首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anfinsen's thermodynamic hypothesis states that the native three‐dimensional fold of a protein represents the structure with the lowest Gibbs free energy. Changes in the free energy of denaturation can arise from changes to the folded state, the unfolded state, or both. It has been recently recognized that quinary interactions, transient contacts that take place only in cells, can modulate protein stability through interactions involving the folded state. Here we show that the cellular environment can also remodel the unfolded state ensemble.  相似文献   

2.
NMR spectroscopy can provide information about proteins in living cells. pH is an important characteristic of the intracellular environment because it modulates key protein properties such as net charge and stability. Here, we show that pH modulates quinary interactions, the weak, ubiquitous interactions between proteins and other cellular macromolecules. We use the K10H variant of the B domain of protein G (GB1, 6.2 kDa) as a pH reporter in Escherichia coli cells. By controlling the intracellular pH, we show that quinary interactions influence the quality of in‐cell 15N–1H HSQC NMR spectra. At low pH, the quality is degraded because the increase in attractive interactions between E. coli proteins and GB1 slows GB1 tumbling and broadens its crosspeaks. The results demonstrate the importance of quinary interactions for furthering our understanding of protein chemistry in living cells.  相似文献   

3.
Recombinant protein therapeutics have become increasingly useful in combating human diseases, such as cancer and those of genetic origin. One quality concern for protein therapeutics is the content and the structure of the aggregated proteins in the product, due to the potential immunogenicity of these aggregates. Collective efforts have led to a better understanding of some types of protein aggregates, and have revealed the diversity in the structure and cause of protein aggregation. In this work we used a broad range of analytical techniques to characterize the quinary structure (complexes in which each composing unit maintains native quaternary structure) of the stable non-covalent dimer and oligomers of a monoclonal IgG1λ antibody. The results supported a mechanism of intermolecular domain exchange involving the Fab domains of 2 or more IgG molecules. This mechanism can account for the native-like higher order (secondary, tertiary and disulfide bonding) structure, the stability of the non-covalent multimers, and the previously observed partial loss of the antigen-binding sites without changing the antigen-binding affinity and kinetics of the remaining sites (Luo et al., 2009, mAbs 1:491). Furthermore, the previously observed increase in the apparent affinity to various Fcγ receptors (ibid), which may potentially promote immunogenicity, was also explained by the quinary structure proposed here. Several lines of evidence indicated that the formation of multimers by the mechanism of intermolecular domain exchange took place mostly during expression, not in the purified materials. The findings in this work will advance our knowledge of the mechanisms for aggregation in therapeutic monoclonal antibodies.  相似文献   

4.
The habitat in which proteins exert their function contains up to 400 g/L of macromolecules, most of which are proteins. The repercussions of this dense environment on protein behavior are often overlooked or addressed using synthetic agents such as poly(ethylene glycol), whose ability to mimic protein crowders has not been demonstrated. Here we performed a comprehensive atomistic molecular dynamic analysis of the effect of protein crowders on the structure and dynamics of three proteins, namely an intrinsically disordered protein (ACTR), a molten globule conformation (NCBD), and a one-fold structure (IRF-3) protein. We found that crowding does not stabilize the native compact structure, and, in fact, often prevents structural collapse. Poly(ethylene glycol) PEG500 failed to reproduce many aspects of the physiologically-relevant protein crowders, thus indicating its unsuitability to mimic the cell interior. Instead, the impact of protein crowding on the structure and dynamics of a protein depends on its degree of disorder and results from two competing effects: the excluded volume, which favors compact states, and quinary interactions, which favor extended conformers. Such a viscous environment slows down protein flexibility and restricts the conformational landscape, often biasing it towards bioactive conformations but hindering biologically relevant protein-protein contacts. Overall, the protein crowders used here act as unspecific chaperons that modulate the protein conformational space, thus having relevant consequences for disordered proteins.  相似文献   

5.
The natural environment of a protein inside a cell is characterized by the almost complete lack of unoccupied space, limited amount of free water, and the tightly packed crowd of various biological macromolecules, such as proteins, nucleic acids, polysaccharides, and complexes thereof. This extremely crowded natural milieu is poorly mimicked by slightly salted aqueous solutions containing low concentrations of a protein of interest. The accepted practice is to model crowded environments by adding high concentrations of various polymers that serve as model “crowding agents” to the solution of a protein of interest. Although studies performed under these model conditions revealed that macromolecular crowding might have noticeable influence on various aspects related to the protein structure, function, folding, conformational stability, and aggregation propensity, the complete picture describing conformational behavior of a protein under these conditions is missing as of yet. Furthermore, there is an accepted belief that the conformational stability of globular proteins increases in the presence crowding agents due to the excluded volume effects. The goal of this study was to conduct a systematic analysis of the effect of high concentrations of PEG-8000 and Dextran-70 on the unfolding behavior of eleven globular proteins belonging to different structural classes.  相似文献   

6.
Flöck D  Daidone I  Di Nola A 《Biopolymers》2004,75(6):491-496
The 98-residue protein acylphosphatase exhibits a high propensity for aggregation under certain conditions. Aggregates formed from wild-type acylphosphatase in the presence of 2,2,2-trifluoroethanol and from highly destabilized mutants are essentially identical in structure. Furthermore, it has been shown by mutational studies that different regions of the protein are important for aggregation and folding. In the present molecular dynamics study, we compare the behavior of the protein in aqueous solution and in a 25% (v/v) 2,2,2-trifluoroethanol/water environment mimicking the experimental conditions. The 2,2,2-trifluoroethanol surrounding affects the structure of the protein mostly in the regions important for aggregation, in good agreement with experimental data. This suggests that the early step of (partly) unfolding, which precedes the aggregation process, has been observed.  相似文献   

7.
Proteins form arguably the most significant link between genotype and phenotype. Understanding the relationship between protein sequence and structure, and applying this knowledge to predict function, is difficult. One way to investigate these relationships is by considering the space of protein folds and how one might move from fold to fold through similarity, or potential evolutionary relationships. The many individual characterisations of fold space presented in the literature can tell us a lot about how well the current Protein Data Bank represents protein fold space, how convergence and divergence may affect protein evolution, how proteins affect the whole of which they are part, and how proteins themselves function. A synthesis of these different approaches and viewpoints seems the most likely way to further our knowledge of protein structure evolution and thus, facilitate improved protein structure design and prediction.  相似文献   

8.
We investigate the structure and dynamics of α-Chymotrypsin in five room temperature ionic liquids (RTILs) sharing a common cation, hydrated with different water percentages (w/w) (weight of water over protein). Results from molecular dynamics simulations are correlated with experimental evidences from studies on the activity of enzymes in RTILs. α-Chymotrypsin protein structure is closer to its native crystallographic structure in RTILs than in aqueous environment. We show that the structural properties of α-Chymotrypsin were affected by the water concentration assayed in a typical bell-shaped profile, which is also frequently reported for organic solvents. The protein structure was more native like at 10–20% of water (w/w) for all RTILs except for [BMIM][Cl]. We found that the fluctuations of the main chain in [BMIM][BF4] and [BMIM][TfO] were not significantly affected by the increasing amount of water. However, we were able to show that the flexible regions were the ones more hydrated, indicating that water is responsible for the flexibility of the protein. The solvation of the enzyme in water-immiscible RTILs, such as [BMIM][PF6] and [BMIM][Tf2N] lead to higher enzyme flexibility at increased water content. Enzyme solvation by [BMIM][Cl] resulted in ion penetration in the core enzyme structure, causing incremented flexibility and destabilization at low water percentages. All RTILs stripped water molecules from the protein surface, following a similar behavior also found in organic solvents. Anions formed structured arrangements around the protein, which allowed non-stripped water molecules to localize on the protein surface.  相似文献   

9.
We describe the derivation and testing of a knowledge-based atomic environment potential for the modeling of protein structural energetics. An analysis of the probabilities of atomic interactions in a dataset of high-resolution protein structures shows that the probabilities of non-bonded inter-atomic contacts are not statistically independent events, and that the multi-body contact frequencies are poorly predicted from pairwise contact potentials. A pseudo-energy function is defined that measures the preferences for protein atoms to be in a given microenvironment defined by the number of contacting atoms in the environment and its atomic composition. This functional form is tested for its ability to recognize native protein structures amongst an ensemble of decoy structures and a detailed relative performance comparison is made with a number of common functions used in protein structure prediction.  相似文献   

10.
The three-dimensional (3D) structure prediction of proteins :is an important task in bioinformatics. Finding energy functions that can better represent residue-residue and residue-solvent interactions is a crucial way to improve the prediction accu- racy. The widely used contact energy functions mostly only consider the contact frequency between different types of residues; however, we find that the contact frequency also relates to the residue hydrophobic environment. Accordingly, we present an improved contact energy function to integrate the two factors, which can reflect the influence of hydrophobic interaction on the stabilization of protein 3D structure more effectively. Furthermore, a fold recognition (threading) approach based on this energy function is developed. The testing results obtained with 20 randomly selected proteins demonstrate that, compared with common contact energy functions, the proposed energy function can improve the accuracy of the fold template prediction from 20% to 50%, and can also improve the accuracy of the sequence-template alignment from 35% to 65%.  相似文献   

11.
The green fluorescent protein (avGFP), its variants, and the closely related GFP-like proteins are characterized structurally by a cyclic tri-peptide chromophore located centrally within a conserved beta-can fold. Traditionally, these GFP family members have been isolated from the Cnidaria although recently, distantly related GFP-like proteins from the Bilateria, a sister group of the Cnidaria have been described, although no representative structure from this phylum has been reported to date. We have determined to 2.1A resolution the crystal structure of copGFP, a representative GFP-like protein from a copepod, a member of the Bilateria. The structure of copGFP revealed that, despite sharing only 19% sequence identity with GFP, the tri-peptide chromophore (Gly57-Tyr58-Gly59) of copGFP adopted a cis coplanar conformation within the conserved beta-can fold. However, the immediate environment surrounding the chromophore of copGFP was markedly atypical when compared to other members of the GFP-superfamily, with a large network of bulky residues observed to surround the chromophore. Arg87 and Glu222 (GFP numbering 96 and 222), the only two residues conserved between copGFP, GFP and GFP-like proteins are involved in autocatalytic genesis of the chromophore. Accordingly, the copGFP structure provides an alternative platform for the development of a new suite of fluorescent protein tools. Moreover, the structure suggests that the autocatalytic genesis of the chromophore is remarkably tolerant to a high degree of sequence and structural variation within the beta-can fold of the GFP superfamily.  相似文献   

12.
【背景】微藻Desmodesmus sp. QL96从我国西藏地区分离得到,经形态鉴定隶属于链带藻属。前期研究发现,这种链带藻在4℃和25℃下均可生长,在25℃生长时,干细胞中蛋白质含量可高达71.68%(质量分数),而且蛋白粗提物具有一定的抗氧化活力。【目的】分离纯化Desmodesmus sp. QL96细胞中具有抗氧化活力的蛋白质,并对其结构进行鉴定。【方法】应用柱层析的方法分离纯化Desmodesmus sp. QL96细胞中具有抗氧化活力的蛋白质,通过化学发光法和细胞学实验对该蛋白的抗氧化活性进行检测,并通过质谱技术对其一级结构进行检测。【结果】Desmodesmus sp. QL96细胞中抗氧化蛋白的含量占微藻细胞干重的11.40%(质量分数);纯化的Desmodesmus sp. QL96抗氧化蛋白在一定浓度范围内对OH-、DPPH、ABTS自由基和H2O2具有较好的清除率(超过60%),细胞学实验显示其对H2O2诱导的HepG2细胞氧化损伤具有抑制作用,验证了其抗氧化功能;通过质谱技术检测了Desmodesmus sp. QL96抗氧化蛋白的氨基酸序列,并进行了生物信息学分析,结果显示,这种蛋白质的理论分子量为44.8 kD、pI 5.79,与NCBI中目前已知的其他物种蛋白质的相似性不超过59%。【结论】Desmodesmus sp. QL96可能生产一种具有抗氧化活性的新蛋白质,后续将对其转录本进行分析,验证其遗传信息的同源性,并分析其规模化生产和应用前景。  相似文献   

13.
Park H  Ko J  Joo K  Lee J  Seok C  Lee J 《Proteins》2011,79(9):2725-2734
The rapid increase in the number of experimentally determined protein structures in recent years enables us to obtain more reliable protein tertiary structure models than ever by template-based modeling. However, refinement of template-based models beyond the limit available from the best templates is still needed for understanding protein function in atomic detail. In this work, we develop a new method for protein terminus modeling that can be applied to refinement of models with unreliable terminus structures. The energy function for terminus modeling consists of both physics-based and knowledge-based potential terms with carefully optimized relative weights. Effective sampling of both the framework and terminus is performed using the conformational space annealing technique. This method has been tested on a set of termini derived from a nonredundant structure database and two sets of termini from the CASP8 targets. The performance of the terminus modeling method is significantly improved over our previous method that does not employ terminus refinement. It is also comparable or superior to the best server methods tested in CASP8. The success of the current approach suggests that similar strategy may be applied to other types of refinement problems such as loop modeling or secondary structure rearrangement.  相似文献   

14.
The four recognized levels of organization of protein structure (primary through quaternary) are extended to add the designation quinary structure for the interactions within helical arrays, such as found for sickle cell hemoglobin fibers or tubulin units in microtubules. For sickle cell hemoglobin the main quinary structure is a 14-filament fiber, with a number of other minor forms also encountered. Degenerate forms of the 14-filament fibers can be characterized that lack specific pairs of filaments; evidence is presented which suggests an overall organization of the 14 filaments in pairs, with particular pairs aligned in an antiparallel orientation. For tubulin, a range of quinary structures can be detected depending on the number of protofilaments and whether adjacent protofilaments composed of alternating alpha- and beta-subunits are aligned with contacts between like or unlike subunits and with parallel or antiparallel polarity. Thus, in contrast to quarternary structure, which generally involves a fixed number of subunits, the quinary structures of proteins can exhibit marked plasticity and inequivalence in the juxtaposition of constituent molecules.  相似文献   

15.
Cai XH  Jaroszewski L  Wooley J  Godzik A 《Proteins》2011,79(8):2389-2402
The protein universe can be organized in families that group proteins sharing common ancestry. Such families display variable levels of structural and functional divergence, from homogenous families, where all members have the same function and very similar structure, to very divergent families, where large variations in function and structure are observed. For practical purposes of structure and function prediction, it would be beneficial to identify sub-groups of proteins with highly similar structures (iso-structural) and/or functions (iso-functional) within divergent protein families. We compared three algorithms in their ability to cluster large protein families and discuss whether any of these methods could reliably identify such iso-structural or iso-functional groups. We show that clustering using profile-sequence and profile-profile comparison methods closely reproduces clusters based on similarities between 3D structures or clusters of proteins with similar biological functions. In contrast, the still commonly used sequence-based methods with fixed thresholds result in vast overestimates of structural and functional diversity in protein families. As a result, these methods also overestimate the number of protein structures that have to be determined to fully characterize structural space of such families. The fact that one can build reliable models based on apparently distantly related templates is crucial for extracting maximal amount of information from new sequencing projects.  相似文献   

16.
Araki M  Tamura A 《Proteins》2007,66(4):860-868
Intrinsic rules of determining the tertiary structure of a protein have been unknown partly because physicochemical factors that contribute to stabilization of a protein structure cannot be represented as a linear combination of local interactions. To clarify the rules on the nonlinear term caused by nonlocal interaction in a protein, we tried to transform a peptide that has a fully helical structure (Target Peptide or TP) into a peptide that has a beta-hairpin structure (Designed Peptide or DP) by adding seven residues to the C terminus of TP. According to analyses of nuclear magnetic resonance measurements, while the beta-hairpin structure is stabilized in some DPs, it is evident that the helical structure observed in TP is also persistent and even extended throughout the length of the molecule. As a result, we have produced a peptide molecule that contains both the alpha-helix and beta-hairpin conformation at an almost equally populated level. The helical structures contained in these DPs were more stable than the helix in TP, suggesting that stabilizing one conformation does not result in destabilizing the other conformation. These DPs can thus be regarded as an isolated peptide version of the chameleon sequence, which has the capability of changing the secondary structure depending on the context of the surrounding environment in a protein structure. The fact that the transformation of one secondary structure caused stabilization of both the original and the induced structure would shed light on the mechanism of protein folding.  相似文献   

17.
Membrane proteins play many critical roles in cells, mediating flow of material and information across cell membranes. They have evolved to perform these functions in the environment of a cell membrane, whose physicochemical properties are often different from those of common cell membrane mimetics used for structure determination. As a result, membrane proteins are difficult to study by traditional methods of structural biology, and they are significantly underrepresented in the protein structure databank. Solid-state Nuclear Magnetic Resonance (SSNMR) has long been considered as an attractive alternative because it allows for studies of membrane proteins in both native-like membranes composed of synthetic lipids and in cell membranes. Over the past decade, SSNMR has been rapidly developing into a major structural method, and a growing number of membrane protein structures obtained by this technique highlights its potential. Here we discuss membrane protein sample requirements, review recent progress in SSNMR methodologies, and describe recent advances in characterizing membrane proteins in the environment of a cellular membrane.  相似文献   

18.
In the present work, we use structural information to characterize a set of disease-associated single amino acid polymorphisms exhaustively. The analysis of different properties, such as substitution matrix elements, secondary structure, accessibility, free energies of transfer from water to octanol, amino acid volume, etc., suggests that many disease-causing mutations are associated with extreme changes in the value of parameters relating to protein stability. Overall, our results indicate that, while knowledge of protein structure clearly helps in understanding these mutations, a finer understanding can come only from a quantitative knowledge of protein stability and of the protein environment in the cell. Interestingly, use of evolutionary information from multiple sequence alignments can be used to increase our knowledge of disease-associated mutations.  相似文献   

19.
Formaldehyde has been used for decades to probe macromolecular structure and function and to trap complexes, cells, and tissues for further analysis. Formaldehyde crosslinking is routinely employed for detection and quantification of protein-DNA interactions, interactions between chromatin proteins, and interactions between distal segments of the chromatin fiber. Despite widespread use and a rich biochemical literature, important aspects of formaldehyde behavior in cells have not been well described. Here, we highlight features of formaldehyde chemistry relevant to its use in analyses of chromatin complexes, focusing on how its properties may influence studies of chromatin structure and function.  相似文献   

20.
Membrane proteins are unique, in that they can function properly only when they are bound to cellular membranes in a distinct manner. Therefore, positioning of membrane proteins with respect to the membrane is required in addition to the three-dimensional structures in order to understand their detailed molecular mechanisms. Atomic-resolution structures of membrane proteins that have been determined to date provide the atom coordinates in arbitrary coordinate systems with no relation to the membrane and therefore provide little or no information on how the protein would interact with the membrane. This is especially true for peripheral membrane proteins, because they, unlike integral proteins, are devoid of well-defined hydrophobic transmembrane domains. Here, we present a novel technique for determination of the configuration of a protein-membrane complex that involves protein ligation, segmental isotope labeling, polarized infrared spectroscopy, membrane depth-dependent fluorescence quenching, and analytical geometry algorithms. We have applied this approach to determine the structure of a membrane-bound phospholipase A2. Our results provide an unprecedented structure of a membrane-bound protein in which the z-coordinate of each atom is the distance from the membrane center and therefore allows precise location of each amino acid relative to the membrane. Given the functional significance of the orientation and location of membrane-bound proteins with respect to the membrane, we propose to specify this structural feature as the "quinary" structure of membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号