共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
分子伴侣参与调控动、植物的发育和进化进程 总被引:1,自引:0,他引:1
近年来, 人们对分子伴侣的功能研究取得了很大进展, 阐明了它参与细胞新合成蛋白多肽的折叠、组装、运输和蛋白质的降解过程。在这些过程中, 伴随着分子伴侣表达量的高低变化, 细胞线粒体数量也会发生相应的变化。文章综述了分子伴侣参与调控动、植物的发育和进化进程, 如: 动、植物育性调控, 抗逆境能力提高及热休克蛋白-多肽复合物的肿瘤免疫治疗探索等。 相似文献
3.
Native human β-casein (CN) at all phosphorylation levels exhibits reproducible behavior and appears to have a unique, stable
folding pattern. In contrast, the recombinant non-phosphorylated form of human β-CN (β-CN-0P) with the exact amino acid sequence
(wild-type), expressed and purified from Escherichia coli, differs greatly in its behavior from the native protein and the complexes formed are unstable to thermal cycling. However,
when it was incorporated into reconstituted milk micelles, using bovine κ-CN at a κ/β molar ratio of 1/3 with added Ca2+ ions and inorganic phosphate (Pi) at levels that would ordinarily precipitate, its association behavior vs. temperature as monitored by turbidity (OD400 nm) approximated that of native β-CN-0P. This suggests that the milk micelle system, and particularly the colloidal calcium
phosphate, may act as a ‘molecular chaperon’ to direct the folding of the molecule into the highly stable conformation found
in the purified native human β-CN molecule. 相似文献
4.
5.
Marianna Helln Arnab Bhattacharjee Riikka-Liisa Uronen Henri
J. Huttunen 《Bioscience reports》2021,41(8)
Misfolded, pathological tau protein propagates from cell to cell causing neuronal degeneration in Alzheimer’s disease and other tauopathies. The molecular mechanisms of this process have remained elusive. Unconventional secretion of tau takes place via several different routes, including direct penetration through the plasma membrane. Here, we show that tau secretion requires membrane interaction via disulphide bridge formation. Mutating residues that reduce tau interaction with membranes or formation of disulphide bridges decrease both tau secretion from cells, and penetration through artificial lipid membranes. Our results demonstrate that tau is indeed able to penetrate protein-free membranes in a process independent of active cellular processes and that both membrane interaction and disulphide bridge formation are needed for this process. QUARK-based de novo modelling of the second and third microtubule-binding repeat domains (MTBDs), in which the two cysteine residues of 4R isoforms of tau are located, supports the concept that this region of tau could form transient amphipathic helices for membrane interaction. 相似文献
6.
7.
《Autophagy》2013,9(5):650-651
In the secretory pathway, the secretion of proteins to the plasma membrane or to the extracellular milieu occurs via vesicular transport from the endoplasmic reticulum, via the Golgi apparatus, to the plasma membrane. This process and the players involved are understood in considerable detail. However, the mode of secretion of proteins that lack a signal sequence and do not transit through the secretory pathway has not been described, despite the fact that the literature is replete with examples of such proteins. One such protein is an evolutionarily conserved, secreted Acyl-CoA binding protein (known as AcbA in Dictyostelium discoideum, Acb1 in yeast and diazepam-binding inhibitor in mammals). Two recent papers highlighted in this punctum have elucidated the pathways required for the unconventional secretion of Acb1 in Pichia pastoris and Saccharomyces cerevisiae. Both implicate autophagy proteins and autophagosome formation in the process, while also uncovering roles for other interesting proteins in the unconventional secretion of Acb1. 相似文献
8.
In the secretory pathway, the secretion of proteins to the plasma membrane or to the extracellular milieu occurs via vesicular transport from the endoplasmic reticulum, via the Golgi apparatus, to the plasma membrane. This process and the players involved are understood in considerable detail. However, the mode of secretion of proteins that lack a signal sequence and do not transit through the secretory pathway has not been described, despite the fact that the literature is replete with examples of such proteins. One such protein is an evolutionarily conserved, secreted Acyl-CoA binding protein (known as AcbA in Dictyostelium discoideum, Acb1 in yeast and diazepam-binding inhibitor in mammals). Two recent papers highlighted in this punctum have elucidated the pathways required for the unconventional secretion of Acb1 in Pichia pastoris and Saccharomyces cerevisiae. Both implicate autophagy proteins and autophagosome formation in the process, while also uncovering roles for other interesting proteins in the unconventional secretion of Acb1. 相似文献
9.
Tetsuya Yamada Hiroo Aoki Teiichi Tamura Yutaka Sakamoto 《Bioscience, biotechnology, and biochemistry》2013,77(1):85-91
A glycoside “Sasanquin” was separated from methanol extract of young leaves of Camellia sasanqua Thunb. It was not able to be found in young leaves of Camellia japonica L. and Thea sinensis L. on paper chromatogram. Investigations showed that this glycoside is composed of eugenol, D-glucose and D-xylose, and it has a structure of 3-methoxy-4-β-primeverosidoxy-allylbenzene. 相似文献
10.
11.
The GroEL–GroES is an essential molecular chaperon system that assists protein folding in cell. Binding of various substrate proteins to GroEL is one of the key aspects in GroEL‐assisted protein folding. Small peptides may mimic segments of the substrate proteins in contact with GroEL and allow detailed structural analysis of the interactions. A model peptide SBP has been shown to bind to a region in GroEL that is important for binding of substrate proteins. Here, we investigated whether the observed GroEL–SBP interaction represented those of GroEL–substrate proteins, and whether SBP was able to mimic various aspects of substrate proteins in GroE‐assisted protein folding cycle. We found that SBP competed with substrate proteins, including α‐lactalbumin, rhodanese, and malate dehydrogenase, in binding to GroEL. SBP stimulated GroEL ATP hydrolysis rate in a manner similar to that of α‐lactalbumin. SBP did not prevent GroES from binding to GroEL, and GroES association reduced the ATPase rates of GroEL/SBP and GroEL/α‐lactalbumin to a comparable extent. Binding of both SBP and α‐lactalbumin to apo GroEL was dominated by hydrophobic interaction. Interestingly, association of α‐lactalbumin to GroEL/GroES was thermodynamically distinct from that to GroEL with reduced affinity and decreased contribution from hydrophobic interaction. However, SBP did not display such differential binding behaviors to apo GroEL and GroEL/GroES, likely due to the lack of a contiguous polypeptide chain that links all of the bound peptide fragments. Nevertheless, studies using peptides provide valuable information on the nature of GroEL–substrate protein interaction, which is central to understand the mechanism of GroEL‐assisted protein folding. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
12.
Turcotte C Roux A Beauregard PB Guérin R Sénéchal P Hajjar F Rokeach LA 《FEMS yeast research》2007,7(2):196-208
In the yeast Schizosaccharomyces pombe, the molecular chaperone calnexin (Cnx1p) has been shown to be essential for viability. However, we recently reported that, under certain circumstances, S. pombe cells are able to survive in the absence of calnexin/Cnx1p, indicating that an inducible pathway can complement the calnexin/Cnx1p essential function(s). This calnexin-independent state (Cin) is transmitted by a nonchromosomal proteinaceous element exhibiting several prion-like properties. To assess to what extent the Cin state compensates for the absence of calnexin/Cnx1p, the Cin strain was further characterized. Cin cells exhibited cell-wall defects, sensitivity to heat shock, as well as higher secretion levels of a model glycoprotein. Together, these results indicate that the Cin state does not compensate for all calnexin/Cnx1p functions. Reintroduction of plasmid-borne cnx1(+) partially rescued most but not all of the phenotypes displayed by Cin cells. Interestingly, Cin cells in stationary phase exhibited increased levels of caspase activation, and this phenotype was not suppressed by the reintroduction of cnx1(+), suggesting that cells in the Cin state are subjected to a stress other than the absence of calnexin/Cnx1p. 相似文献
13.
Cultured mammalian cells, particularly Chinese hamster ovary (CHO) cells, are widely exploited as hosts for the production of recombinant proteins, but often yields are limiting. Such limitations may be due in part to the misfolding and subsequent degradation of the heterologous proteins. Consequently we have determined whether transiently co‐expressing yeast and/or mammalian chaperones that act to disaggregate proteins, in CHO cell lines, improve the levels of either a cytoplasmic (Fluc) or secreted (Gluc) form of luciferase or an immunoglobulin IgG4 molecule. Over‐expression of the yeast ‘protein disaggregase’ Hsp104 in a CHO cell line increased the levels of Fluc more significantly than for Gluc although levels were not further elevated by over‐expression of the yeast or mammalian Hsp70/40 chaperones. Over‐expression of TorsinA, a mammalian protein related in sequence to yeast Hsp104, but located in the ER, significantly increased the level of secreted Gluc from CHO cells by 2.5‐fold and to a lesser extent the secreted levels of a recombinant IgG4 molecule. These observations indicate that the over‐expression of yeast Hsp104 in mammalian cells can improve recombinant protein yield and that over‐expression of TorsinA in the ER can promote secretion of heterologous proteins from mammalian cells. Biotechnol. Bioeng. 2010; 105: 556–566. © 2009 Wiley Periodicals, Inc. 相似文献
14.
The synthesis and processing of the periplasmic components of the leucine transport system of E coli have been studied to determine the role played by transmembrane potential in protein secretion. Both the leucine-isoleucine-valine binding protein and the leucine-specific binding protein are synthesized as precursors with 23 amino acid N-terminal leader sequences. The processing of these precursors is sensitive to the transmembrane potential. Since the amino acid sequence and the crystal structure have been determined for the leucine-isoleucine-valine binding protein, it and the closely related leucine-specific binding protein represent convenient models in which to examine the mechanism of protein secretion in E coli. A model for secretion has been proposed, suggesting a role for transmembrane potential. In this model, the N-terminal amino acid sequence of the precursor is assumed to form a hairpin of two helices. The membrane potential may orient this structure to make it accessible to processing. In addition, the model suggests that a negatively charged, folded domain of the secretory protein may electrophorese toward the trans-positive side of the membrane, thus providing an additional role for the transmembrane potential. 相似文献
15.
Jitka Petrlova Arnab Bhattacherjee Wouter Boomsma Stefan Wallin Jens O. Lagerstedt Anders Irbäck 《Protein science : a publication of the Protein Society》2014,23(11):1559-1571
Several disease‐linked mutations of apolipoprotein A‐I, the major protein in high‐density lipoprotein (HDL), are known to be amyloidogenic, and the fibrils often contain N‐terminal fragments of the protein. Here, we present a combined computational and experimental study of the fibril‐associated disordered 1–93 fragment of this protein, in wild‐type and mutated (G26R, S36A, K40L, W50R) forms. In atomic‐level Monte Carlo simulations of the free monomer, validated by circular dichroism spectroscopy, we observe changes in the position‐dependent β‐strand probability induced by mutations. We find that these conformational shifts match well with the effects of these mutations in thioflavin T fluorescence and transmission electron microscopy experiments. Together, our results point to molecular mechanisms that may have a key role in disease‐linked aggregation of apolipoprotein A‐I. 相似文献
16.
17.
Endopeptidase 24.15 (ep24.15: EC3.4.24.15), a secreted protein involved in peptide metabolism, is unusual in that it does not contain a signal peptide sequence. In this work, we describe the physical interaction between ep24.15 and 14-3-3 epsilon, one isoform of a family of ubiquitous phosphoserine/threonine-scaffold proteins that organizes cell signaling and is involved in exocytosis. The interaction between ep24.15 and 14-3-3 epsilon increased following phosphorylation of ep24.15 at Ser(644) by protein kinase A (PKA). The co-localization of ep24.15 and 14-3-3 epsilon was increased by exposure of HEK293 cells (human embryonic kidney cells) to forskolin (10 microm). Overexpression of 14-3-3 epsilon in HEK293 cells almost doubled the secretion of ep24.15 stimulated by A23187 (7.5 microm) from 10%[1.4 +/- 0.24 AFU/(min 10(6) cells)] to 19%[2.54 +/- 0.24 AFU/(min 10(6) cells)] (p < 0.001) of the total intracellular enzyme activity. Treatment with forskolin had a synergistic effect on the A23187-stimulated secretion of ep24.15 that was totally blocked by the PKA inhibitor KT5720. The ep24.15 point mutation S644A reduced the co-localization of ep24.15 and 14-3-3 in stably transfected HEK293 cells. Indeed, secretion of the ep24.15 S644A mutant from these cells was only slightly stimulated by A23187 and insensitive to forskolin, in contrast to that of the wild type enzyme. Together, these data suggest that prior interaction with 14-3-3 is an important step in the unconventional stimulated secretion of ep24.15. 相似文献
18.
Christof Hepp Berenike Maier 《BioEssays : news and reviews in molecular, cellular and developmental biology》2017,39(10)
Secretion systems enable bacteria to import and secrete large macromolecules including DNA and proteins. While most components of these systems have been identified, the molecular mechanisms of macromolecular transport remain poorly understood. Recent findings suggest that various bacterial secretion systems make use of the translocation ratchet mechanism for transporting polymers across the cell envelope. Translocation ratchets are powered by chemical potential differences generated by concentration gradients of ions or molecules that are specific to the respective secretion systems. Bacteria employ these potential differences for biasing Brownian motion of the macromolecules within the conduits of the secretion systems. Candidates for this mechanism include DNA import by the type II secretion/type IV pilus system, DNA export by the type IV secretion system, and protein export by the type I secretion system. Here, we propose that these three secretion systems employ different molecular implementations of the translocation ratchet mechanism. 相似文献
19.
Cécile Voisset Marc Blondel Gary W. Jones Gaëlle Friocourt Guillaume Stahl Stéphane Chédin 《朊病毒》2017,11(2):89-97
It is no longer necessary to demonstrate that ribosome is the central machinery of protein synthesis. But it is less known that it is also key player of the protein folding process through another conserved function: the protein folding activity of the ribosome (PFAR). This ribozyme activity, discovered more than 2 decades ago, depends upon the domain V of the large rRNA within the large subunit of the ribosome. Surprisingly, we discovered that anti-prion compounds are also potent PFAR inhibitors, highlighting an unexpected link between PFAR and prion propagation.
In this review, we discuss the ancestral origin of PFAR in the light of the ancient RNA world hypothesis. We also consider how this ribosomal activity fits into the landscape of cellular protein chaperones involved in the appearance and propagation of prions and other amyloids in mammals. Finally, we examine how drugs targeting the protein folding activity of the ribosome could be active against mammalian prion and other protein aggregation-based diseases, making PFAR a promising therapeutic target for various human protein misfolding diseases. 相似文献
20.
Temmerman K Ebert AD Müller HM Sinning I Tews I Nickel W 《Traffic (Copenhagen, Denmark)》2008,9(7):1204-1217
Fibroblast growth factor 2 (FGF-2) is a mitogen that is exported from cells by an endoplasmic reticulum/Golgi-independent secretory pathway. Recent findings have shown that FGF-2 export occurs by direct translocation from the cytoplasm across the plasma membrane into the extracellular space. Here, we report that FGF-2 contains a binding site for phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2 ], the principal phosphoinositide species associated with plasma membranes. Intriguingly, in the context of a lipid bilayer, the interaction between FGF-2 and PI(4,5)P2 is shown to depend on a lipid background that resembles plasma membranes. We show that the interaction with PI(4,5)P2 is critically important for FGF-2 secretion as experimental conditions reducing cellular levels of PI(4,5)P2 resulted in a substantial drop in FGF-2 export efficiency. Likewise, we have identified FGF-2 variant forms deficient for binding to PI(4,5)P2 that were found to be severely impaired with regard to export efficiency. These data show that a transient interaction with PI(4,5)P2 associated with the inner leaflet of plasma membranes represents the initial step of the unconventional secretory pathway of FGF-2. 相似文献