首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Final maturation of eukaryotic ribosomes occurs in the cytoplasm and requires the sequential removal of associated assembly factors and processing of the immature 20S pre‐RNA. Using cryo‐electron microscopy (cryo‐EM), we have determined the structure of a yeast cytoplasmic pre‐40S particle in complex with Enp1, Ltv1, Rio2, Tsr1, and Pno1 assembly factors poised to initiate final maturation. The structure reveals that the pre‐rRNA adopts a highly distorted conformation of its 3′ major and 3′ minor domains stabilized by the binding of the assembly factors. This observation is consistent with a mechanism that involves concerted release of the assembly factors orchestrated by the folding of the rRNA in the head of the pre‐40S subunit during the final stages of maturation. Our results provide a structural framework for the coordination of the final maturation events that drive a pre‐40S particle toward the mature form capable of engaging in translation.  相似文献   

2.
研究液体发酵嗜热毛壳菌(Chaetomium thermophilum)产生的一种外切葡聚糖纤维二糖水解酶的分离纯化及特性。粗酶液经硫酸铵沉淀、DEAE-Sepharose Fast Flow阴离子层析、Sephacryl S-100分子筛层析、Q Sepharose Fast Flow强阴离子层析等步骤后获得凝胶电泳均一的外切葡聚糖纤维二糖水解酶。经12.5%SDS-PAGE和凝胶过滤层析方法测得该酶的分子量大小约为66.3kDa和67.1kDa。该酶反应的最适温度和pH值分别为65℃和5.0。在60℃以下酶比较稳定,在70℃酶的半衰期为1h,在80℃下保温20min仍具有20%的活性,该酶的热稳定性较中温真菌的同类酶高,与国外报道的嗜热真菌的同类酶热稳定性接近。以pNPC为底物的Km值为0.956mmol/L。  相似文献   

3.
Ribosome biogenesis is an energy consuming process which takes place mainly in the nucleolus. By producing ribosomes to fuel protein synthesis, it is tightly connected with cell growth and cell cycle control. Perturbation of ribosome biogenesis leads to the activation of p53 tumor suppressor protein promoting processes like cell cycle arrest, apoptosis or senescence. This ribosome biogenesis stress pathway activates p53 through sequestration of MDM2 by a subset of ribosomal proteins (RPs), thereby stabilizing p53. Here, we identify human HEATR1, as a nucleolar protein which positively regulates ribosomal RNA (rRNA) synthesis. Downregulation of HEATR1 resulted in cell cycle arrest in a manner dependent on p53. Moreover, depletion of HEATR1 also caused disruption of nucleolar structure and activated the ribosomal biogenesis stress pathway – RPL5 / RPL11 dependent stabilization and activation of p53. These findings reveal an important role for HEATR1 in ribosome biogenesis and further support the concept that perturbation of ribosome biosynthesis results in p53-dependent cell cycle checkpoint activation, with implications for human pathologies including cancer.  相似文献   

4.
Numerous ribosomal proteins have a striking bipartite architecture: a globular body positioned on the ribosomal exterior and an internal loop buried deep into the rRNA core. In eukaryotes, a significant number of conserved r-proteins have evolved extra amino- or carboxy-terminal tail sequences, which thread across the solvent-exposed surface. The biological importance of these extended domains remains to be established. In this study, we have investigated the universally conserved internal loop and the eukaryote-specific extensions of yeast L4. We show that in contrast to findings with bacterial L4, deleting the internal loop of yeast L4 causes severely impaired growth and reduced levels of large ribosomal subunits. We further report that while depleting the entire L4 protein blocks early assembly steps in yeast, deletion of only its extended internal loop affects later steps in assembly, revealing a second role for L4 during ribosome biogenesis. Surprisingly, deletion of the entire eukaryote-specific carboxy-terminal tail of L4 has no effect on viability, production of 60S subunits, or translation. These unexpected observations provide impetus to further investigate the functions of ribosomal protein extensions, especially eukaryote-specific examples, in ribosome assembly and function.  相似文献   

5.
During ribosome biogenesis in eukaryotes, nascent subunits are exported to the cytoplasm in a functionally inactive state. 60S subunits are activated through a series of cytoplasmic maturation events. The last known events in the cytoplasm are the release of Tif6 by Efl1 and Sdo1 and the release of the export adapter, Nmd3, by the GTPase Lsg1. Here, we have used cryo-electron microscopy to determine the structure of the 60S subunit bound by Nmd3, Lsg1, and Tif6. We find that a central domain of Nmd3 mimics the translation elongation factor eIF5A, inserting into the E site of the ribosome and pulling the L1 stalk into a closed position. Additional domains occupy the P site and extend toward the sarcin–ricin loop to interact with Tif6. Nmd3 and Lsg1 together embrace helix 69 of the B2a intersubunit bridge, inducing base flipping that we suggest may activate the GTPase activity of Lsg1.  相似文献   

6.
7.
Aims:  A new cellobiohydrolase (CBH) gene ( cbh3 ) from Chaetomium thermophilum was cloned, sequenced and expressed in Pichia pastoris .
Methods and Results:  Using RACE-PCR, a new thermostable CBH gene ( cbh3 ) was cloned from C. thermophilum . The cDNA of the CBH was 1607 bp and contained a 1356 bp open reading frame encoding a protein CBH precursor of 451 amino acid residues. The mature protein structure of C. thermophilum CBH3 only comprises a catalytic domain and lacks cellulose-binding domain and a hinge region. The gene was expressed in P. pastoris . The recombinant CBH purified was a glycoprotein with a size of about 48·0 kDa, and exhibited optimum catalytic activity at pH 5·0 and 60 °C. The enzyme was more resistant to high temperature. The CBH could hydrolyse microcrystalline cellulose and filter paper.
Conclusions:  A new thermostable CBH gene of C. thermophilum was cloned, sequenced and overexpressed in P. pastoris .
Significance and Impact of the Study:  This CBH offers an interesting potential in saccharification steps in both cellulose enzymatic conversion and alcohol production.  相似文献   

8.
9.
Mitochondrial ribosomes synthesize core subunits of the inner membrane respiratory chain complexes. In mitochondria, translation is regulated by mRNA‐specific activator proteins and occurs on membrane‐associated ribosomes. Mdm38/Letm1 is a conserved membrane receptor for mitochondrial ribosomes and specifically involved in respiratory chain biogenesis. In addition, Mdm38 and its higher eukaryotic homolog Letm1, function as K+/H+ or Ca2+/H+ antiporters in the inner membrane. Here, we identify the conserved ribosome‐binding domain (RBD) of Mdm38 and determine the crystal structure at 2.1 Å resolution. Surprisingly, Mdm38RBD displays a 14‐3‐3‐like fold despite any similarity to 14‐3‐3‐proteins at the primary sequence level and thus represents the first 14‐3‐3‐like protein in mitochondria. The 14‐3‐3‐like domain is critical for respiratory chain assembly through regulation of Cox1 and Cytb translation. We show that this function can be spatially separated from the ion transport activity of the membrane integrated portion of Mdm38. On the basis of the phenotypes observed for mdm38Δ as compared to Mdm38 lacking the RBD, we suggest a model that combining ion transport and translational regulation into one molecule allows for direct coupling of ion flux across the inner membrane, and serves as a signal for the translation of mitochondrial membrane proteins via its direct association with the protein synthesis machinery.  相似文献   

10.
Ribosomes mediate protein synthesis by decoding the information carried by messenger RNAs (mRNAs) and catalysing peptide bond formation between amino acids. When bacterial ribosomes stall on incomplete messages, the trans-translation quality control mechanism is activated by the transfer-messenger RNA bound to small protein B (tmRNA-SmpB ribonucleoprotein complex). Trans-translation liberates the stalled ribosomes and triggers degradation of the incomplete proteins. Here, we present the cryo-electron microscopy structures of tmRNA-SmpB accommodated or translocated into stalled ribosomes. Two atomic models for each state are proposed. This study reveals how tmRNA-SmpB crosses the ribosome and how, as the problematic mRNA is ejected, the tmRNA resume codon is placed onto the ribosomal decoding site by new contacts between SmpB and the nucleotides upstream of the tag-encoding sequence. This provides a structural basis for the transit of the large tmRNA-SmpB complex through the ribosome and for the means by which the tmRNA internal frame is set for translation to resume.  相似文献   

11.
There are a large number of tertiary contacts between nucleotides in 23S rRNA, but which are of functional importance is not known. Disruption of one between A2662 in the sarcin/ricin loop (SRL) and A2531 in the peptidyl-transferase center (PTC) has adverse effects on cell growth and on the ability of ribosomes to catalyze some but not other partial reactions of elongation. A lethal A2662C mutation is suppressed by a concomitant lethal A2531 mutation. Ribosomes with non-lethal A2531 mutations, treated with base-specific reagents, have alterations of nucleotides in the PTC (home of A2531) and, more significantly, in nucleotides in the SRL and in the GTPase center. The results suggest that the function of ribosomal centers is coordinated by a set of sequential conformational changes in rRNA that are a response to signals transmitted through a network of tertiary interactions.  相似文献   

12.
Proteins in the small subunit of the mammalian mitochondrial ribosome were separated by two-dimensional polyacrylamide gel electrophoresis. Four individual proteins were subjected to in-gel Endoprotease Lys-C digestion. The sequences of selected proteolytic peptides were obtained by electrospray tandem mass spectrometry. Peptide sequences obtained from in-gel digestion of individual spots were used to screen human, mouse, and rat expressed sequence tag databases, and complete consensus cDNAs for these species were deduced in silico. The corresponding protein sequences were characterized by comparison to known ribosomal proteins in protein databases. Four different classes of mammalian mitochondrial small subunit ribosomal proteins were identified. Only two of these proteins have significant sequence similarities to ribosomal proteins from prokaryotes. These proteins are homologs to Escherichia coli S9 and S5 proteins. The presence of these newly identified mitochondrial ribosomal proteins are also investigated in the Drosophila melanogaster, Caenorhabditis elegans, and in the genomes of several fungi.  相似文献   

13.
Human 40S ribosomal subunits were subjected to centrifugation through a 0.3–1.5 M LiCl gradient in 0.5 M KCl, 4 mM MgCl2. Most of the proteins started to dissociate at the initial concentration of monovalent cations (0.8 M); the last to dissociate at 1.55 M salt were the core proteins S3, S5, S7, S10, S15, S16, S17, S19, S20, and S28; among these, S7, S10, S16, and S19 were the most tightly bound to 18S rRNA.  相似文献   

14.
The modified nucleotide 3′ of the tRNA anticodon is an important structural element that regulates the codon-anticodon interaction in the ribosome by stacking with codon-anticodon bases. The presence and identity (pyrimidine, purine, or modified purine) of this nucleotide significantly affects the energy of stacking in the A and P sites of the ribosome. Modification of nucleotide 37 does not contribute to stacking in the A site of the 70S ribosome, while its effect is substantial in the P site. The enthalpies of tRNA interactions with the A and P sites in the ribosome are similar and considerably lower than the enthalpy of the interactions of two tRNAs with the cognate anticodons in solution, suggesting that the ribosome contributes to the enthalpy-related portion of the free energy of tRNA binding by directly forming additional interactions with tRNA or by indirectly stabilizing the conformation of the codon-anticodon complex. In addition to stacking, tRNA binding in the A and P sites is further stabilized by interactions that involve magnesium ions. The number of ions involved in the formation of the tRNA-ribosome complex depends on the identity of tRNA nucleotide 37.  相似文献   

15.
Hu X  Stebbins CE 《Proteins》2006,65(4):843-855
The cytolethal distending toxin (CDT) is a widespread bacterial toxin that consists of an active subunit CdtB with nuclease activity and two ricin-like lectin domains, CdtA and CdtC, that are involved in the delivery of CdtB into the host cell. The three subunits form a tripartite complex that is required to achieve the fully active holotoxin. In the present study we investigate the assembly and dynamic properties of the CDT holotoxin using molecular dynamics simulations and binding free energy calculations. The results have revealed that CdtB likely adopts a different conformation in the unbound state with a closed DNA binding site. The two characterized structural elements of the aromatic patch and groove on the CdtA and CdtC protein surfaces exhibit high mobility, and free energy calculations show that the heterodimeric complex CdtA-CdtC, as well as the CdtA-CdtB and CdtB-CdtC sub-complexes are less energetically stable as compared to the binding in the tripartite complex. Analysis of the dynamical cross-correlation map reveals information on the correlated motions and long-range interplay among the CDT subunits associated with complex formation. Finally, the estimated binding free energies of subunit interactions are presented, together with the free energy decomposition to determine the contributions of residues for both binding partners, providing insight into the protein-protein interactions in the CDT holotoxin.  相似文献   

16.
We have developed a reconstituted model system to study the interaction of the Golgi membranes isolated from rabbit liver with taxol-stabilized bovine-brain microtubules without microtubule-associated proteins (MAPs). The Golgi membranes are associated with microtubules. The sheets of vesicles and the membranous tubules are observed along microtubules by direct visualization using differential-interference-contrast, dark field, or fluorescence microscopy. The monoclonal antibody against Golgi membranes suggests that the Golgi membranes, but not the contaminating vesicles, are interacting with microtubules. The degree of association is assayed quantitatively using rhodamine-labeled microtubules after separation of the complex from unbound microtubules by centrifugation upon sucrose gradient. The association is inhibited by crude MAPs, purified MAP2, or 1.0 mM ATP. However, the association neither requires the cytosol from rat liver or bovine brain nor N-ethylmaleimide, brefeldin A, or GTP-gamma-S. The association is mediated by trypsin-sensitive peripheral protein(s) on the Golgi membranes.  相似文献   

17.
Molecular docking and molecular dynamics (MD) simulations were used to investigate the binding of a cellodextrin chain in a crystal-like conformation to the carbohydrate-binding module (CBM) of Cel9A from Thermobifida fusca. The fiber was found to bind to the CBM in a single and well-defined configuration in-line with the catalytic cleft, supporting the hypothesis that this CBM plays a role in the catalysis by feeding the catalytic domain (CD) with a polysaccharide chain. The results also expand the current known list of residues involved in the binding. The polysaccharide-protein attachment is shown to be mediated by five amine/amide-containing residues. E478 and E559 were found not to interact directly with the sugar chain; instead they seem to be responsible to stabilize the binding motif via hydrogen bonds.  相似文献   

18.
19.
Interaction between angiotensin II (Ang II) and the fragment peptide 300-320 (fCT300-320) of the rat angiotensin II receptor AT1a was demonstrated by relaxation measurements, NOE effects, chemical shift variations, and CD measurements. The correlation times modulating dipolar interactions for the bound and free forms of Ang II were estimated by the ratio of the nonselective and single-selective longitudinal relaxation rates. The intermolecular NOEs observed in NOESY spectra between HN protons of 9Lys(fCT) and 6His(ang), 10Phe(fCT) and 8Phe(ang), HN proton of 3Tyr(fCT) and Halpha of 4Tyr(ang), 5Phe(fCT)Hdelta and Halpha of 4Tyr(ang) indicated that Ang II aromatic residues are directly involved in the interaction, as also verified by relaxation data. Some fCT300-320 backbone features were inferred by the CSI method and CD experiments revealing that the presence of Ang II enhances the existential probability of helical conformations in the fCT fragment. Restrained molecular dynamics using the simulated annealing protocol was performed with intermolecular NOEs as constraints, imposing an alpha-helix backbone structure to fCT300-320 fragment. In the built model, one strongly preferred interaction was found that allows intermolecular stacking between aromatic rings and forces the peptide to wrap around the 6Leu side chain of the receptor fragment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号