首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 729 毫秒
1.
The human microbiota is a complex community of commensal, symbiotic, and pathogenic microbes that play a crucial role in maintaining the homeostasis of human health. Such a homeostasis is maintained through the collective functioning of enzymatic genes responsible for the production of metabolites, enabling the interaction and signaling within microbiota as well as between microbes and the human host. Understanding microbial genes, their associated chemistries and functions would be valuable for engineering systemic metabolic pathways within the microbiota to manage human health and diseases. Given that there are many unknown gene metabolic functions and interactions, increasing efforts have been made to gain insights into the underlying functions of microbiota metabolism. This can be achieved through culture‐independent metagenomic approaches and metabolic modeling to simulate the microenvironment of human microbiota. In this article, the recent advances in metagenome mining and functional profiling for the discovery of the genetic and biochemical links in human microbiota metabolism as well as metabolic modeling for simulation and prediction of metabolic fluxes in the human microbiota are reviewed. This review provides useful insights into the understanding, reconstruction, and modulation of the human microbiota guided by the knowledge acquired from the basic understanding of the human microbiota metabolism.  相似文献   

2.
Green plants use solar energy efficiently in nature. Simulating the exquisite structure of a natural photosynthesis system may open a new approach for the construction of desirable photocatalysts with high light harvesting efficiency and performance. Herein, inspired by the excellent light utilization of “leaf mosaic” in plants, a novel vine‐like g‐C3N4 (V‐CN) is synthesized for the first time by copolymerizing urea with dicyandiamide‐formaldehyde (DF) resin. The as‐prepared V‐CN exhibits ultrahigh photocatalytic hydrogen production of 13.6 mmol g?1 h?1 under visible light and an apparent quantum yield of 12.7% at 420 nm, which is ≈38 times higher than that of traditional g‐C3N4, representing one of the highest‐activity g‐C3N4‐based photocatalysts. This super photocatalytic performance is derived from the unique leaf mosaic structure of V‐CN, which effectively improves its light utilization and affords a larger specific surface area. In addition, the introduction of DF resin further optimizes the energy band of V‐CN, extends its light absorption, and improves its crystallinity and interfacial charge transport, resulting in high performance. It is an easy and green strategy for the preparation of broad‐spectrum, high‐performance g‐C3N4, which presents significant advancement for the design of other nanophotocatalysts by simulating the fine structure of natural photosynthesis.  相似文献   

3.
Reactions of N,N′‐bis (salicylidene)‐1,2‐cyclohexanediamine (H2L) with mixed lanthanide counterions of LnCl3·6H2O and Ln (NO3)3·6H2O afford six H2L lanthanide coordination polymers, e.g. {[Pr(H2L)2(NO3)2Cl]·2CH2Cl2}n ( 1 ); {[Ln(H2L)1.5(NO3)3]2·5CHCl3·mCH3OH}n [Ln = Sm ( 2 ), Eu ( 3 ), Gd ( 4 ), Tb ( 5 ) and Yb ( 6 ); m = 1 ( 2 – 5 ); m = 0 ( 6 )]. X‐ray crystallographic analysis reveals that complex 1 exhibits three‐dimensional diamondoid topologic structure and complexes 2 – 6 are of two‐dimensional structure. Luminescent spectra show that complexes 1 and 6 have characteristic near‐infrared (NIR) emission of praseodymium (III) and ytterbium (III) ions and complexes 2 – 5 emit luminescence in the visible region. Complexes 3 and 6 reveal sensitive luminescence responses to formaldehyde.  相似文献   

4.
5.
A norepinephrine (NE) deficiency has been observed in aged rats and in patients with Alzheimer's disease and is thought to cause cognitive disorder. Which endogenous factor induces NE depletion, however, is largely unknown. In this study, we investigated the effects of aging‐associated formaldehyde (FA) on the inactivation of NE in vitro and in vivo, and on memory behaviors in rodents. The results showed that age‐related DNA demethylation led to hippocampal FA accumulation, and when this occurred, the hippocampal NE content was reduced in healthy male rats of different ages. Furthermore, biochemical analysis revealed that FA rapidly inactivated NE in vitro and that an intrahippocampal injection of FA markedly reduced hippocampal NE levels in healthy adult rats. Unexpectedly, an injection of FA (at a pathological level) or 6‐hydroxydopamine (6‐OHDA, a NE depletor) can mimic age‐related NE deficiency, long‐term potentiation (LTP) impairments, and spatial memory deficits in healthy adult rats. Conversely, an injection of NE reversed age‐related deficits in both LTP and memory in aged rats. In agreement with the above results, the senescence‐accelerated prone 8 (SAMP8) mice also exhibited a severe deficit in LTP and memory associated with a more severe NE deficiency and FA accumulation, when compared with the age‐matched, senescence‐resistant 1 (SAMR1) mice. Injection of resveratrol (a natural FA scavenger) or NE into SAMP8 mice reversed FA accumulation and NE deficiency and restored the magnitude of LTP and memory. Collectively, these findings suggest that accumulated FA is a critical endogenous factor for aging‐associated NE depletion and cognitive decline.  相似文献   

6.
7.
8.
Roux‐en‐Y gastric bypass (RYGB) surgery has become an accepted treatment for excessive obesity. We conducted a longitudinal study to assess regional body composition, muscle proteolysis, and energy expenditure before RYGB, and 6 and 12 months after RYGB. Whole‐body and regional fat mass (FM) and lean mass (LM) were assessed via dual energy X‐ray absorptiometry (DXA), and myofibrillar protein degradation was estimated by urinary 3‐methylhistidine (3‐MeH) in 29 subjects. Energy expenditure and substrate oxidation were also determined using a whole‐room, indirect calorimeter in 12 of these subjects. LM loss constituted 27.8 ± 10.2% of total weight loss achieved 12 months postoperatively, with the majority of LM loss (18 ± 6% of initial LM) occurring in the first 6 months following RYGB. During this period, the trunk region contributed 66% of whole‐body LM loss. LM loss occurred in the first 6 months after RYGB despite decreased muscle protein breakdown, as indicated by a decrease in 3‐MeH concentrations and muscle fractional breakdown rates. Sleep energy expenditure (SEE) decreased from 2,092 ± 342 kcal/d at baseline to 1,495 ± 190 kcal/day at 6 months after RYGB (P < 0.0001). Changes in both LM and FM had an effect on the reduction in SEE (P < 0.001 and P = 0.005, respectively). These studies suggest that loss of LM after RYGB is significant and strategies to maintain LM after surgery should be explored.  相似文献   

9.
In this study, we report the synthesis, spectral characterization, antiepileptic activity and biotransformation of three new, chiral, N‐aminoalkyl derivatives of trans – 2 aminocyclohexan‐1‐ol: 1 (R enantiomer), 2 (S enantiomer) and 3 (racemate). Antiepileptic activity of the titled compounds was studied using MES and scMet. Moreover, in this study, the biotransformation of 1 , 2 and 3 in microbial model (Cunninghamella), liver microsomal assay as well as in silico studies (MetaSite) was evaluated. Studies have indicated that 1 , 2 and 3 have good antiepileptic activity in vivo, comparable to valproate. Biotransformation assays showed that the most probable metabolite (indicated in every tested assays) was M1 . The microbial model as well as in silico study showed no difference in biotransformation between tested enantiomers. However, in a rat liver microsomal study compound 1 and 2 (R and S enantiomer) had different main metabolite – M2 for 1 and M1 for 2 . MS/MS fragmentation allowed us to predict the structures of obtained metabolites, which were in agreement with 1°alcohol ( M1 ) and carboxylic acid ( M2 ). Our research has shown that microbial model, microsomal assay, and computational methods can be included as useful and reliable tools in early ADME‐Tox assays in the process of developing new drug candidates. Chirality 27:163–169, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Ruegeria pomeroyi DSS‐3 possesses two general pathways for metabolism of dimethylsulphoniopropionate (DMSP), an osmolyte of algae and abundant carbon source for marine bacteria. In the DMSP cleavage pathway, acrylate is transformed into acryloyl‐CoA by propionate‐CoA ligase (SPO2934) and other unidentified acyl‐CoA ligases. Acryloyl‐CoA is then reduced to propionyl‐CoA by AcuI or SPO1914. Acryloyl‐CoA is also rapidly hydrated to 3‐hydroxypropionyl‐CoA by acryloyl‐CoA hydratase (SPO0147). A SPO1914 mutant was unable to grow on acrylate as the sole carbon source, supporting its role in this pathway. Similarly, growth on methylmercaptopropionate, the first intermediate of the DMSP demethylation pathway, was severely inhibited by a mutation in the gene encoding crotonyl‐CoA carboxylase/reductase, demonstrating that acetate produced by this pathway was metabolized by the ethylmalonyl‐CoA pathway. Amino acids and nucleosides from cells grown on 13C‐enriched DMSP possessed labelling patterns that were consistent with carbon from DMSP being metabolized by both the ethylmalonyl‐CoA and acrylate pathways as well as a role for pyruvate dehydrogenase. This latter conclusion was supported by the phenotype of a pdh mutant, which grew poorly on electron‐rich substrates. Additionally, label from [13C‐methyl] DMSP only appeared in carbons derived from methyl‐tetrahydrofolate, and there was no evidence for a serine cycle of C‐1 assimilation.  相似文献   

11.
Comparison of the genomes of free‐living Bodo saltans and those of parasitic trypanosomatids reveals that the transition from a free‐living to a parasitic life style has resulted in the loss of approximately 50% of protein‐coding genes. Despite this dramatic reduction in genome size, B. saltans and trypanosomatids still share a significant number of common metabolic traits: glycosomes; a unique set of the pyrimidine biosynthetic pathway genes; an ATP‐PFK which is homologous to the bacterial PPi‐PFKs rather than to the canonical eukaryotic ATP‐PFKs; an alternative oxidase; three phosphoglycerate kinases and two GAPDH isoenzymes; a pyruvate kinase regulated by fructose‐2,6‐bisphosphate; trypanothione as a substitute for glutathione; synthesis of fatty acids via a unique set of elongase enzymes; and a mitochondrial acetate:succinate coenzyme A transferase. B. saltans has lost the capacity to synthesize ubiquinone. Among genes that are present in B. saltans and lost in all trypanosomatids are those involved in the degradation of mureine, tryptophan and lysine. Novel acquisitions of trypanosomatids are components of pentose sugar metabolism, pteridine reductase and bromodomain‐factor proteins. In addition, only the subfamily Leishmaniinae has acquired a gene for catalase and the capacity to convert diaminopimelic acid to lysine.  相似文献   

12.
Objective: Obese transgenic UCP‐DTA mice have largely ablated brown adipose tissue and develop obesity and diabetes, which are highly susceptible to a high‐fat diet. We investigated macronutrient self‐selection and its effect on development of obesity, diabetes, and energy homeostasis in UCP‐DTA mice. Research Methods and Procedures: UCP‐DTA and wild‐type littermates were fed a semisynthetic macronutrient choice diet (CD) ad libitum from weaning until 17 weeks. Energy homeostasis was assessed by measurement of food intake, food digestibility, body composition, and energy expenditure. Diabetes was assessed by blood glucose measurements and insulin tolerance test. Results: Wild‐type and UCP‐DTA mice showed a high fat preference and increased energy digestion on CD compared with a low‐fat standard diet. On CD, wild‐type mice accumulated less body fat (16.9%) than UCP‐DTA (32.6%) mice, although they had a higher overall energy intake. Compared with wild‐type mice, resting metabolic rate was reduced in UCP‐DTA mice irrespective of diet. UCP‐DTA mice progressively decreased their carbohydrate intake, resulting in an almost complete avoidance of carbohydrate. UCP‐DTA mice developed severe insulin resistance but showed decreased fed and fasted blood glucose on CD. Discussion: In contrast to wild‐type mice, UCP‐DTA mice were not able to reduce their weight gain efficiency on CD. This suggests that, because of the high fat preference of the background strain and the increased metabolic efficiency, brown adipose tissue‐deficient mice still develop obesity and insulin resistance on a macronutrient CD even when decreasing overall energy intake. Through the avoidance of carbohydrates, however, they are able to maintain normoglycemia.  相似文献   

13.
The influence of albumin towards the metabolism behavior of fenoprofen enantiomers and relevant drug–drug interaction was investigated in the present study. The metabolic behavior of fenoprofen enantiomers was compared in a phase II metabolic incubation system with and without bovine serum albumin (BSA). BSA supplement increased the binding affinity parameter (Km) of (R)‐fenoprofen towards human liver microsomes (HLMs) from 148.3 to 214.4 μM. In contrast, BSA supplement decreased the Km of (S)‐fenoprofen towards HLMs from 218.2 to 123.5 μM. For maximum reaction velocity (Vmax), the addition of BSA increased the Vmax of (R)‐fenoprofen from 1.3 to 1.6 nmol/min/mg protein. In the contrast, BSA supplement decreased the Vmax value from 3.3 to 1.5 nmol/min/mg protein. Andrographolide–fenoprofen interaction was used as an example to investigate the influence of BSA supplement towards fenoprofen‐relevant drug–drug interaction. The addition of 0.2% BSA in the incubation system significantly decreased the inhibition potential of andrographolide towards (R)‐fenoprofen metabolism (P < 0.001). Different from (R)‐fenoprofen, the addition of BSA significantly increased the inhibition potential of andrographolide towards the metabolism of (S)‐fenoprofen. BSA supplement also changed the inhibition kinetic type and parameter of andrographolide towards the metabolism of (S)‐fenoprofen. In conclusion, albumin supplement changes the metabolic behavior of fenoprofen enantiomers and the fenoprofen–andrographolide interaction. Chirality 27:436–440, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Green tea is purported to promote weight loss. Resting metabolic rate (RMR) and the thermic effect of feeding (TEF) are significant components of total daily energy expenditure and are partially determined by the sympathetic nervous system via catecholamine‐mediated stimulation of β‐adrenergic receptors. Epigallocatechin‐3‐gallate (EGCG: the most bioactive catechin in green tea) inhibits catechol‐O‐methyltransferase, an enzyme contributing to the degradation of catecholamines. Accordingly, we hypothesized that short‐term consumption of a commercially available EGCG supplement (Teavigo) augments RMR and TEF. On two separate occasions, seven placebo or seven EGCG capsules (135 mg/capsule) were administered to 16 adults (9 males, 7 females, age 25 ± 2 years, BMI 24.6 ± 1.2 kg/m2 (mean ± s.e.)). Capsules (three/day) were consumed over 48 h; the final capsule was consumed 2 h prior to visiting the laboratory. Energy expenditure (ventilated hood technique) was determined at rest and for 5 h following ingestion of a liquid meal (caloric content: 40% RMR). Contrary to our hypothesis, RMR was not greater (P = 0.10) following consumption of EGCG (6,740 ± 373 kJ/day) compared with placebo (6,971 ± 352). Similarly, the area under the TEF response curve (Δ energy expenditure) was also unaffected by EGCG (246,808 ± 23,748 vs. 243,270 ± 22,177 kJ; P = 0.88). EGCG had no effect on respiratory exchange ratio at rest (P = 0.29) or throughout the TEF measurement (P = 0.56). In summary, together RMR and TEF may account for up to 85% of total daily energy expenditure; we report that short‐term consumption of a commercially available EGCG supplement did not increase RMR or TEF.  相似文献   

15.
16.
Objective: Free fatty acid (FFA) oxidation is reduced in subjects with type 2 diabetes mellitus and impaired glucose tolerance (IGT). Weight reduction does not improve these impairments. Because exercise training is known to increase fatty acid (FA) oxidation, we investigated whether a combined diet and physical activity intervention program can improve FA oxidation in subjects with IGT. Research Methods and Procedures: Sixteen subjects with IGT were studied before and after 1 year of a lifestyle intervention program [nine intervention (INT) subjects, seven controls (CON)]. INT subjects received regular (i.e., every 3 months) dietary advice and were stimulated to increase their level of physical activity. Glucose tolerance, anthropometric characteristics, and substrate use at rest and during exercise were evaluated before and after 1 year. Substrate oxidation was measured at rest and during moderate intensity exercise using indirect calorimetry in combination with stable isotope infusion ([U‐13C]palmitate and [6, 6‐2H2‐]glucose). Results: After 1 year, no differences were seen in substrate use at rest. During exercise, total fat and plasma FFA oxidation were slightly increased in the INT group and decreased in the CON group, with the change being significantly different (change after 1 year: INT, +2.0 ± 1.4 and +1.9 ± 0.9 μmol/kg per minute; CON, ?3.5 ± 1.6 and ?1.8 ± 0.5 μmol/kg per minute for total and plasma FFA, respectively; p < 0.05). Discussion: A combined diet and physical activity intervention program can prevent further deterioration of impaired FA oxidation during exercise in subjects with IGT.  相似文献   

17.
18.
Klebsiella pneumoniae HR526, a new isolated 1,3‐propanediol (1,3‐PD) producer, exhibited great productivity. However, the accumulation of lactate in the late‐exponential phase remained an obstacle of 1,3‐PD industrial scale production. Hereby, mutants lacking D ‐lactate pathway were constructed by knocking out the ldhA gene encoding fermentative D ‐lactate dehydrogenase (LDH) of HR526. The mutant K. pneumoniae LDH526 with the lowest LDH activity was studied in aerobic fed‐batch fermentation. In experiments using pure glycerol as feedstock, the 1,3‐PD concentrations, conversion, and productivity increased from 95.39 g L?1, 0.48 and 1.98 g L?1 h?1 to 102. 06 g L?1, 0.52 mol mol?1 and 2.13 g L?1 h?1, respectively. The diol (1,3‐PD and 2,3‐butanediol) conversion increased from 0.55 mol mol?1 to a maximum of 0.65 mol mol?1. Lactate would not accumulate until 1,3‐PD exceeded 84 g L?1, and the final lactate concentration decreased dramatically from more than 40 g L?1 to <3 g L?1. Enzymic measurements showed LDH activity decreased by 89–98% during fed‐batch fermentation, and other related enzyme activities were not affected. NADH/NAD+ enhanced more than 50% in the late‐exponential phase as the D ‐lactate pathway was cut off, which might be the main reason for the change of final metabolites concentrations. The ability to utilize crude glycerol from biodiesel process and great genetic stability demonstrated that K. pnemoniae LDH526 was valuable for 1,3‐PD industrial production. Biotechnol. Bioeng. 2009; 104: 965–972. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号