首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fungus Candida albicans is the most common cause of mycotic infections in immunocompromised hosts. Little is known about the initial interactions between Candida and immune cell receptors, such as the C‐type lectin dendritic cell‐specific intracellular cell adhesion molecule‐3 (ICAM‐3)‐grabbing non‐integrin (DC‐SIGN), because a detailed characterization at the structural level is lacking. DC‐SIGN recognizes specific Candida‐associated molecular patterns, that is, mannan structures present in the cell wall of Candida. The molecular recognition mechanism is however poorly understood. We postulated that small differences in mannan‐branching may result in considerable differences in the binding affinity. Here, we exploit atomic force microscope‐based dynamic force spectroscopy with single Candida cells to gain better insight in the carbohydrate recognition capacity of DC‐SIGN. We demonstrate that slight differences in the N‐mannan structure of Candida, that is, the absence or presence of a phosphomannan side chain, results in differences in the recognition by DC‐SIGN as follows: (i) it contributes to the compliance of the outer cell wall of Candida, and (ii) its presence results in a higher binding energy of 1.6 kBT. The single‐bond affinity of tetrameric DC‐SIGN for wild‐type C. albicans is ~10.7 kBT and a dissociation constant kD of 23 μM, which is relatively strong compared with other carbohydrate–protein interactions described in the literature. In conclusion, this study shows that DC‐SIGN specifically recognizes mannan patterns on C. albicans with high affinity. Knowledge on the binding pocket of DC‐SIGN and its pathogenic ligands will lead to a better understanding of how fungal‐associated carbohydrate structures are recognized by receptors of the immune system and can ultimately contribute to the development of new anti‐fungal drugs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Dendritic cell‐specific intercellular adhesion molecule‐3‐grabbing non‐integrin (DC‐SIGN), a C‐type lectin expressed on the plasma membrane by human immature dendritic cells, is a receptor for numerous viruses including Ebola, SARS and dengue. A controversial question has been whether DC‐SIGN functions as a complete receptor for both binding and internalization of dengue virus (DENV) or whether it is solely a cell surface attachment factor, requiring either hand‐off to another receptor or a co‐receptor for internalization. To examine this question, we used 4 cell types: human immature dendritic cells and NIH3T3 cells expressing either wild‐type DC‐SIGN or 2 internalization‐deficient DC‐SIGN mutants, in which either the 3 cytoplasmic internalization motifs are silenced by alanine substitutions or the cytoplasmic region is truncated. Using confocal and super‐resolution imaging and high content single particle tracking, we investigated DENV binding, DC‐SIGN surface transport, endocytosis, as well as cell infectivity. DC‐SIGN was found colocalized with DENV inside cells suggesting hand‐off at the plasma membrane to another receptor did not occur. Moreover, all 3 DC‐SIGN molecules on NIH3T3 cells supported cell infection. These results imply the involvement of a co‐receptor because cells expressing the internalization‐deficient mutants could still be infected.   相似文献   

3.
Presently, there are few estimates of the number of molecules occupying membrane domains. Using a total internal reflection fluorescence microscopy (TIRFM) imaging approach, based on comparing the intensities of fluorescently labeled microdomains with those of single fluorophores, we measured the occupancy of DC‐SIGN, a C‐type lectin, in membrane microdomains. DC‐SIGN or its mutants were labeled with primary monoclonal antibodies (mAbs) in either dendritic cells (DCs) or NIH3T3 cells, or expressed as GFP fusions in NIH3T3 cells. The number of DC‐SIGN molecules per microdomain ranges from only a few to over 20, while microdomain dimensions range from the diffraction limit to > 1 µm. The largest fraction of microdomains, appearing at the diffraction limit, in either immature DCs or 3 T3 cells contains only 4–8 molecules of DC‐SIGN, consistent with our preliminary super‐resolution Blink microscopy estimates. We further show that these small assemblies are sufficient to bind and efficiently internalize a small (~50 nm) pathogen, dengue virus, leading to infection of host cells.   相似文献   

4.
The coiled‐coil is one of the most common protein structural motifs. Amino acid sequences of regions that participate in coiled‐coils contain a heptad repeat in which every third then forth residue is occupied by a hydrophobic residue. Here we examine the consequences of a “stutter,” a deviation of the idealized heptad repeat that is found in the central coiled‐coil of influenza hemagluttinin HA2. Characterization of a peptide containing the native stutter‐containing HA2 sequence, as well as several variants in which the stutter was engineered out to restore an idealized heptad repeat pattern, revealed that the stutter is important for allowing coiled‐coil formation in the WT HA2 at both neutral and low pH (7.1 and 4.5). By contrast, all variants that contained idealized heptad repeats exhibited marked pH‐dependent coiled‐coil formation with structures forming much more stably at low pH. A crystal structure of one variant containing an idealized heptad repeat, and comparison to the WT HA2 structure, suggest that the stutter distorts the optimal interhelical core packing arrangement, resulting in unwinding of the coiled‐coil superhelix. Interactions between acidic side chains, in particular E69 and E74 (present in all peptides studied), are suggested to play a role in mediating these pH‐dependent conformational effects. This conclusion is partially supported by studies on HA2 variant peptides in which these positions were altered to aspartic acid. These results provide new insight into the structural role of the heptad repeat stutter in HA2. Proteins 2014; 82:2220–2228. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Plant nucleotide‐binding, leucine‐rich repeat receptors (NLRs) perceive pathogen avirulence effectors and activate defense responses. Nucleotide‐binding, leucine‐rich repeat receptors are classified into coiled‐coil (CC)‐containing and Toll/interleukin‐1 receptor (TIR)‐containing NLRs. Recent advances suggest that NLR CC domains often function in signaling activation, especially for induction of cell death. In this review, we outline our current understanding of NLR CC domains, including their diversity/classification and structure, their roles in cell death induction, disease resistance, and interaction with other proteins. Furthermore, we provide possible directions for future work.  相似文献   

6.
Plant recognition and defence against pathogens employs a two‐tiered perception system. Surface‐localized pattern recognition receptors (PRRs) act to recognize microbial features, whereas intracellular nucleotide‐binding leucine‐rich repeat receptors (NLRs) directly or indirectly recognize pathogen effectors inside host cells. Employing the tomato PRR LeEIX2/EIX model system, we explored the molecular mechanism of signalling pathways. We identified an NLR that can associate with LeEIX2, termed SlNRC4a (NB‐LRR required for hypersensitive response‐associated cell death‐4). Co‐immunoprecipitation demonstrates that SlNRC4a is able to associate with different PRRs. Physiological assays with specific elicitors revealed that SlNRC4a generally alters PRR‐mediated responses. SlNRC4a overexpression enhances defence responses, whereas silencing SlNRC4 reduces plant immunity. Moreover, the coiled‐coil domain of SlNRC4a is able to associate with LeEIX2 and is sufficient to enhance responses upon EIX perception. On the basis of these findings, we propose that SlNRC4a acts as a noncanonical positive regulator of immunity mediated by diverse PRRs. Thus, SlNRC4a could link both intracellular and extracellular immune perceptions.  相似文献   

7.
Plant resistance proteins of the class of nucleotide‐binding and leucine‐rich repeat domain proteins (NB‐LRRs) are immune sensors which recognize pathogen‐derived molecules termed avirulence (AVR) proteins. We show that RGA4 and RGA5, two NB‐LRRs from rice, interact functionally and physically to mediate resistance to the fungal pathogen Magnaporthe oryzae and accomplish different functions in AVR recognition. RGA4 triggers an AVR‐independent cell death that is repressed in the presence of RGA5 in both rice protoplasts and Nicotiana benthamiana. Upon recognition of the pathogen effector AVR‐Pia by direct binding to RGA5, repression is relieved and cell death occurs. RGA4 and RGA5 form homo‐ and hetero‐complexes and interact through their coiled‐coil domains. Localization studies in rice protoplast suggest that RGA4 and RGA5 localize to the cytosol. Upon recognition of AVR‐Pia, neither RGA4 nor RGA5 is re‐localized to the nucleus. These results establish a model for the interaction of hetero‐pairs of NB‐LRRs in plants: RGA4 mediates cell death activation, while RGA5 acts as a repressor of RGA4 and as an AVR receptor.  相似文献   

8.
Coiled‐coils are found in proteins throughout all three kingdoms of life. Coiled‐coil domains of some proteins are almost invariant in sequence and length, betraying a structural and functional role for amino acids along the entire length of the coiled‐coil. Other coiled‐coils are divergent in sequence, but conserved in length, thereby functioning as molecular spacers. In this capacity, coiled‐coil proteins influence the architecture of organelles such as centrioles and the Golgi, as well as permit the tethering of transport vesicles. Specialized coiled‐coils, such as those found in motor proteins, are capable of propagating conformational changes along their length that regulate cargo binding and motor processivity. Coiled‐coil domains have also been identified in enzymes, where they function as molecular rulers, positioning catalytic activities at fixed distances. Finally, while coiled‐coils have been extensively discussed for their potential to nucleate and scaffold large macromolecular complexes, structural evidence to substantiate this claim is relatively scarce.  相似文献   

9.
How nitric oxide (NO) activates its primary receptor, α1/β1 soluble guanylyl cyclase (sGC or GC‐1), remains unknown. Likewise, how stimulatory compounds enhance sGC activity is poorly understood, hampering development of new treatments for cardiovascular disease. NO binding to ferrous heme near the N‐terminus in sGC activates cyclase activity near the C‐terminus, yielding cGMP production and physiological response. CO binding can also stimulate sGC, but only weakly in the absence of stimulatory small‐molecule compounds, which together lead to full activation. How ligand binding enhances catalysis, however, has yet to be discovered. Here, using a truncated version of sGC from Manduca sexta, we demonstrate that the central coiled‐coil domain, the most highly conserved region of the ~150,000 Da protein, not only provides stability to the heterodimer but is also conformationally active in signal transduction. Sequence conservation in the coiled coil includes the expected heptad‐repeating pattern for coiled‐coil motifs, but also invariant positions that disfavor coiled‐coil stability. Full‐length coiled coil dampens CO affinity for heme, while shortening of the coiled coil leads to enhanced CO binding. Introducing double mutation αE447L/βE377L, predicted to replace two destabilizing glutamates with leucines, lowers CO binding affinity while increasing overall protein stability. Likewise, introduction of a disulfide bond into the coiled coil results in reduced CO affinity. Taken together, we demonstrate that the heme domain is greatly influenced by coiled‐coil conformation, suggesting communication between heme and catalytic domains is through the coiled coil. Highly conserved structural imperfections in the coiled coil provide needed flexibility for signal transduction.  相似文献   

10.
Role of the Kinesin Neck Region in Processive Microtubule-based Motility   总被引:8,自引:3,他引:5  
Kinesin is a dimeric motor protein that can move along a microtubule for several microns without releasing (termed processive movement). The two motor domains of the dimer are thought to move in a coordinated, hand-over-hand manner. A region adjacent to kinesin's motor catalytic domain (the neck) contains a coiled coil that is sufficient for motor dimerization and has been proposed to play an essential role in processive movement. Recent models have suggested that the neck enables head-to-head communication by creating a stiff connection between the two motor domains, but also may unwind during the mechanochemical cycle to allow movement to new tubulin binding sites. To test these ideas, we mutated the neck coiled coil in a 560-amino acid (aa) dimeric kinesin construct fused to green fluorescent protein (GFP), and then assayed processivity using a fluorescence microscope that can visualize single kinesin–GFP molecules moving along a microtubule. Our results show that replacing the kinesin neck coiled coil with a 28-aa residue peptide sequence that forms a highly stable coiled coil does not greatly reduce the processivity of the motor. This result argues against models in which extensive unwinding of the coiled coil is essential for movement. Furthermore, we show that deleting the neck coiled coil decreases processivity 10-fold, but surprisingly does not abolish it. We also demonstrate that processivity is increased by threefold when the neck helix is elongated by seven residues. These results indicate that structural features of the neck coiled coil, although not essential for processivity, can tune the efficiency of single molecule motility.  相似文献   

11.
DC‐UbP/UBTD2 is a ubiquitin (Ub) domain‐containing protein first identified from dendritic cells, and is implicated in ubiquitination pathway. The solution structure and backbone dynamics of the C‐terminal Ub‐like (UbL) domain were elucidated in our previous work. To further understand the biological function of DC‐UbP, we then solved the solution structure of the N‐terminal domain of DC‐UbP (DC‐UbP_N) and studied its Ub binding properties by NMR techniques. The results show that DC‐UbP_N holds a novel structural fold and acts as a Ub‐binding domain (UBD) but with low affinity. This implies that the DC‐UbP protein, composing of a combination of both UbL and UBD domains, might play an important role in regulating protein ubiquitination and delivery of ubiquitinated substrates in eukaryotic cells.  相似文献   

12.
Single‐domain antibodies (sdAbs), the variable domains of camelid heavy chain‐only antibodies, are generally thought to poorly recognize nonproteinaceous small molecules and carbohydrates in comparison with conventional antibodies. However, the structures of anti‐methotrexate, anti‐triclocarban and anti‐cortisol sdAbs revealed unexpected contributions of the non‐hypervariable “CDR4” loop, formed between β‐strands D and E of framework region 3, in binding. Here, we investigated the potential role of CDR4 in sdAb binding to a hapten, 15‐acetyl‐deoxynivalenol (15‐AcDON), and to carbohydrates. We constructed and panned a phage‐displayed library in which CDR4 of the 15‐AcDON‐specific sdAb, NAT‐267, was extended and randomized. From this library, we identified one sdAb, MA‐232, bearing a 14‐residue insertion in CDR4 and showing improved binding to 15‐AcDON by ELISA and surface plasmon resonance. On the basis of these results, we constructed a second set of phage‐displayed libraries in which the CDR4 and other regions of three hapten‐ or carbohydrate‐binding sdAbs were diversified. With the goal of identifying sdAbs with novel glycan‐binding specificities, we panned the library against four tumor‐associated carbohydrate antigens but were unable to enrich binding phages. Thus, we conclude that while CDR4 may play a role in binding of some rare hapten‐specific sdAbs, diversifying this region through molecular engineering is probably not a general solution to sdAb carbohydrate recognition in the absence of a paired VL domain.  相似文献   

13.
14.
Dense‐core vesicles (DCVs) are secretory organelles that store and release modulatory neurotransmitters from neurons and endocrine cells. Recently, the conserved coiled‐coil protein CCCP‐1 was identified as a component of the DCV biogenesis pathway in the nematode Caenorhabditis elegans. CCCP‐1 binds the small GTPase RAB‐2 and colocalizes with it at the trans‐Golgi. Here, we report a structure‐function analysis of CCCP‐1 to identify domains of the protein important for its localization, binding to RAB‐2, and function in DCV biogenesis. We find that the CCCP‐1 C‐terminal domain (CC3) has multiple activities. CC3 is necessary and sufficient for CCCP‐1 localization and for binding to RAB‐2, and is required for the function of CCCP‐1 in DCV biogenesis. In addition, CCCP‐1 binds membranes directly through its CC3 domain, indicating that CC3 may comprise a previously uncharacterized lipid‐binding motif. We conclude that CCCP‐1 is a coiled‐coil protein that binds an activated Rab and localizes to the Golgi via its C‐terminus, properties similar to members of the golgin family of proteins. CCCP‐1 also shares biophysical features with golgins; it has an elongated shape and forms oligomers.   相似文献   

15.
16.
The structural maintenance of chromosomes (SMC) proteins form the cores of multisubunit complexes that are required for the segregation and global organization of chromosomes in all domains of life. These proteins share a common domain structure in which N‐ and C‐ terminal regions pack against one another to form a globular ATPase domain. This “head” domain is connected to a central, globular, “hinge” or dimerization domain by a long, antiparallel coiled coil. To date, most efforts for structural characterization of SMC proteins have focused on the globular domains. Recently, however, we developed a method to map interstrand interactions in the 50‐nm coiled‐coil domain of MukB, the divergent SMC protein found in γ‐proteobacteria. Here, we apply that technique to map the structure of the Bacillus subtilis SMC (BsSMC) coiled‐coil domain. We find that, in contrast to the relatively complicated coiled‐coil domain of MukB, the BsSMC domain is nearly continuous, with only two detectable coiled‐coil interruptions. Near the middle of the domain is a break in coiled‐coil structure in which there are three more residues on the C‐terminal strand than on the N‐terminal strand. Close to the head domain, there is a second break with a significantly longer insertion on the same strand. These results provide an experience base that allows an informed interpretation of the output of coiled‐coil prediction algorithms for this family of proteins. A comparison of such predictions suggests that these coiled‐coil deviations are highly conserved across SMC types in a wide variety of organisms, including humans. Proteins 2015; 83:1027–1045. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Mycobacterium tuberculosis and the associated disease tuberculosis are health risks causing many deaths worldwide each year in humans. M. tuberculosis targets dendritic cell (DC)-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) to induce immunosuppression, since interaction of DC-SIGN with mycobacterial mannose-capped lipoarabinomannan (ManLAM) induces interleukin (IL)-10 and prevents DC maturation. We investigated the role of a murine homolog of DC-SIGN, SIGN Related 1 (SIGNR1), in a model of M. tuberculosis infection using SIGNR1 deficient (KO) mice. Although SIGNR1 is expressed by macrophages and not by DCs, it also interacts with M. tuberculosis similar to DC-SIGN. Peritoneal macrophages from SIGNR1 KO mice produce less IL-10 upon stimulation with ManLAM than those from wild-type mice, suggesting that the interaction of ManLAM with SIGNR1 can result in immunosuppression similar to its human homolog. Indeed, early in infection, we observed increased T cell activity in SIGNR1 KO mice and increased IFNgamma production by splenocytes in SIGNR1 KO mice. However, we did not detect any differences between WT and KO mice in mycobacterial loads in the lungs or distant organs after M. tuberculosis infection resulting in similar survival rates. Moreover, we found that SIGNR1 is not present on alveolar macrophages of uninfected mice nor is it induced on lung macrophages throughout infection. Therefore, our data suggest that although SIGNR1 has a similar binding specificity as DC-SIGN, its role is limited during murine M. tuberculosis infection.  相似文献   

18.
Osmosensing transporter ProP protects bacteria from osmotically induced dehydration by mediating the uptake of zwitterionic osmolytes. ProP activity is a sigmoidal function of the osmolality. ProP orthologues share an extended, cytoplasmic C‐terminal domain. Orthologues with and without a C‐terminal, α‐helical coiled‐coil domain respond similarly to the osmolality. ProP concentrates at the poles and septa of Escherichia coli cells in a cardiolipin (CL)‐dependent manner. The roles of phospholipids and the C‐terminal domain in subcellular localization of ProP were explored. Liposome association of peptides representing the C‐terminal domains of ProP orthologues and variants in vitro was compared with subcellular localization of the corresponding orthologues and variants in vivo. In the absence of coiled‐coil formation, the C‐terminal domain bound liposomes and ProP concentrated at the cell poles in a CL‐independent manner. The presence of the coiled‐coil replaced those phenomena with CL‐dependent binding and localization. The effects of amino acid replacements on lipid association of the C‐terminal peptide fully recapitulated their effects on the subcellular localization of ProP. These data suggest that polar localization of ProP results from association of its C‐terminal domain with the anionic lipid‐enriched membrane at the cell poles. The coiled‐coil domain present on only some orthologues renders that phenomenon CL‐dependent.  相似文献   

19.
Toll‐like receptors (TLRs) are innate immune pattern‐recognition receptors endowed with the capacity to detect microbial pathogens based on pathogen‐associated molecular patterns. The understanding of the molecular principles of ligand recognition by TLRs has been greatly accelerated by recent structural information, in particular the crystal structures of leucine‐rich repeat‐containing ectodomains of TLR2, 3, and 4 in complex with their cognate ligands. Unfortunately, for other family members such as TLR7, 8, and 9, no experimental structural information is currently available. Methods such as X‐ray crystallography or nuclear magnetic resonance are not applicable to all proteins. Homology modeling in combination with molecular dynamics may provide a straightforward yet powerful alternative to obtain structural information in the absence of experimental (structural) data, provided that the generated three‐dimensional models adequately approximate what is found in nature. Here, we report the development of modeling procedures tailored to the structural analysis of the extracellular domains of TLRs. We comprehensively compared secondary structure, torsion angles, accessibility for glycosylation, surface charge, and solvent accessibility between published crystal structures and independently built TLR2, 3, and 4 homology models. Finding that models and crystal structures were in good agreement, we extended our modeling approach to the remaining members of the TLR family from human and mouse, including TLR7, 8, and 9.  相似文献   

20.
TrmB is a repressor that binds maltose, maltotriose, and sucrose, as well as other α‐glucosides. It recognizes two different operator sequences controlling the TM (Trehalose/Maltose) and the MD (Maltodextrin) operon encoding the respective ABC transporters and sugar‐degrading enzymes. Binding of maltose to TrmB abrogates repression of the TM operon but maintains the repression of the MD operon. On the other hand, binding of sucrose abrogates repression of the MD operon but maintains repression of the TM operon. The three‐dimensional structure of TrmB in complex with sucrose was solved and refined to a resolution of 3.0 Å. The structure shows the N‐terminal DNA binding domain containing a winged‐helix‐turn‐helix (wHTH) domain followed by an amphipathic helix with a coiled‐coil motif. The latter promotes dimerization and places the symmetry mates of the putative recognition helix in the wHTH motif about 30 Å apart suggesting a canonical binding to two successive major grooves of duplex palindromic DNA. This suggests that the structure resembles the conformation of TrmB recognizing the pseudopalindromic TM promoter but not the conformation recognizing the nonpalindromic MD promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号