首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipases D (PLDs) catabolize structural phospholipids to produce phosphatidic acid (PtdOH), a lipid playing central role in signalling pathways in animal, yeast and plant cells. In animal cells two PLD genes have been studied while in model plant Arabidopsis twelve genes exist, classified in six classes (α-ζ). This underlines the role of these enzymes in plant responses to environmental stresses. However, information concerning the PLD involvement in the widely cultivated and economically important cotton plant responses is very limited. The aim of this report was to study the activity of conventional cotton PLD and its participation in plant responses to mechanical wounding, which resembles both biotic and abiotic stresses. PLDα activity was identified and further characterized by transphosphatidylation reaction. Upon wounding, cotton leaf responses consist of an acute in vitro increase of PLDα activity in both wounded and systemic tissue. However, determination of the in vivo PtdOH levels under the same wounding conditions revealed a rapid PtdOH formation only in wounded leaves and a late response of a PtdOH increase in both tissues. Εxpression analysis of PLDα and PLDδ isoforms showed mRNA accumulation of both isoforms in the wounded tissue, but only PLDδ exerts a high and sustainable expression in systemic leaves, indicating that this isoform is mainly responsible for the systemic wound-induced PtdOH production. Therefore, our data suggest that PLDα and PLDδ isoforms are involved in different steps in cotton wound signalling.  相似文献   

2.
3.
4.
S W Hong  J H Jon  J M Kwak    H G Nam 《Plant physiology》1997,113(4):1203-1212
A cDNA clone for a receptor-like protein kinase gene (RPK1) was isolated from Arabidopsis thaliana. The clone is 1952 bp long with 1623 bp of an open reading frame encoding a peptide of 540 amino acids. The deduced peptide (RPK1) contains four distinctive domains characteristic of receptor kinases: (a) a putative amino-terminal signal sequence domain; (b) a domain with five extracellular leucine-rich repeat sequences; (c) a membrane-spanning domain; and (d) a cytoplasmic protein kinase domain that contains all of the 11 subdomains conserved among protein kinases. The RPK1 gene is expressed in flowers, stems, leaves, and roots. Expression of the RPK1 gene is induced within 1 h after treatment with abscisic acid (ABA). The gene is also rapidly induced by several environmental stresses such as dehydration, high salt, and low temperature, suggesting that the gene is involved in a general stress response. The dehydration-induced expression is not impaired in aba-1, abi1-1, abi2-1, and abi3-1 mutants, suggesting that the dehydration-induced expression of the RPK1 gene is ABA-independent. A possible role of this gene in the signal transduction pathway of ABA and the environmental stresses is discussed.  相似文献   

5.
The signaling events generated by a cold exposure are poorly known in plants. We were interested in checking the possible activation of enzymes of the phosphoinositide signaling pathway in response to a temperature drop. In Arabidopsis suspension cells labeled with (33)PO(4)(3-), a cold treatment induces a rapid increase of phosphatidic acid (PtdOH) content. This production was due to the simultaneous activation of phospholipase C (through diacylglycerol kinase activity) and phospholipase D, as monitored by the production of inositol triphosphate and of transphosphatidylation product, respectively. Moreover, inhibitors of the phosphoinositide pathway and of diacylglycerol kinase reduced PtdOH production. Enzyme activation occurred immediately after cells were transferred to low temperature. The respective contribution of both kind of phospholipases in cold-induced production of PtdOH could be estimated. We created conditions where phospholipids were labeled with (33)PO(4)(3-), but with ATP being nonradioactive. In such conditions, the apparition of radioactive PtdOH reflected PLD activity. Thus, we demonstrated that during a cold stress, phospholipase D activity accounted for 20% of PtdOH production. The analysis of composition in fatty acids of cold-produced PtdOH compared with that of different phospholipids confirmed that cold-induced PtdOH more likely derived mainly from phosphoinositides. The addition of chemical reagents modifying calcium availability inhibited the formation of PtdOH, showing that the cold-induced activation of phospholipase pathways is dependent on a calcium entry.  相似文献   

6.
7.
8.
9.
以抗性葡萄品种‘F-242’组培苗为材料, 利用同源克隆法克隆了葡萄VvBAP1基因。测序结果显示, VvBAP1扩增片段大小为531 bp, 可编码176个氨基酸序列。利用生物信息学分析VvBAP1基因编码的蛋白序列显示, 该蛋白分子量为19.43 kDa, 含有保守的钙离子依赖性的C2结构域; 等电点pI为9.42; 不稳定系数为37.09, 推测为稳定的亲水性蛋白; 含有多个丝氨酸/苏氨酸磷酸化位点。实时荧光定量PCR表明, 该基因在根茎叶中均有表达, 其中在叶片中表达量较高; 盐胁迫、低温等逆境因子及逆境相关的信号物质, 如水杨酸和一氧化氮均可诱导VvBAP1的表达, 其中低温对其表达量影响更为显著, 推测该基因参与了葡萄抵御逆境胁迫的过程, 尤其是与低温相关的过程。  相似文献   

10.
Phospholipase D (PLD) activity was found to be present in the membrane fraction of rat myocardial cells by in vitro assays (36.7 +/- 4.1 nmol/mg protein per h against 1-palmitoyl-2-arachidonoyl- phosphatidylcholine) and demonstrated in intact cells by the specific transphosphatidylation reaction (in the presence of 0.02% ethanol) quantitated using n-[1-14C]butanol (201.16 +/- 7.1 pmol/min per g dry weight in the whole heart). Both methods showed a significant increase in PLD activity (by 62 and 44%, respectively) in hearts subjected to reversible (30 min) global normothermic ischemia followed by reperfusion (30 min). In hearts prelabeled with [1-14C]arachidonic acid, ischemia/reperfusion induced a significant increase in the amount of radiolabel incorporated into phosphatidic acid (PtdOH) (by 49.6%) and diacylglycerol (DG) (by 259%). DG kinase inhibition by 100 microM dioctanoylethylene glycol did not affect the ischemia/reperfusion DG and PtdOH levels while PtdOH phosphohydrolase inhibition with 40 microM propranolol produced a further increase in PtdOH (to 2.36-fold the baseline level) and a reduction in DG (to only 145% over the baseline levels). Put together, all these results suggest an activation of PLD during myocardial ischemia/reperfusion generating intracellular PtdOH, part of which is converted by PtdOH phosphohydrolase to DG. We further investigated the possible pathophysiological significance of the observed PLD activation. Stimulation of PLD with sodium oleate (20 microM) induced a significant improvement of functional recovery of ischemic hearts during reperfusion (as monitored by coronary flow and left intraventricular pressure measurements) and an attenuation of cellular injury as expressed by lactate dehydrogenase and creatine kinase release in the coronary effluent during reperfusion. These results suggest a PLD-mediated signaling in the ischemic heart which may benefit functional recovery during reperfusion.  相似文献   

11.
12.
To determine the role of protein tyrosine phosphorylation in the activation of phospholipase D (PLD), electropermeabilized HL-60 cells labeled in [3H]alkyl-phosphatidylcholine were treated with vanadate derivatives. Micromolar concentrations of vanadyl hydroperoxide (V(4+)-OOH) induced accumulation of tyrosine-phosphorylated proteins. Concomitantly, V(4+)-OOH or a combination of vanadate and NADPH elicited a concentration- and time-dependent accumulation of phosphatidic acid (PtdOH). In the presence of ethanol a sustained formation of phosphatidylethanol was observed, indicating that a type D phospholipase was activated. A good correlation was found to exist between the accumulation of tyrosine-phosphorylated proteins and activation of PLD. The V(4+)-OOH concentration dependence of the two responses was nearly identical, and the time course of activation was similar, with tyrosine phosphorylation preceding PLD activation by approximately 1 min. The ability of V(4+)-OOH to induce both responses was found to be strictly dependent on the presence of ATP and/or Mg2+, suggesting that PLD activation involves phosphotransferase reactions. Accordingly, ST638, a tyrosine kinase inhibitor, reduced concomitantly tyrosine phosphorylation and PLD activation elicited by V(4+)-OOH. The mechanism of action of V(4+)-OOH was investigated. The diacylglycerol kinase inhibitors, dioctanoylethylene glycol and R59022 potentiated PLD stimulation by exogenous diacylglycerol but not by V(4+)-OOH. Moreover, stimulation by V(4+)-OOH and by phorbol esters was synergystic. Therefore, diacylglycerol-induced activation of protein kinase C is unlikely to mediate the effects of V(4+)-OOH. The response of PLD to V(4+)-OOH was larger than that to guanosine 5'-(gamma-thio)triphosphate. Moreover, the effects of GTP gamma S and V(4+)-OOH were additive. Hence, activation of G proteins cannot account for the stimulation of PLD by V(4+)-OOH. V(4+)-OOH also triggers a burst of O2 consumption by the NADPH oxidase. Inhibition of PtdOH accumulation by addition of ethanol or by ST638 abolished this respiratory burst. Together, the results establish a strong correlation between tyrosine phosphorylation, PLD activation, and stimulation of the NADPH oxidase in HL-60 cells, suggesting a causal relationship.  相似文献   

13.
To investigate whether phospholipase D (PLD, EC 3.1.4.4) plays a role in adaptive response of post-harvest fruit to environment, a PLD gene was firstly cloned from grape berry (Vitis Vinifera L. cv. Chardonnay) using RT-PCR and 3'- and 5'-RACE. The deduced amino acid sequence (809 residues) showed 84.7% identity with that of PLD from Ricinus communis. The secondary structures of this protein showed the characteristic C2 domain and two active sites of a phospholipid-metabolizing enzyme. The PLD activity and its expression in response to heat acclimation were then assayed. The results indicated PLD was significantly activated at enzyme activity, as well as accumulation of PLD mRNA and synthesis of new PLD protein during the early of heat acclimation, primary suggesting that the grape berry PLD may be involved in the heat response in post-harvest grape berry. This work offers an important basis for further investigating the mechanism of post-harvest fruit adaptation to environmental stresses.  相似文献   

14.
15.
16.
The catabolism of phospholipids initiated by phospholipase D (PLD, EC 3.1.4.4) is an inherent feature of developmental processes that include fruit growth and ripening. In cherry tomatoes (Lycopersicon esculentum Mill.), soluble and membrane-associated PLD activities increased during fruit development, which peaked at the mature green and orange stages. The increase in PLD activity was associated with a similar increase in the intensity of a 92 kDa band as demonstrated by western blot analysis. A full-length cDNA having 2430 bp and encoding a putative polypeptide with 809 amino acids, was isolated using tomato RNA, RT-PCR and 5' and 3' rapid amplification of cloned ends (RACE). Analysis of the primary and secondary structures showed the presence of the C2 domain, the PLD domain and several other features characteristic of PLD alpha. Microtom tomato plants transformed with antisense PLD alpha cDNA, were similar to untransformed plants and showed normal fruit set and development. The ethylene climacteric was delayed by over 7 d in the antisense PLD fruits, indicative of a slower ripening process. The leaves and unripened fruits of antisense PLD microtom plants possessed lowered PLD activity and PLD protein, as demonstrated by western blotting. However, during ripening, PLD activity in the transgenic fruits was maintained at a higher level than that in the untransformed control. Immunolocalization of PLD in microtom tomato fruits revealed the cytosol-membrane translocation of PLD during fruit development. The ripe fruits of antisense PLD celebrity plants possessed lowered PLD expression and activity and showed increased firmness and red colour. These results suggest that the expression of antisense PLD cDNA could be variable in different tomato varieties. The potential role of PLD in ethylene signal transduction events is discussed.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号