首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alpha-crystallin, the major eye-lens protein with sequence homology with heat-shock proteins (HSPs), acts like a molecular chaperone by suppressing the aggregation of damaged crystallins and proteins. To gain more insight into its chaperoning ability, we used a protease as the model system that is known to require a propeptide (intramolecular chaperone) for its proper folding. The protease ("N" state) from Conidiobolus macrosporus (NCIM 1298) unfolds at pH 2.0 ("U" state) through a partially unfolded "I" state at pH 3.5 that undergoes transition to a molten globule-(MG) like "I(A)" state in the presence of 0.5 M sodium sulfate. The thermally-stressed I(A) state showed complete loss of structure and was prone to aggregation. Alpha-crystallin was able to bind to this state and suppress its aggregation, thereby preventing irreversible denaturation of the enzyme. The alpha-crystallin-bound I(A) state exhibited native-like secondary and tertiary structure showing the interaction of alpha-crystallin with the MG state of the protease. 8-Anilinonaphthalene sulphonate (ANS) binding studies revealed the involvement of hydrophobic interactions in the formation of the complex of alpha-crystallin and protease. Refolding of acid-denatured protease by dilution to pH 7.5 resulted in aggregation of the protein. Unfolding of the protease in the presence of alpha-crystallin and its subsequent refolding resulted in the generation of a near-native intermediate with partial secondary and tertiary structure. Our studies represent the first report of involvement of a molecular chaperone-like alpha-crystallin in the unfolding and refolding of a protease. Alpha-crystallin blocks the unfavorable pathways that lead to irreversible denaturation of the alkaline protease and keeps it in a near-native, folding-competent intermediate state.  相似文献   

2.
The loss of metal homeostasis and the toxic effect of metal ion are important events in neurodegenerative and age‐related diseases, such as Alzheimer's disease (AD). For the first time, we investigated the impacts of mercury(II) ions on the folding and aggregation of Alzheimer's tau fragment R2 (residues 275‐305: VQIIN KKLDL SNVQS KCGSK DNIKH VPGGGS), corresponding to the second repeat unit of the microtubule‐binding domain, which was believed to be pivotal to the biochemical properties of full tau protein. By ThS fluorescence assay and electron microscopy, we found that mercury(II) dramatically promoted heparin‐induced aggregation of R2 at an optimum molar ratio of 1: 2 (metal: protein), and the resulting R2 filaments became smaller. Isothermal titration calorimetry (ITC) experiment revealed that the strong coordination of mercury(II) with R2 was an enthalpy‐controlled, entropy‐decreased thermodynamic process. The exceptionally large magnitude of heat release (ΔH1 = ?34.8 Kcal mol?1) suggested that the most possible coordinating site on the R2 peptide chain was the thiol group of cysteine residue (Cys291), and this was further confirmed by a control experiment using Cys291 mutated R2. Circular dichroism spectrum demonstrated that this peptide underwent a significant conformational change from random coil to β‐turn structure upon its binding to mercury(II) ion. This study was undertaken to better understand the mechanism of tau aggregation, and evaluate the possible role of mercury(II) in the pathogenesis of AD. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 1100–1107, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

3.
Miura S  Zhang J  Karnik SS 《FEBS letters》2000,470(3):331-335
To explore peptide hormone-induced conformational changes, we attempted to engineer a metal-ion binding site between the cytoplasmic loops CD and EF in the angiotensin II type 1 (AT(1)) receptor. We constructed 12 double and six triple histidine mutant receptors, and tested the ability of each mutant and the wild-type to activate inositol phosphate (IP) production with and without ZnCl(2). Inhibition by ZnCl(2) in the double and triple His mutant receptors was not significant, but these mutations directly decreased the IP production. Systematic analysis of single His mutants demonstrated that the loop CD-mutants displayed 52-74% inhibition of IP production, whereas the loop EF-mutants did not affect IP production. These results indicate that the cytoplasmic loop CD-segment from Tyr(127) to Ile(130) is important for G(q/11) activation by the AT(1) receptor.  相似文献   

4.
A DNA-intercalating Ru(II) polypyridyl complex [Ru(bpy)2(appo)]2+ (bpy = 2,2′-bipyridine, appo = 11-aminopteridino[6,7-f][1,10]phenanthrolin-13(12H)-one) has been synthesized and characterized by elemental analysis, electrospray mass spectra, 1H NMR, UV/Vis spectrum, fluorescent spectrum and electrochemistry. The DNA-binding, photocleavage, and topoisomerase inhibition of the complex was studied. Interestingly, the complex binds to DNA via an intercalative mode with preference for GC sequences and cleaves the pBR322 DNA upon irradiation. In addition, the complex shows high inhibition activity against topoisomerase II by interfere the DNA religation.  相似文献   

5.
Carbonic anhydrases (CAs, EC 4.2.1.1) had six genetically distinct families described to date in various organisms. There are 16 known CA isoforms in humans. Human CA isoenzymes I and II (hCA I and hCA II) are ubiquitous cytosolic isoforms. Acetylcholine esterase (AChE. EC 3.1.1.7) is a hydrolase that hydrolyzes the neurotransmitter acetylcholine relaying the signal from the nerve. In this study, some trimethoxyindane derivatives were investigated as inhibitors against the cytosolic hCA I and II isoenzymes, and AChE enzyme. Both hCA isozymes were inhibited by trimethoxyindane derivatives in the low nanomolar range. These compounds were good hCA I inhibitors (Kis in the range of 1.66–4.14?nM) and hCA II inhibitors (Kis of 1.37–3.12?nM) and perfect AChE inhibitors (Kis in the range of 1.87–7.53?nM) compared to acetazolamide as CA inhibitor (Ki: 6.76?nM for hCA I and Ki: 5.85?nM for hCA II) and Tacrine as AChE inhibitor (Ki: 7.64?nM).  相似文献   

6.
7.
Protein–protein interactions (PPIs) in all the molecular aspects that take place both inside and outside cells. However, determining experimentally the structure and affinity of PPIs is expensive and time consuming. Therefore, the development of computational tools, as a complement to experimental methods, is fundamental. Here, we present a computational suite: MODPIN, to model and predict the changes of binding affinity of PPIs. In this approach we use homology modeling to derive the structures of PPIs and score them using state‐of‐the‐art scoring functions. We explore the conformational space of PPIs by generating not a single structural model but a collection of structural models with different conformations based on several templates. We apply the approach to predict the changes in free energy upon mutations and splicing variants of large datasets of PPIs to statistically quantify the quality and accuracy of the predictions. As an example, we use MODPIN to study the effect of mutations in the interaction between colicin endonuclease 9 and colicin endonuclease 2 immune protein from Escherichia coli. Finally, we have compared our results with other state‐of‐art methods.  相似文献   

8.
A DNA-intercalating Ru(II) polypyridyl complex [Ru(bpy)2(appo)]2+ (bpy = 2,2′-bipyridine, appo = 11-aminopteridino[6,7-f][1,10]phenanthrolin-13(12H)-one) has been synthesized and characterized by elemental analysis, electrospray mass spectra, 1H NMR, UV/Vis spectrum, fluorescent spectrum and electrochemistry. The DNA-binding, photocleavage, and topoisomerase inhibition of the complex was studied. Interestingly, the complex binds to DNA via an intercalative mode with preference for GC sequences and cleaves the pBR322 DNA upon irradiation. In addition, the complex shows high inhibition activity against topoisomerase II by interfere the DNA religation.  相似文献   

9.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme, each active site in which contains a tight cluster of two zinc ions and one magnesium ion. Unfolding and inactivation of the enzyme during denaturation in guanidinium chloride (GuHCl) solutions of different concentrations have been compared. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou [(1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436] has been applied to a study on the kinetics of the course of inactivation of the enzyme during denaturation by GuHCl. The rate constants of unfolding and inactivation have been determined. The results show that inactivation occurs before noticeable conformational change can be detected. It is suggested that the active site of green crab alkaline phosphatase containing multiple metal ions is also situated in a limited region of the enzyme molecule that is more fragile to denaturants than the protein as a whole.  相似文献   

10.
The modulation of biological signal transduction pathways by masking phosphorylated amino acid residues represents a viable route toward pharmacologic protein regulation. Binding of phosphorylated amino acid residues has been achieved with synthetic metal‐chelate receptors. The affinity and selectivity of such receptors can be enhanced if combined with a second binding site. We demonstrate this principle with a series of synthetic ditopic metal‐chelate receptors, which were synthesized and investigated for their binding affinity to phosphorylated short peptides under conditions of physiological pH. The compounds showing highest affinity were subsequently used to inhibit the interaction of the human STAT1 protein to a peptide derived from the interferon‐γ receptor, and between the checkpoint kinase Chk2 and its preferred binding motif. Two of the investigated ditopic synthetic receptors show a significant increase in inhibition activity. The results show that regulation of protein function by binding to phosphorylated amino acids is possible. The introduction of additional binding sites into the synthetic receptors increases their affinity, but the flexibility of the structures investigated so far prohibited stringent amino acid sequence selectivity in peptide binding. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Proline–alanine-rich Ste20-related kinase (PASK, also referred to as SPAK) has been linked to ion transport regulation. Here, we report two novel activities of PASK: binding to tubulin and microtubules and the promotion of microtubule assembly. Tubulin binding assay showed that full-length PASK and its kinase domain bound to purified tubulin whereas the N-terminal or C-terminal non-catalytic domains of PASK did not. The full-length PASK and its kinase domain were sedimented with paclitaxel-stabilized microtubules by ultracentrifugation. These results indicate that the kinase domain of PASK can interact directly with both microtubules and soluble tubulin in vitro. Truncated PASK lacking the N-terminal non-catalytic domain promoted microtubule assembly at a subcritical concentration of purified tubulin. FLAG–PASK expressed in COS-7 cells translocated to the cytoskeleton when the cells were stimulated with hypertonic sodium chloride, and stabilized microtubules against depolymerization by nocodazole. Our findings suggest that PASK may regulate the cytoskeleton by modulating microtubule stability.  相似文献   

12.
N-(2-pyridylmethyl)-2-hydroxiymethyl-1-pyrrolidinyl-4-(3-chloro-4-methoxy-benzylamino)-5-pyrimidine-carboxamide (NHPPC) is a new potential of type 5 phosphodiesterase (PDE5) inhibitors, synthesized from the avanafil analogue for the treatment of erectile dysfunction. The targets of this article were to assess plasma protein binding, liver microsomal metabolic stability, inhibition and induction on cytochrome P450 isozymes and the pharmacokinetics of NHPPC. Equilibrium dialysis technique was applied to determine Plasma protein binding (PPB) and NHPPC was evaluated in male Sprague–Dawley rats and Beagle dogs in vivo pharmacokinetic. The NHPPC was highly bound to plasma proteins in rats, dogs and human tested and the mean values for PPB rate were 96.2%, 99.6% and 99.4%, respectively. After in vitro liver microsomes incubated for 60?min, the percent remaining of NHPPC was 42.8%, 0.8% and 42.0% in rats, dogs and human, respectively. In vitro intrinsic clearance was found to be 0.0233, 0.1204 and 0.0214 mL/min/mg protein in rat, dog and human liver microsomes of NHPPC, respectively. NHPPC showed no significant inhibitory effects on major CYP450 enzymes, and had no significant induction potential on CYP1A2 and CYP3A4. Following oral administration in rats and dogs, tmax was 6 and 0.5?h, respectively. The clearance for NHPPC was 1.19 and 1.46?L/h/kg in rats and dogs, respectively. And absolute bioavailability in rat and dog were approximately 34.5% and 53.1%, respectively. These results showed that NHPPC has a good development prospect.  相似文献   

13.
14.
The present study aims to elucidate aspects of the protein binding ability of erythrosine B (ErB), a poly‐iodinated xanthene dye and an FDA‐approved food colorant (FD&C Red No. 3), which we have identified recently as a promiscuous inhibitor of protein–protein interactions (PPIs) with a remarkably consistent median inhibitory concentration (IC50) in the 5‐ to 30‐μM range. Because ErB exhibits metachromasy, that is, color change upon binding to several proteins, we exploited this property to quantify its binding to proteins such as bovine serum albumin (BSA) and CD40L (CD154) and to determine the corresponding binding constants (Kd) and stoichiometry (nb) using spectrophotometric methods. Binding was reversible, and the estimated affinities for both protein targets obtained here (Kd values of 14 and 20 μM for BSA and CD40L, respectively) were in good agreement with that expected from the PPI inhibitory activity of ErB. A stoichiometry greater than one was observed both for CD40L and BSA binding (nb of 5–6 and 8–9 for BSA and CD40L, respectively), indicating the possibility of nonspecific binding of the flat and rigid ErB molecule at multiple sites, which could explain the promiscuous PPI inhibitory activity if some of these overlap with the binding site of the protein partner and interfere with the binding. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

Carbonic anhydrases (CAs) are widespread and the most studied members of a great family of metalloenzymes in higher vertebrates including humans. CAs were investigated for their inhibition of all of the catalytically active mammalian isozymes of the Zn2+-containing CA, (CA, EC 4.2.1.1). On the other hand, acetylcholinesterase (AChE. EC 3.1.1.7), a serine protease, is responsible for ACh hydrolysis and plays a fundamental role in impulse transmission by terminating the action of the neurotransmitter ACh at the cholinergic synapses and neuromuscular junction. In the present study, the inhibition effect of the hydroquinone (benzene-1,4-diol) on AChE activity was evaluated and effectively inhibited AChE with Ki of 1.22?nM. Also, hydroquinone strongly inhibited some human cytosolic CA isoenzymes (hCA I and II) and tumour-associated transmembrane isoforms (hCA IX, and XII), with Kis in the range between micromolar (415.81?μM) and nanomolar (706.79?nM). The best inhibition was observed in cytosolic CA II.  相似文献   

16.
Low‐density lipoprotein (LDL)‐cholesterol delivery from late endosomes to the plasma membrane regulates focal adhesion dynamics and cell migration, but the mechanisms controlling it are poorly characterized. Here, we employed auxin‐inducible rapid degradation of oxysterol‐binding protein‐related protein 2 (ORP2/OSBPL2) to show that endogenous ORP2 mediates the transfer of LDL‐derived cholesterol from late endosomes to focal adhesion kinase (FAK)‐/integrin‐positive recycling endosomes in human cells. In vitro, cholesterol enhances membrane association of FAK to PI(4,5)P2‐containing lipid bilayers. In cells, ORP2 stimulates FAK activation and PI(4,5)P2 generation in endomembranes, enhancing cell adhesion. Moreover, ORP2 increases PI(4,5)P2 in NPC1‐containing late endosomes in a FAK‐dependent manner, controlling their tubulovesicular trafficking. Together, these results provide evidence that ORP2 controls FAK activation and LDL‐cholesterol plasma membrane delivery by promoting bidirectional cholesterol/PI(4,5)P2 exchange between late and recycling endosomes.  相似文献   

17.
The new complex compounds [RuLCl(p‐cymene)] ? 3H2O and [NiL2(H2O)2] ? 3H2O (L: 1‐{4‐[(2‐hydroxy‐3‐methoxybenzylidene)amino]phenyl}ethanone) were prepared and characterized using FT‐IR, 1H‐ and 13C‐NMR, mass spectroscopy, TGA, elemental analysis, X‐ray powder diffraction and magnetic moment techniques. Octahedral geometry for new Ni(II) and Ru(II) complexes was proposed. Thermal decomposition confirmed the existence of lattice and coordinated water molecule in the complexes. To determine the antioxidant properties of Schiff base ligand and its Ni(II), Ru(II) metal complexes, FRAP, CUPRAC, ABTS and DPPH methods of antioxidant assays were used. Moreover, enzyme inhibition of complexes was evaluated against carbonic anhydrase I and II isoenzymes (CA I and CA II) and acetylcholinesterase (AChE). For CA I and CA II, the best inhibition enzymes, was the Ni(II) complex with 62.98±18.41, 86.17±23.62 Ki values, whereas this inhibition effect showed ligand with 24.53±2.66 Ki value for the AChE enzyme.  相似文献   

18.
The stability of the N-terminal domain of the ribosomal protein L9, NTL9, from Bacillus stearothermophilus has been monitored by circular dichroism at various temperatures and chemical denaturant concentrations in H2O and D2O. The basic thermodynamic parameters for the unfolding reaction, deltaH(o), deltaS(o), and deltaC(o)p, were determined by global analysis of temperature and denaturant effects on stability. The data were well fit by a model that assumes stability varies linearly with denaturant concentration and that uses the Gibbs-Helmholtz equation to model changes in stability with temperature. The results obtained from the global analysis are consistent with information obtained from individual thermal and chemical denaturations. NTL9 has a maximum stability of 3.78 +/- 0.25 kcal mol(-1) at 14 degrees C. DeltaH(o)(25 degrees C) for protein unfolding equals 9.9 +/- 0.7 kcal mol(-1) and TdeltaS(o)++(25 degrees C) equals 6.2 +/- 0.6 kcal mol(-1). DeltaC(o)p equals 0.53 +/- 0.06 kcal mol(-1) deg(-1). There is a small increase in stability when D2O is substituted for H2O. Based on the results from global analysis, NTL9 is 1.06 +/- 0.60 kcal mol(-1) more stable in D2O at 25 degrees C and Tm is increased by 5.8 +/- 3.6 degrees C in D2O. Based on the results from individual denaturation experiments, NTL9 is 0.68 +/- 0.68 kcal mol(-1) more stable in D2O at 25 degrees C and Tm is increased by 3.5 +/- 2.1 degrees C in D2O. Within experimental error there are no changes in deltaH(o) (25 degrees C) when D2O is substituted for H2O.  相似文献   

19.
20.
Bromelain is a set of proteolytic enzymes found in pineapple (Ananas comosus) tissues such as stem, fruit and leaves. Because of its proteolytic activity, bromelain has potential applications in the cosmetic, pharmaceutical, and food industries. The present study focused on the recovery of bromelain from pineapple peel by liquid–liquid extraction in aqueous two‐phase micellar systems (ATPMS), using Triton X‐114 (TX‐114) and McIlvaine buffer, in the absence and presence of electrolytes CaCl2 and KI; the cloud points of the generated extraction systems were studied by plotting binodal curves. Based on the cloud points, three temperatures were selected for extraction: 30, 33, and 36°C for systems in the absence of salts; 40, 43, and 46°C in the presence of KI; 24, 27, and 30°C in the presence of CaCl2. Total protein and enzymatic activities were analyzed to monitor bromelain. Employing the ATPMS chosen for extraction (0.5 M KI with 3% TX‐114, at pH 6.0, at 40°C), the bromelain extract stability was assessed after incorporation into three cosmetic bases: an anhydrous gel, a cream, and a cream‐gel formulation. The cream‐gel formulation presented as the most appropriate base to convey bromelain, and its optimal storage conditions were found to be 4.0 ± 0.5°C. The selected ATPMS enabled the extraction of a biomolecule with high added value from waste lined‐up in a cosmetic formulation, allowing for exploration of further cosmetic potential. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:937–945, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号