsible for ligand-independent EGFR phosphorylation. Taken together, our data are the first to demonstrate the requirement for Src kinase-dependent EGFR transactivation in regulation of salivary phospholipid secretion in response to beta-adrenergic GPCR activation.  相似文献   

13.
14.
The aryl hydrocarbon receptor (AhR) mediates many toxic effects of environmental pollutants. AhR also interacts with multiple growth factor-driven signaling pathways. In the course of examining effects of growth factors on proliferation of human colon cancer cells, we identified cross talk between AhR and the epidermal growth factor receptor (EGFR). In the present work, we explored underlying signal transduction mechanisms and functional consequences of this interaction. With the use of two human colon cancer cell lines, H508 and SNU-C4, we examined the effects of AhR ligands including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on cell proliferation and activation of EGFR, ERK1/2, and Src kinases. In colon cancer cells, 5-day incubation with TCDD stimulated a twofold dose-dependent increase in cell proliferation that was detectable with 1 nM and maximal with 30 nM TCDD. TCDD induced dose- and time-dependent phosphorylation of EGFR (Tyr845) and ERK1/2; maximal phosphorylation was observed 5 to 10 min after addition of 30 nM TCDD. Both TCDD-induced ERK1/2 phosphorylation and cell proliferation were abolished by AhR small interfering RNA, AhR-specific inhibitor CH223191, Src kinase inhibitor PP2, neutralizing antibodies against matrix metalloproteinase 7, heparin-binding-EGF-like growth factor and EGFR, EGFR inhibitors (AG1478 and PD168393), and MEK1 inhibitor PD98059. Coimmunoprecipitation experiments revealed that AhR forms a protein complex with Src and regulates Src activity by phosphorylating Src (Tyr416) and dephosphorylating Src (Tyr527). These data support novel observations that, in human colon cancer cells, Src-mediated cross talk between aryl hydrocarbon and EGFR results in ERK1/2 activation, thereby stimulating cell proliferation.  相似文献   

15.
16.
Oxidative stress has been implicated in the pathogenesis of inflammatory diseases of airways. Here we show that oxidative stress causes ligand-independent activation of epidermal growth factor receptors (EGFR) and subsequent activation of mitogen-activated protein kinase kinase (MEK)-p44/42 mitogen-activated protein kinase (p44/42mapk), resulting in mucin synthesis in NCI-H292 cells. Exogenous hydrogen peroxide and neutrophils activated by IL-8, FMLP, or TNF-alpha increased EGFR tyrosine phosphorylation and subsequent activation of p44/42mapk and up-regulated the expression of MUC5AC at both mRNA and protein levels in NCI-H292 cells. These effects were blocked by selective EGFR tyrosine kinase inhibitors (AG1478, BIBX1522) and by a selective MEK inhibitor (PD98059), whereas a selective platelet-derived growth factor receptor tyrosine kinase inhibitor (AG1295), a selective p38 MAPK inhibitor (SB203580), and a negative compound of tyrosine kinase inhibitors (A1) were without effect. Neutrophil supernatant-induced EGFR tyrosine phosphorylation, activation of p44/42mapk, and MUC5AC synthesis were inhibited by antioxidants (N-acetyl-cysteine, DMSO, dimethyl thiourea, or superoxide dismutase); neutralizing Abs to EGFR ligands (EGF and TGF-alpha) were without effect, and no TGF-alpha protein was found in the neutrophil supernatant. In contrast, the EGFR ligand, TGF-alpha, increased EGFR tyrosine phosphorylation, activation of p44/42mapk, and subsequent MUC5AC synthesis, but these effects were not inhibited by antioxidants. These results implicate oxidative stress in stimulating mucin synthesis in airways and provide new therapeutic approaches in airway hypersecretory diseases.  相似文献   

17.
The authors have designed high-throughput screens to identify compounds that promote or inhibit terminal differentiation of primary human epidermal keratinocytes. Eleven known inhibitors of signaling pathways and approximately 4000 compounds of diverse structure were screened using an In-Cell Western system based on immunofluorescent staining of the terminal differentiation marker, involucrin. Staurosporine, a nonspecific protein kinase C inhibitor, and H89, a protein kinase A inhibitor, promoted expression of involucrin. Conversely, U0126, a MEK inhibitor, and SAHA or SBHA, 2 histone deacetylase inhibitors, reduced the expression of involucrin during calcium-induced stratification. In addition, the authors found 1 novel compound that induced keratinocyte differentiation and 2 novel compounds that were inhibitory to calcium-induced differentiation. The differentiation-inducing compound also inhibited growth of a human squamous cell carcinoma line by stimulating both differentiation and apoptosis. Because the compound affected the tumor cells at a lower concentration than primary keratinocytes, it may have potential as an antitumor therapy.  相似文献   

18.
In the epidermis, one of the earliest characterized events in keratinocyte differentiation is the coordinate induction of a pair of keratins specifically expressed in suprabasal cells, keratin 1 (K1) and keratin 10 (K10). Both in vivo and in vitro, extracellular calcium is necessary for several biochemical and structural changes during keratinocyte differentiation. However, it has been unclear if calcium serves as a differentiation signal in keratinocytes. In these studies, expression of suprabasal keratin mRNA and protein is used to test whether the initial differentiation of primary mouse keratinocytes in vitro is dependent on changes in the concentration of extracellular calcium. K1 mRNA was expressed at low levels in cultures of keratinocytes growing on plastic in 0.05 mM calcium but in attached cells was not further induced by increases in the concentration of extracellular calcium. Suspension of the keratinocytes into semi-solid medium induced a rapid and substantial increase in both expression of K1 mRNA and in the percentage of cells expressing suprabasal keratin proteins. The induction was unaffected by the concentration of calcium in the semi-solid medium and could not be enhanced by exposing attached cells to higher calcium before suspension. The induction of K1 mRNA could be inhibited by exposure of the keratinocytes to either EGF or fibronectin. These results suggest that commitment of mouse keratinocytes to terminal differentiation is independent of extracellular calcium and may be regulated primarily by extracellular factors other than calcium.  相似文献   

19.
Hyaluronan (hyaluronic acid, HA) is an abundant matrix component between keratinocytes of the epidermis in vivo, but its function there remains unclear. We used a lift culture model, in which rat epidermal keratinocytes (REKs) stratify at an air-liquid interface, to ask whether HA may regulate epidermal proliferation and/or differentiation. In this model, early markers of differentiation (keratin 10), and later markers (profilaggrin, keratohyalin granules, cornified layers) are faithfully expressed, both temporally and spatially. HA, measured using two different analytical techniques, accumulated to high levels only in the presence of an intact basement membrane that seals the epidermal compartment. To test whether HA has a functional role in differentiation, Streptomyces hyaluronidase (StrepH, 1 U/ml; digests >95% of HA within 4 h) was added daily to lift cultures during stratification time-course experiments over 5 days. In StrepH-treated cultures, the expression of profilaggrin and the number and size of keratohyalin granules were significantly increased relative to controls using semiquantitative histological analyses. The StrepH-related accumulation of K10 protein and profilaggrin/filaggrin were confirmed by Western analyses. Thus, it appears that the presence of intercellular HA in the epidermis acts as a brake upon intracellular events that occur during keratinocyte differentiation.  相似文献   

20.
Plasminogen activator inhibitor 2 (PAI-2) is an enzyme inhibitor which is involved in cell differentiation, tissue growth and regeneration. In this study, immunocytochemistry, in situ hybridization and confocal laser scanning microscopy were used to investigate the expression and role of PAI-2 in differentiation of keratinocytes in vitro. The result showed that in the mono-layer differentiated keratinocytes induced by high calcium concentration, the expression of PAI-2 and its mRNA increased significantly, accompanied by expression increase of the differentiation marker keratin 10; and in the multi-layer differentiated keratinocytes induced by high calcium, PAI-2 expressed strongly mainly in the keratinocytes of middle as well as upper stratified layers, while K10 expressed in the keratinocytes of all stratified layers. Furthermore, the changes of the parameters related to keratinocyte differentiation were detected after inhibition of PAI-2 functions by its antibody, and the data showed that when treated by PAI-2 antibody, involucrin in the keratinocytes envelope expressed increasingly with an altering distribution from part to the whole envelope area. Our results indicate that during differentiation of epidermal keratinocyte, PAI-2 expresses mainly in the more differentiated keratinocytes and may protect the terminal differentiated keratinocytes from prematuration through inhibiting involucrin expression in cornified envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号