首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aging decreases the fertility of mammalian females. In old oocytes at metaphase II stage (MII) there are alterations of the chromatin configuration and chromatin modifications such as histone acetylation. Recent data indicate that alterations of histone acetylation at MII initially arise at germinal vesicle stage (GV). Therefore, we hypothesized that the chromatin configuration and histone methylation could also change in old GV oocytes. In agreement with our hypothesis, young GV oocytes had non-surrounded nucleolus (NSN) and surrounded nucleolus (SN) chromatin configurations, while old GV oocytes also had chromatin configurations that could not be classified as NSN or SN. Regarding histone methylation, young GV and MII oocytes showed dimethylation of lysines 4, 9, 36 and 79 in histone 3 (H3K4me2, H3K9me2, H3K36me2, H3K79me2), lysine 20 in histone H4 (H4K20me2) and trimethylation of lysine 9 in histone 3 (H3K9me3) while a significant percentage of old GV and MII oocytes lacked H3K9me3, H3K36me2, H3K79me2 and H4K20me2. The percentage of old oocytes lacking histone methylation was similar at GV and MII suggesting that alterations of histone methylation in old MII oocytes initially arise at GV. Besides, the expression of the histone methylation-related factors Cbx1 and Sirt1 was also found to change in old GV oocytes. In conclusion, our study reports changes of chromatin configuration and histone methylation in old GV oocytes, which could be very useful for further understanding of human infertility caused by aging.  相似文献   

2.
Park MR  Gupta MK  Lee HR  Das ZC  Uhm SJ  Lee HT 《Theriogenology》2011,75(5):940-950
Phosphatidylinositol-3-kinases (PI3Ks) play pivotal roles in meiotic progression of oocytes from metaphase I to metaphase II stage. Using a Class III-specific inhibitor of PI3K, 3-methyladenine (3MA), this study shows that Class III PI3K may be essential for meiotic progression of porcine oocytes beyond germinal vesicle (GV) stage. Treatment of immature porcine oocytes with 3MA for 22-42 h arrested them at the GV stage, irrespective of the presence or absence of cumulus cells. Furthermore, a significantly high proportion (60.9 ± 13.8%) of 3MA-treated oocytes acquired a nucleolus completely surrounded by a rim of highly condensed chromatin (GV-II stage). The GV-arresting effect of 3MA was, however, completely reversible upon their further culture in the absence of 3MA for 22 h. When cumulus-oophorus-complexes (COCs), arrested at the GV stage for 22 h by 3MA, were further cultured for 22 h in the absence of 3MA, 96.1 ± 1.5% of oocytes reached the MII stage at 42 h of IVM and did not differ from non-treated control oocytes with respect to their ability to fertilize, cleave and form blastocyst (P > 0.05) upon in vitro fertilization (IVF) or parthenogenetic activation (PA). These data suggest that 3MA efficiently blocks and synchronizes the meiotic progression of porcine oocytes at the GV stage without affecting their ooplasmic maturation in terms of post-fertilization/activation in vitro embryonic development. Our data also provide indirect evidence for the likely participation of Class III PI3K in meiotic maturation of porcine oocyte beyond the GV stage.  相似文献   

3.
The cryopreservation of immature oocytes would generate a readily available, non-seasonal source of female gametes for research and reproduction. In domestic animals, the most promising results on oocyte cryopreservation have been reported in cattle, few studies have been conducted on buffalo. The aim of the present study was to compare the use of different vitrification solutions and various cryodevices on viability and developmental competence of buffalo oocytes vitrified at the germinal vesicle (GV) stage. Cumulus oocyte-complexes (COCs) obtained at slaughterhouse from mature buffalo ovaries were randomly divided into three main groups and vitrified by using either straw or open pulled-straw (OPS) or solid surface vitrification (SSV) in a solution composed of either 20% ethylene glycol (EG) + 20% glycerol (GLY); VS1 or 20% EG + 20% dimethylsulfoxide (DMSO); VS2, respectively. Following vitrification and warming, viable COCs were matured in vitro for 22 h. Some COCs were denuded and stained with 1.0% aceto-orcein to evaluate nuclear maturation, whereas the others were fertilized and cultured in vitro for 7 days to determine the developmental competence. Although the recovery rate (64.9%) was the lowest in the oocytes vitrified by SSV using 20% EG + 20% DMSO as compared to the other groups, the best survival rate of the COCs was achieved in the same treatment (96.7%), which was significantly higher (P < 0.05) than those vitrified using traditional straws (71.8% in VS1 and 73.6% in VS2) or those vitrified using OPS and VS1 (73.9%). Furthermore, in the nuclear maturation test, the highest maturation rate (75.5%) was achieved in SSV vitrified COCs using 20% EG + 20% DMSO (VS2), which was similar to the controls (77.1%). Post IVF and embryo culture, the highest cleavage and blastocyst development rates were obtained in COCs vitrified in 20% EG + 20% DMSO using SSV (47.1% and 24.0%, respectively), which showed no difference from the controls (61.2% and 46.9%, respectively). Our results clearly show that the combination of SSV and 20% EG + 20% DMSO could be used effectively to vitrify GV stage buffalo COCs.  相似文献   

4.
5.
Summary Externally applied membrane permeable cAMP derivatives and the injection of cAMP induce oocyte maturation in several species of hydrozoans. This technique for inducing oocyte maturation has been used to study ion permeability changes, maturation promoting factor activity and surface tension changes during maturation. Oocyte membrane potential remains constant during maturation. Cyclic AMP induced maturation proceeds in the absence of external Ca2+, K, Mg2+ or Na+. Cytoplasm from maturing oocytes that induces oocyte maturation when it is injected into untreated oocytes is produced during cAMP induced maturation. Surface tension, as measured by the application of a standardized force that mechanically deforms individual oocytes, declines during the first part of maturation. This is followed by a sharp rise and fall of surface tension at first and second polar body formation that accompanies a slow rise in the resistance of oocytes to deformation during the last part of maturation. The production of maturation promoting factor activity and some of the changes in surface tension during maturation can occur in the absence of germinal vesicle material. Two early developmental events that follow oocyte maturation are the production of sperm chemoattractant and calcium channel function. Neither of these events occurs in eggs that have undergone maturation in the absence of germinal vesicle material. The addition of germinal vesicle contents from oocytes to eggs that have undergone maturation in the absence of germinal vesicle material initiates calcium channel function. This experiment indicates that the germinal vesicle contains factors that are necessary for post-maturation developmental events.  相似文献   

6.
Summary Experiments with oocyte enucleation and transplantation of germinal vesicles show that already at the beginning of the period of rapid growth, the oocyte karyoplasm contains the substances necessary for the appearance in the cytoplasm of the ability to divide.  相似文献   

7.
目的:研究左归丸对小鼠未成熟卵母细胞体外核成熟的影响。方法:制备左归丸含药血清,将生发泡(germinal vesicle,GV)期卵母细胞分别在不同采血时间获取的左归丸含药血清培养液中进行体外培养,观察左归丸含药血清对生发泡破裂(germinal vesicle breakdown,GVBD)和第一极体(the first polar body,PB1)排出的时效关系。结果:药物血清组卵母细胞GVBD的发生率高于正常血清组和对照组,于培养后4h差异最显著(P〈0.01);药物血清组卵母细胞PB1的发生率高于正常血清组和对照组,于培养后18h差异最显著(P〈0.01)。结论:2~2.5h左归丸含药血清对未成熟卵母细胞体外核成熟具有明显促进作用。  相似文献   

8.
左归丸促进小鼠未成熟卵母细胞体外核成熟的实验研究   总被引:1,自引:0,他引:1  
目的:研究左归丸对小鼠未成熟卵母细胞体外核成熟的影响。方法:制备左归丸含药血清,将生发泡(germinal vesicle,GV)期卵母细胞分别在不同采血时间获取的左归丸含药血清培养液中进行体外培养,观察左归丸含药血清对生发泡破裂(germinal vesicle breakdown,GVBD)和第一极体(the first polar body,PB1)排出的时效关系。结果:药物血清组卵母细胞GVBD的发生率高于正常血清组和对照组,于培养后4h差异最显著(P<0.01);药物血清组卵母细胞PB1的发生率高于正常血清组和对照组,于培养后18h差异最显著(P<0.01)。结论:2~2.5h左归丸含药血清对未成熟卵母细胞体外核成熟具有明显促进作用。  相似文献   

9.
The inhibition of progesterone-induced oocyte maturation by diisopropylfluorophosphate (DFP), a typical serine protease inhibitor, was investigated in oocytes of the Japanese toad Bufo japonicus for the first time. Oocytes to which DFP was externally applied did not undergo germinal vesicle breakdown (GVBD), which is an early signal of oocyte maturation, in response to progesterone. The more inhibitory period was found to be 0–0.5 GVBD50 on a relative time scale [when the time at which 50% of the oocytes had completed GVBD (GVBD50) was set at 1.0], namely, before the beginning of GVBD. DFP-sensitive proteases, which seem to be multifunctional nonlysosomal protease complexes (proteasomes), may already be present in the cytosol of premature oocytes. Peptide hydrolyzing activity, as reflected by proteasome activity, was found to be regulated before and after GVBD. In addition, immunoblotting regarding the native electrophoretic protein profile of the proteasomes throughout the maturational process demonstrated that they undergo alterations in mobility dependent upon the maturational process. These findings raise the possibility that the activities of some endogenous DFP-sensitive proteasomes play distinct, essential roles in oocyte maturation triggered by progesterone in Bufo. © 1994 Wiley-Liss, Inc.  相似文献   

10.
In the oocytes of many animals, the germinal vesicle (GV) relocates from the center to the periphery of the oocyte upon meiosis reinitiation, which is a prerequisite to the formation of meiotic spindles beneath the cell surface in order for meiosis to succeed. In the present study, we have investigated nuclear positioning using sea-cucumber oocytes. Upon meiosis reinitiation, the GV relocates to the cell periphery beneath a surface protuberance. After GV breakdown, polar bodies were extruded from the top of the protuberance, which we therefore called the animal pole process. The GV relocation was inhibited by nocodazole but not by cytochalasin. Immunofluorescent staining and electron microscopy of microtubular arrays revealed that: (i) in immature oocytes, two centrosomes were situated beneath the animal pole process far apart from the GV, anchoring to the cortex via astral microtubules; (ii) upon meiosis reinitiation, microtubular bundles were newly formed between the centrosomes and the GV; and (iii) the microtubular bundles became short as GV migration proceeded. These observations suggest that microtubules and centrosomes participate in GV relocation. A very large mass of annulate lamellae, having a 20-microm diameter, was found in the vegetal pole of the oocytes.  相似文献   

11.
The organization of chromatin and cytoplasmic microtubules changes abruptly at M-phase entry in both mitotic and meiotic cell cycles. To determine whether the early nuclear and cytoplasmic events associated with meiotic resumption are dependent on protein synthesis, cumulus-enclosed hamster oocytes were cultured in the presence of 100 micrograms/ml puromycin or cycloheximide for 5 hr. Both control (untreated) and treated oocytes were analyzed by fluorescence microscopy after staining with Hoechst 33258 and tubulin antibodies. Freshly isolated oocytes exhibit prominent nucleoli and diffuse chromatin within the germinal vesicle as well as an interphase network of cytoplasmic microtubules. After 4-4.5 hr in culture, most oocytes were in prometaphase I of meiosis as characterized by a prominent spindle with fully condensed chromosomes and numerous cytoplasmic asters. After 5-5.5 hr in culture, microtubule asters are no longer detected in most cells, and the spindle is the only tubulin-positive structure. Incubation for 5 hr in the presence of inhibitors does not impair germinal vesicle breakdown, chromatin condensation, kinetochore microtubule assembly, or cytoplasmic aster formation in the majority of oocytes examined; however, under these conditions, a population of oocytes retains a germinal vesicle, exhibiting variable degrees of chromatin condensation and cytoplasmic aster formation. Meiotic spindle formation is inhibited in all oocytes. These effects are fully reversible upon culture of treated oocytes in drug-free medium for 5 hr. The data indicate that meiotic spindle assembly is dependent on ongoing protein synthesis in the cumulus-enclosed hamster oocyte; in contrast, chromatin condensation and aster formation are not as sensitive to protein synthesis inhibitors during meiotic resumption.  相似文献   

12.
The specific aim of this study was to determine the effects of gonadotropins in vitro upon the incidence of and precise time interval to germinal vesicle breakdown (GVB) and extrusion of the first polar body (PB1) in oocytes from nonstimulated rhesus monkeys. Cumulus-enclod germinal vesicle (GV) stage oocytes from 10 normal, cycling rhesus monkeys in the follicular phase of the menstrual cycle were cultured with either: (1) 1.0 μg/ml human follicle-stimulating hormone (hFSH), (2) 10 μg/ml human luteinizing hormone (hLH), (3) 1.0 μg/ml hFSH and 10 μg/ml hLH, or (4) no gonadotropins (controls). Oocytes (n = 234) were examined at 3-hr intervals from 0 to 21 hr and at 4-hr intervals from 24 to 52 hr for GVB and PB1. Neither the incidence of GVB (hFSH: 63.5%; hLH: 56.1%; both gonadotropins: 63.1%; no gonadotropins: 53.6%) nor extrusion of PB1 (hFSH: 41.3%; hLH: 36.4%; both gonadotropins: 36.9%; no gonadotropins; 31.9%) differed (P > 0.05) among treatments. The time to GVB was accelerated (P < 0.05) by gonadotropins (hFSH: 10.8 ± 1.7 hr; hLH: 10.1 ± 1.8 hr; both gonadotropins: 8.8 ± 1.1 hr) when compared to controls (17.4 ± 2.0 hr). However, the time interval to extrusion of PB1 did not differ (P > 0.05) among treatments (hFSH: 32.3 ± 1.2 hr; hLH: 35.1 ± 1.4 hr; both gonadotropins: 35.2 ± 1.3 hr; no gonadotropins: 34.1 ± 1.2 hr). The mean interval to extrusion of PB1 was 34.1 ± 0.6 hr. In conclusion, GVB and PB1 extrusions appear to be, in part, independently regulated events in macaque oocytes matured in vitro since the timing of PB1 extrusion is not tightly coupled with the onset of GVB. Although the developmental potential of oocytes may be enhanced by gonadotropins, alternative approaches must be developed to improve the poor competence of oocytes from nonstimulated monkeys to mature in vitro. © 1994 Wiley-Liss, Inc.  相似文献   

13.
The nuclear membranes surrounding fish and frog oocyte germinal vesicles (GVs) are supported by the lamina, an internal, mesh-like structure that consists of the protein lamin B3. The mechanisms by which lamin B3 is transported into GVs and is assembled to form the nuclear lamina are not well understood. In this study, we developed a heterogeneous microinjection system in which wild-type or mutated goldfish GV lamin B3 (GFLB3) was expressed in Escherichia coli, biotinylated, and microinjected into Xenopus oocytes. The localization of the biotinylated GFLB3 was visualized by fluorescence confocal microscopy. The results of these experiments indicated that the N-terminal domain plays important roles in both nuclear transport and assembly of lamin B3 to form the nuclear lamina. The N-terminal domain includes a major consensus phosphoacceptor site for the p34(cdc2) kinase at amino acid residue Ser-28. To investigate nuclear lamin phosphorylation, we generated a monoclonal antibody (C7B8D) against Ser-28-phosphorylated GFLB3. Two-dimensional (2-D) electrophoresis of GV protein revealed two major spots of lamin B3 with different isoelectric points (5.9 and 6.1). The C7B8D antibody recognized the pI-5.9 spot but not the pI-6.1 spot. The former spot disappeared when the native lamina was incubated with lambda phage protein phosphatase (lambda-PP), indicating that a portion of the lamin protein was already phosphorylated in the goldfish GV-stage oocytes. GFLB3 that had been microinjected into Xenopus oocytes was also phosphorylated in Xenopus GV lamina, as judged by Western blotting with C7B8D. Thus, lamin phosphorylation appears to occur prior to oocyte maturation in vivo in both these species. Taken together, our results suggest that the balance between phosphorylation by interphase lamin kinases and dephosphorylation by phosphatases regulates the conformational changes in the lamin B3 N-terminal head domain that in turn regulates the continual in vivo rearrangement and remodeling of the oocyte lamina.  相似文献   

14.
The nucleolus dynamically alters its shape through the assembly and disassembly of a variety of nucleolar components in proliferating cells. While the nucleolus is known to function in vital cellular events, little is known about how its components are correctly assembled. Through the analysis of a Drosophila mutant that exhibits a reduced number of mushroom body (MB) neurons in the brain, we reveal that the slender lobes (sle) gene encodes a novel nuclear protein that affects nucleolar organization during development. In sle mutant neuroblasts, the nucleolus was packed more tightly, forming a dense sphere, and the nucleolar proteins fibrillarin and Nop60B were abnormally distributed in the interphase nucleolus. Moreover, another nucleolar marker, Aj1 antigen, was localized to the center of the nucleolus in a manner complementary to the Nop60B distribution, and also formed a large aggregate in the cytoplasm. While developmental defects were limited to a few tissues in sle mutants, including MBs and nurse cells, the altered organization of the nucleolar components were evident in most developing tissues. Therefore, we conclude that Sle is a general factor of nuclear architecture in Drosophila that is required for the correct organization of the nucleolus during development.  相似文献   

15.
We review the dynamic patterns of cell behaviours in the marginal zone of amphibians with a focus on how the progressive nature and the geometry of these behaviours drive blastopore closure. Mediolateral cell intercalation behaviour and epithelial-mesenchymal transition are used in different combinations in several species of amphibian to generate a conserved pattern of circumblastoporal hoop stresses. Although these cell behaviours are quite different and involve different germ layers and tissue organization, they are expressed in similar patterns. They are expressed progressively along presumptive lateral-medial and anterior-posterior axes of the body plan in highly ordered geometries of functional significance in the context of the biomechanics of blastopore closure, thereby accounting for the production of similar patterns of circumblastoporal forces. It is not the nature of the cell behaviour alone, but the context, the biomechanical connectivity and spatial and temporal pattern of its expression that determine specificity of morphogenic output during gastrulation and blastopore closure. Understanding the patterning of these dynamic features of cell behaviour is important and will require analysis of signalling at much greater spatial and temporal resolution than that has been typical in the analysis of patterning tissue differentiation.  相似文献   

16.
Summary A library of hybridoma cell lines has been established which produce monoclonal antibodies against antigens from the germinal vesicle ofXenopus laevis oocytes. Many of the antigens are also found in the nuclei ofXenopus embryonic cells in culture. The fate of two of these antigens during embryogenesis was traced by immunofluorescence on embryo and tadpole sections. Early in development these antigens appear to be evenly distributed in the nuclei of all cells. In later stages they gradually disappear from most embryonic structures but are strongly accumulated in the nuclei of some specific cell types and organs.  相似文献   

17.
In order to elucidate host-parasite interactions and infection strategies of helminths at the molecular level, the availability of suitable in vitro cultivation systems for this group of parasites is of vital importance. One of the few helminth systems for which in vitro cultivation has been relatively successfully carried out in the past is the larval stage of the fox-tapeworm Echinococcus multilocularis, the causative agent of alveolar echinococcosis. Respective ‘first generation’ cultivation systems relied on the co-incubation of larval tissue, isolated from laboratory rodents, with host feeder cells. Although these techniques have been very successful in producing metacestode material for drug screening assays or the establishment of cDNA libraries, the continuous presence of host cells prevented detailed studies on the influence of defined host factors on larval growth. To facilitate such investigations, we have recently introduced the first truly axenic system for long-term in vitro maintenance of metacestode vesicles and used it to establish a technique for parasite cell cultivation. The resulting culture system, which allows the complete in vitro regeneration of metacestode vesicles from germinal cells, is a highly useful tool to study the cellular and molecular basis of a variety of developmental processes that occur during the infection of the mammalian host. Furthermore, it provides a solid basis for establishing transgenic techniques in cestodes for the first time. We consider it an appropriate time point to discuss the characteristics of these ‘second generation’ cultivation systems in comparison with former techniques, to present our first successful attempts to introduce foreign DNA into Echinococcus cells, and to share our ideas on how a fully transgenic Echinococcus strain can be generated in the near future.  相似文献   

18.
The RNA-binding molecule Bicaudal-C regulates embryonic development in Drosophila and Xenopus. Interestingly, mouse mutants of Bicaudal-C do not show early patterning defects, but instead develop polycystic kidney disease (PKD). To further investigate the molecular mechanism of Bicaudal-C in kidney development, we analyzed its function in the developing amphibian pronephros. Bicaudal-C mRNA was present in the epithelial structures of the Xenopus pronephros, the tubules and the duct, but not the glomus. Inhibition of the translation of endogenous Bicaudal-C with antisense morpholino oligomers (xBic-C-MO) led to a PKD-like phenotype in Xenopus. Embryos lacking Bicaudal-C developed generalized edemas and dilated pronephric tubules and ducts. This phenotype was caused by impaired differentiation of the pronephros. Molecular markers specifically expressed in the late distal tubule were absent in xBic-C-MO-injected embryos. Furthermore, Bicaudal-C was not required for primary cilia formation, an important organelle affected in PKD. These data support the idea that Bicaudal-C functions downstream or parallel of a cilia-regulated signaling pathway. This pathway is required for terminal differentiation of the late distal tubule of the Xenopus pronephros and regulates renal epithelial cell differentiation, which--when disrupted--results in PKD.  相似文献   

19.
A conserved feature of germ cells in many animal species is the presence of perinuclear electron-dense material called the "nuage" that is believed to be a precursor of germinal (or polar or P) granules. In Xenopus oogenesis the nuage is first observed near the nuclear envelope and subsequently in close contact with mitochondria, at which stage it is called the mitochondrial cement. In this study, we found that, in Xenopus pre-stage I and stage I oocytes, nuage and mitochondrial cement contain the spliceosomal Sm proteins, Xcat2 mRNA, and DEAD-box RNA helicase XVLG1. Other components of Cajal bodies or splicing machinery such as coilin, SMN protein, and snRNAs are absent from the nuage and mitochondrial cement. We suggest that Xenopus Sm proteins have adapted to a role independent of pre-mRNA splicing and that instead of binding to their traditional spliceosomal partner such as snRNA, they bind mRNAs that are the components of germinal granules (i.e., Xcat2 mRNA) and facilitate the transport of these mRNAs from the nucleus to the nuage that is a precursor of germinal granules. In addition, the presence of Vasa-like DEAD-box helicase in Xenopus nuage suggests involvement of nuage in the microRNA and/or RNAi pathway, similar to the role of nuage in Drosophila.  相似文献   

20.
Isayeva A  Zhang T  Rawson DM 《Cryobiology》2004,49(2):114-122
Human activity in the last few decades has had a devastating effect on the diversity of fresh water and marine fish. Further decline of fish population may have serious economic and ecological consequences. One of the most promising techniques to preserve fish population is to cryopreserve their germ cells. Cryopreservation has been successfully applied to fish sperm of many species, but there has been no success with fish embryo cryopreservation and fish oocyte cryopreservation has never been studied systematically. The aim of this study is to investigate the chilling sensitivity of fish oocytes. Experiments were conducted with zebrafish stage III (vitellogenic) and stage V (mature) oocytes, which were chilled at 10, 5, 0, -5 or -10 degrees C for 15 or 60 min using a low temperature bath. Control oocytes were kept at room temperature at 22 degrees C. Oocyte viability was assessed using three different methods: trypan blue staining (TB), thiazolyl blue tetrazolium bromide (MTT) staining and observation of germinal vesicle breakdown (GVBD). The results showed that zebrafish oocyte are very sensitive to chilling and their survival decreased with decreasing temperature and increasing exposure time periods. Normalised survivals assessed with TB staining after exposure to 0, -5 or -10 degrees C for 15 or 60 min were 90.1+/-6.0, 77.8+/-7.6, and 71.2+/-9.3%, and 60.2+/-3.8, 49.6+/-6.7, and 30.4+/-3.0%, respectively. The study found that the sensitivity of viability assessment methods increase in the order of MTT < TB < GVBD. It was found that stage III oocytes were more susceptible to chilling than stage V oocytes, and that individual female had a significant influence (p < 0.0001) on oocyte chilling sensitivity. Zebrafish oocyte chilling sensitivity may also be one of the limiting factors for development of protocol of their cryopreservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号