首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《农业工程》2021,41(6):591-596
The Physicochemical variables and Zooplankton of Asu River, Ebonyi State, Nigeria were studied monthly between October 2013 and June 2014 which covered the wet and dry seasons. The study was carried out monthly in two selected sites by collecting water samples for physiochemical analysis and zooplankton identification. Shannon-Weiner diversity and Margalef's indices were used to determine the zooplankton composition. Investigation on the physiochemical variables showed that water temperature, dissolved oxygen, total dissolved solids, pH, conductivity and carbon (iv) oxide all recorded maximum values in the dry season. The present result also showed that the river is not seriously polluted. However, only carbon (iv) oxide and nitrate varied significantly between seasons (p < 0.05). Forty two (42) zooplankton species comprising Rotifera (7 families; 23 species), Copepoda (2 families; 8 species) and Cladoceran (6 families; 11 species) were identified. Rotifera spp. were numerically dominant and the most diverse group but the crustacean, Thermocyclops oithonoides dominated the total zooplankton biomass during the study. Species abundance showed inverse relationship with species richness, Shannon-Weiner diversity and Evenness. Zooplankton abundance was at its peak in the dry season while species richness, Shannon- Weiner diversity and evenness increased from dry season to wet season.  相似文献   

2.
João Paulo Viana 《Hydrobiologia》2002,472(1-3):235-247
The regulation of the Jamari River advanced peak floods by 1–2 months and increased dry-season discharges from 60 to 200 m3 s–1, resulting in water levels approximately 1 m above those recorded before regulation. Daily variation in water level associated with fluctuations in electricity production by the dam propagated to the lower reaches of the tributary Candeias River. Dissolved oxygen (DO), temperature, pH, and conductivity measured over 1.5 years on three locations along the regulated and two free-flowing rivers indicated important alterations in the case of oxygen concentrations. DO levels shifted from saturated (7–8 mg l–1) during the flood season (when the spillways were open releasing epilimnetic water) to hypoxic (1.5–3 mg l–1) during the dry season (when the floodgates were closed and only hypolimnetic water used to run the turbines was feeding the river). Fluctuations in water level and variation in dissolved oxygen tended to be greater at the site closest to the dam, gradually attenuating downstream. Mitigation of the downstream effects of river regulation would require modifications in the operation of the dam.  相似文献   

3.
Massive blooms of the dinoflagellate Cochlodinium polykrikoides occur annually in the Chesapeake Bay and its tributaries. The initiation of blooms and their physical transport has been documented and the location of bloom initiation was identified during the 2007 and 2008 blooms. In the present study we combined daily sampling of nutrient concentrations and phytoplankton abundance at a fixed station to determine physical and chemical controls on bloom formation and enhanced underway water quality monitoring (DATAFLOW) during periods when blooms are known to occur. While C. polykrikoides did not reach bloom concentrations until late June during 2009, vegetative cells were present at low concentrations in the Elizabeth River (4 cells ml−1) as early as May 27. Subsequent samples collected from the Lafayette River documented the increase in C. polykrikoides abundance in the upper branches of the Lafayette River from mid-June to early July, when discolored waters were first observed. The 2009 C. polykrikoides bloom began in the Lafayette River when water temperatures were consistently above 25 °C and during a period of calm winds, neap tides, high positive tidal residuals, low nutrient concentrations, and a low dissolved inorganic nitrogen (DIN) to dissolved inorganic phosphorous (DIP) ratio. The pulsing of nutrients associated with intense but highly localized storm activity during the summer months when water temperatures are above 25 °C may play a role in the initiation of C. polykrikoides blooms. The upper Lafayette River appears to be an important area for initiation of algal blooms that then spread to other connected waterways.  相似文献   

4.
Comprehensive field investigations have been conducted four times on Nam Co, central Tibet, from September 2005 to September 2008. Here, we present the preliminary results focusing on the bathymetric survey and water quality measurements. The isobathic map shows that Nam Co is a high-altitude, deep lake where a flat and large basin lies in the central part with a water depth of more than 90 m. Water depth data from the northwestern bank areas of Nam Co provide unquestionable evidence of rising water levels in the last 3 decades because of the formation of two small islands that were still peninsulas in the 1970s. Water quality measurements taken at 19 stations during three summer field campaigns (2006, 2007 and 2008) covering almost all of the lake areas showed that the temperature, pH, dissolved oxygen and electric conductivity of surface water are on average 11.43°C, 9.21, 8.90 mg l−1 and 1,851 μS cm−1, respectively. The surface water shows no obvious spatial variability among all the stations. Vertical fluctuations of profiles, however, display some differences in thermocline and related parameters, such as pH and dissolved oxygen. According to the vertical variations of water quality parameters, the water column in relatively deep lake areas of Nam Co could be divided into three layers with distinctly various features: the epilimnion is from the surface to about 18–20 m depth in which the parameters are homogeneous with higher temperature and abundant sunlight; the metalimnion ranged from 20–60 m where a thermocline develops; the deepest layer forms a cold and dark hypolimnion.  相似文献   

5.
《农业工程》2021,41(4):346-350
The macrobentic community in the Musi Estuary is very diverse. However, it has been showing a declining trend recently due to an increase in waste from human activities entering the waters. This study aimed to assess the macrobenthic diversity and community structure and correlated to the water quality parameters of the Musi Estuary, South Sumatra. The method used was a survey collecting water quality parameters at eight observation stations. The salinity is measured with a refractometer, temperature is measured with a digital thermometer, pH is measured with a pH meter. The dissolved oxygen (DO), brightness and current are measured with a DO meter, Seichii disk, and current meter, respectively. The Ekman grab was used to collect the samples, and then we used a diversity index, a similarity index, and principal components analysis (PCA) for analysis. The results show that the water quality is found in a good condition for macrobenthos growths. The salinity is ranging between 0 and 15 ppt, temperature is about 29–30.8 °C, pH is about 7.6–8.1, the dissolved oxygen is found to be 3.2–12.5 mg/L, the brightness is about 4.71–31.67% and the current speed is about 0.02–0.08 m.s−1. The analysis also indicates that the microbenthic compositions consist of 18 species, which is grouped into five classes, namely Gastropods 56%, Crustacea 22%, Bivalve 11%, Actinopterygii 6%, and Polychaeta 5%, with an abundance of 0,67 to 13,33 Ind.m−2. The diversity index is generally in low categories (H′ < 1), and the dominance index is more than 0.5. Based on the PCA analysis, it was found that the water quality parameters (e.g. dissolved oxygen and temperature) show significant correlation with similarity index at all observation stations. The macrobenthic diversity and community structure in the Musi Estuary is found to be increasing offshore and decreasing towards the river.  相似文献   

6.
湄公河流域土壤侵蚀空间特征及其优先治理区确定   总被引:1,自引:0,他引:1  
吴芳  朱源  许丁雪  施晶晶  江源 《生态学报》2019,39(13):4761-4772
湄公河流域拥有丰富的自然生态系统,为沿岸居民提供了食物、交通等众多方面支持,在东南亚地区具有极其重要的地位。土壤侵蚀是该流域主要环境问题,易引发土地退化和河流泥沙淤积。基于气候、土壤、遥感等区域数据产品,使用通用土壤流失方程(USLE,Universal Soil Loss Equation),对湄公河流域土壤侵蚀状况及空间分布特征进行探究,并通过联合信息熵方法,确定该流域土壤侵蚀的主导因素。结果表明,湄公河流域平均土壤侵蚀模数为1.98×10~3 t km~(-2) a~(-1),属轻度侵蚀;流域内近40%区域存在不同强度的土壤侵蚀,侵蚀较严重的地区主要包括11个子流域(M4—M7、M9、T4—T6、T8、T10、T20),是未来土壤侵蚀重点治理区域。土地利用类型、坡度和海拔是该流域土壤侵蚀的主导因素,其中灌丛和裸地/稀疏植被分别为强烈和极强烈侵蚀,土壤侵蚀模数与坡度的关系为随坡度的增加呈先增加后减小的趋势,和土壤侵蚀模数与海拔的关系相同。流域内剧烈程度侵蚀发生区主要特点为:土地利用类型为裸地/稀疏植被和灌木,海拔在500—2000 m,坡度在8—25°。基于优先级理论,对湄公河子流域的优先治理次序进行排序和划分等级,共分为4个等级,达到第一级的共3个子流域。通过以上研究分析以期能为湄公河流域今后的水土保持规划和管理工作提供一定的科学参考依据。  相似文献   

7.
This study was conducted to evaluate the quality of water in selected dams in Albaha region, Kingdom of Saudi Arabia. Water samples from eight dams were subjected to physical, chemical, and bacteriological assessment using standardized procedures of conductivity, total dissolved solids, ions, acidity & alkalinity, and EC blue 100® coliform detection. About three fourth (75%) of dams’ water samples exceeded the permissible levels of pH, total dissolved solids, turbidity, Mn and NO3 set by Saudi standards. Average levels of total dissolved solids, Fe, Mn, SO4, NO3, and NO2 were 3065.00, 0.10, 0.89, 68.25, 17.91 and 0.016 mg/L, respectively. However, the average pH of water samples was 7.95 ± 0.66 which still within the accepted range set by national and global standards. Moreover, total dissolved solids also exceeded regular standards of Food and Agriculture Organization for irrigation water quality. Coliform bacteria were detected in 37.5% of dams without any significant spatial differences between dams and sites as groups. Correlations were found between pH & NO3, SO4 & NO3, coliform bacteria & turbidity, coliform bacteria & NO2 levels. Increased concentrations of assessed parameters in dams may be attributed to agricultural activities as well as animal and human wastes deposited into dams via rainfalls and flash floods. Proper treatment of dams needs to be taken into account before consumption and irrigation.  相似文献   

8.
Clenaghan  C.  O'Halloran  J.  Giller  P.S.  Roche  N. 《Hydrobiologia》1998,389(1-3):63-71
A study of the spatio-temporal variation in hydrochemistry in the afforested catchment of the River Douglas, in the Araglin Valley, Co. Cork, Ireland, was undertaken over a two year period. The aim of the study was to examine the influence of afforestation on stream water quality both spatially and temporally. The catchment, one of the most westerly in Europe, with low atmospheric pollution, allowed the analysis of the interactions between conifer afforestation per se on stream chemistry. In contrast to most other studies, there was a general trend of increasing pH and related variables with distance from headwater despite increasing levels of catchment afforestation. In one tributary, pH and related variables increased rapidly as the stream entered the forest, with pH rising by 1.67 units over a distance of 1.2 km. Temporal fluctuations in most physico-chemical variables were minor and no acid pulses were noted during spate. Thus, the current level of afforestation within the River Douglas catchment does not appear to have negatively affected stream chemistry. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The implications for fish populations of long- (multi-decadal, 1919–2007), medium- (inter-annual) and short- (seasonal, daily) term variations in water temperatures and levels were examined in the St. Lawrence River (SLR). The effects of the seasonal thermal regime of the SLR and its tributaries on the thermal budgets of resident and migrating fish were contrasted. Over the 1919–2007 period, the mean annual water level in Montreal declined significantly; for a discharge of 8,000 m3 s−1, levels dropped steadily by about 3.6 cm year−1 between 1955 and 1982, coinciding with the period of major shoreline alteration and channel excavation. Between 1960 and 2007, the annual water temperature of the SLR rose by 1.3°C (0.027°C year−1); none of the 10 coldest years and six of the 10 warmest years were observed since 1981. Temperature differences between the warmest and coolest years were greatest in spring and fall (by about 2.5°C); fish growing season (>5°C) was longer by 5 weeks and represented 20% more degree-days for the warmest years. In comparison with its tributaries, SLR water was slower to warm up in the spring but remained warmer in the fall: fish migrating seasonally between water masses could thus enhance or reduce their thermal budgets by 1–2°C daily. Northern pike recruitment years (year-class strength index [YCSI] values above the time series median) were best with June water levels >4.9 m IGLD85 (International Great Lakes Datum of 1985), combined with June air temperatures >18.6°C. For yellow perch, water temperatures >16.2°C in June alone explained six out of the eight best recruitment years in the time series. Conversely, an episode of massive carp mortality in 2001 exemplifies the inherent risk of using shallow flooded habitats for spawning when rapidly dropping levels coincide with hot, sunny weather. The effects of water temperature and level, singly and in combination, thus appear to be critical variables in determining successful fish recruitment in shallow riparian areas—areas which constitute the most important yet the most elusive fish spawning and nursery habitats.  相似文献   

10.
This study investigates and reports the climate change's effects on the Mississippi Lake thermal structure and dissolved oxygen (DO) for baseline (1986–2005) and future (2081–2100) periods. Future meteorological variables were derived from the second-generation Canadian Earth System Model (CanESM2) under three emission scenarios (RCP2.6, RCP4.5, and RCP8.5). The long-term lake inflow was modelled using the Thornthwaite monthly water balance model (TMWB) coupled with an Artificial Neural Network (ANN) to simulate the water level in the lake. Several methods were analyzed to assure the above is the best for estimating the water budget in this region. The water quality of Mississippi Lake was analyzed using a calibrated CE-QUAL-W2 model for the years 2017 and 2018. A major challenge in setting up the model was limitations in some essential water quality indicator inputs, which were estimated using reliable experimental relationships. Our results show that the baseline average surface water temperature of 14.6 °C would increase by 1.31 °C, 1.34 °C, and 2.69 °C under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. In contrast, the baseline average hypolimnetic DO of 7.1 mg/L would decrease by 1.4%, 6.2%, and 14.3% in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Such a rise in water temperature and the consequent diminishment of DO in deep waters would threaten the future sustainable growth of warm-water fish species in Mississippi lake.  相似文献   

11.
The data on microclimate were collected between 2010 and 2011 in five forest communities (dry miscellaneous, sal mixed, lowland miscellaneous, teak and savannah) in a tropical moist deciduous forest in Katerniaghat Wildlife Sanctuary, Uttar Pradesh, India to compare how vegetation structure affects microclimate. Diurnal variations in microclimatic variables [photosynthetically active radiation (PAR) at forest understory level, air temperature, soil surface temperature, ambient CO2, air absolute humidity] were measured with LI-COR 840, LI-COR 191, LI-COR 190 SZ, LI-1400-101 and LI-1400-103 (LI-COR; Lincoln, NE, USA) at centre of three 0.5 ha plots in each forest community. The diurnal trend in microclimatic parameters showed wide variations among communities. PAR at forest floor ranged from 0.0024 to 1289.9 (μmol m−2s−1) in post-monsoon season and 0.0012 to 1877.3 (μmol m−2s−1) in mid-winter season. Among the five communities, the highest PAR value was observed in savannah and lowest in sal mixed forest. All the forest communities received maximum PAR at forest floor between 1000 and 1200 h. The ambient air temperature ranged from 19.15 to 26.69°C in post-monsoon season and 11.31 to 23.03°C in mid-winter season. Soil temperature ranged from 13.54 to 36.88°C in post-monsoon season and 6.39 to 29.17°C in mid-winter season. Ambient CO2 ranged from 372.16 to 899.14 μmol mol−1 in post-monsoon season and 396.65 to 699.65 μmol mol−1 in mid-winter season. In savannah ecosystem, diurnal trend of ambient CO2 was totally different from rest four communities. According to Canonical correspondence analysis, PAR and ambient CO2 are most important in establishment of forest community, among microclimatic variables.  相似文献   

12.
The common bream, Abramis brama (L.) in Kortowskie Lake (north-eastern Poland) usually spawn when the water temperature during the late spring rises to 20 °C. The optimal water temperature for embryonic development of this population is 21 °C. However, in some cases, the temperatures of the spawning grounds during bream spawning are much higher, becoming semi-lethal or even lethal for bream embryos. The aim of the study was to investigate the natural and artificial spawning effectiveness of bream during a 4-year study regarding the reproductive effectiveness of the wild bream population in relation to thermal fluctuation (optimal and semi-lethal) of their ecosystem during the natural spawning season. During four following seasons, the bream spawners, as well as the eggs, were collected from the spawning grounds and incubated at optimal (21 °C) and semi-lethal (23 °C) temperatures. The spawning of mature bream was artificially induced and the obtained eggs were also incubated at the same temperatures. The period of observed spawners on the spawning grounds was different in different years: the longest time of bream spawning was in the second year of the study and the shortest was during the third year of the study. In the last year, a decrease in water temperature caused a break in the spawning. Thermal changes in water temperature during the spawning season may have caused a high mortality level of bream embryos and decreased the recruitment of the next species generation.  相似文献   

13.

This study was conducted to examine the influence of CO2 nanobubbles on crystallisation behaviour of water during freezing of model sugar (2–5%w/v) solutions. CO2 gas was dissolved at 0, 1000, and 2000-ppm concentrations before freezing. Carbonated sugar solutions in 50 mL plastic tubes were immersed in a pre-cooled (−15 °C) ethylene glycol bath and left to freeze at −15 °C for 90 min. When the temperature of the solutions reached 0 °C, ultrasound (US; 20 kHz) was emitted in the bath for 20 s duration through a metal horn transducer. The US wave applied in the ethylene glycol bath was expected to propagate to the sugar solutions in the tube and promote gas bubble formation from dissolved CO2, which will trigger the ice nucleation. Obtained freezing curves were analysed for nucleation time and temperature, supercooling degree, and time taken for phase change. In general, the CO2 gas promoted freezing of water, causing a noticeable shift in nucleation parameters. For example, nucleation time of 2000-ppm carbonated water coupled with sonication emission for 20 s (7.8 min) was much shorter than that of controls (pure water without any treatment = 19.1 min and US only = 14.3 min). The former initiated ice nucleation just below sub-zero temperature (−0.2 °C) whereas the onset temperature of controls (pure water without any treatment = −11.3 °C and the US only treatment = −10.3 °C). A similar effect was observed with different model sugar solutions. The current findings can be applied to refine the manufacturing process of ice-cream and frozen desserts by the food industries.

  相似文献   

14.
The African halfbeak Hyporhamphus picarti (Hemiramphidae) is one of the most abundant species within the ichthyoplankton community of the Sine Saloum estuary (Senegal). A year‐round occurrence of larvae suggests that the Sine Saloum is an important spawning habitat for this species. Annual fluctuations in water temperature, however, can have severe impacts on the survival probabilities of marine fish larvae. To determine whether temperature has an effect on the growth of H. picarti during its larval development, larval age at length and somatic growth rates were investigated for two contrasting spawning seasons in 2014: February (cold season, 20.8°C) and June (warm season, 26.4°C). In both months H. picarti larvae were sampled at the mouth of the Saloum River using neuston nets. Sagittal otoliths’ increments were counted to estimate the larva age at a given standard length (SL). The age of larvae ranged between 2 and 22 days, with SL of 3.86–21.68 mm, respectively. In order to describe larval age at length during the contrasting spawning seasons, two distinctive Gompertz functions were applied. Accordingly, specimens sampled in June (0.94 ± 0.17 mm per day) exhibited significantly higher somatic growth rates than those sampled in February (0.60 ± 0.06 mm per day). These findings suggest that water temperature is an important factor influencing larval growth in H. picarti. Information concerning the early life stages of H. picarti are scarce and the results of the present study may contribute to a better understanding of the species’ biology and ecology.  相似文献   

15.
In order to increase our understanding of the interaction of soil-halophyte (Salicornia brachiata) relations and phytoremediation, we investigated the aboveground biomass, carbon fixation, and nutrient composition (N, P, K, Na, Ca, and Mg) of S. brachiata using six sampling sites with varying characteristics over one growing season in intertidal marshes. Simultaneously, soil characteristics and nutrient concentrations were also estimated. There was a significant variation in soil characteristics and nutrient contents spatially (except pH) as well as temporally. Nutrient contents in aboveground biomass of S. brachiata were also significantly differed spatially (except C and Cl) as well as temporally. Aboveground biomass of S. brachiata ranged from 2.51 to 6.07 t/ha at maturity and it was positively correlated with soil electrical conductivity and available Na, whereas negatively with soil pH. The K/Na ratio in plant was below one, showing tolerance to salinity. The aboveground C fixation values ranged from 0.77 to 1.93 C t/ha at all six sampling sites. This study provides new understandings into nutrient cycling—C fixation potential of highly salt-tolerant halophyte S. brachiata growing on intertidal soils of India. S. brachiata have a potential for amelioration of the salinity due to higher Na bioaccumulation factor.  相似文献   

16.
The Mekong flows north to south, through six countries in south–east Asia. Many studies have concentrated on fish and fisheries in the Lower Mekong, which has been identified as one of the largest inland fisheries in the world with an incredibly rich diversity of species. In contrast, fish and fisheries in the Upper Mekong (Lancang River) have remained relatively undocumented. In this paper, we synthesized information on freshwater fish biodiversity and fisheries in the Upper Mekong and documented 173 species and subspecies (including 87 endemic species) among 7 orders, 23 families and 100 genera. We divided the Upper Mekong into 17 sub-basins based on Digital Elevation Model (DEM) and then used fish species data to cluster the sub-basins. Four parts (the headwater, the upper reach, the middle reach and the lower reach) and one lake have distinct fish species communities associated with them. There was a linear relationship between fish species (x) and endemic species (y) as y = 0.5464x − 3.2926. Relationship between species number or endemic species number (y) and mean altitude (x) can be described as y = −54.352 ln(x) + 460.79 or y = −30.381 ln(x) + 253.85, respectively. Fisheries kept as about 6,000 t from 1989 to 1998, and then steadily increased to 10,000 t in 2004. We reviewed the overall threats to the Upper Mekong fish and fisheries, and found that hydrological alteration is the largest threat in the basin, followed by over fishing and the introduction of exotic species. In terms of specific river sections, water pollution was the most serious threat to fishes in the upper reach of the Upper Mekong, whilst migratory fishes in the lower reach of the Upper Mekong are seriously threatened by the construction of cascade dams. The Buyuan River and the Nanla River were identified as important feeding and spawning habitats for upstream migrant species and should be considered as a priority for conservation.  相似文献   

17.
Biotreatment of bagasse effluent using Phanerochaete chrysosporium (white rot fungus) is investigated. This study confirmed that lignin is the major pollutant component in this effluent followed by different carbohydrates. The treatment conditions must be very proper, especially in terms of biomass culture to achieve a successful treatment. The best conditions of temperature, biomass concentration, pH and duration for biotreatment of this effluent were 35°C, 552 mg l−1, 6 and 5 to 9 days, respectively. Under these conditions, a 9 days long treatment reduced by 98.7% the original biochemical oxygen demand (of 2,780 mg l−1) and by 98.5% the dissolved chemical oxygen demand (initial 4,200 mg l−1). Moreover, fungal treatment reduced total dissolved solids from 3,950 to 575 mg l−1 and color from 560 mg l−1 PtCo to 111 mg l−1 PtCo.  相似文献   

18.
Monthly observations performed on a typical harmonic-type lake, Lake Biwa (latitude 35°15′ N, longitude 136°05′ E, Japan), showed that the particulate aluminum concentration varied around a mean value of 0.8 μM, with occasional extraordinarily high values, whereas the dissolved aluminum concentration varied, in the surface layer of the whole lake, between a minimum of 0.01 μM and a maximum of 0.30 μM, depending on the season. Although the variation in dissolved aluminum paralleled the variation in the pH of the lake water, the variation in dissolved aluminum lagged behind the variation in pH by approximately 1 month. A series of laboratory incubation experiments suggested that the supply of dissolved aluminum from, and its removal by, the suspended particulate matter involved a slow, pH-dependent reaction. The stoichiometry and the apparent equilibrium constant of this reaction were evaluated by adopting a zeolite-like structure for the surfaces of the suspended particulates. Received: December 28, 2000 / Accepted: August 22, 2001  相似文献   

19.
Discharge is a primary determinant of river phytoplankton, but its influence can be mediated by climate, water quality and catchment development. The relationship between discharge and phytoplankton over seasonal and flood temporal scales was examined for the Daly River in the Australian tropical savannah. Phytoplankton, water quality and hydrographic data were collected over the high-discharge wet season and lower-discharge dry season. Wet season main channel river conditions were unfavourable for phytoplankton growth. Floods, however, connected the main channel to off-channel water bodies that supplied phytoplankton, predominately Cryptomonas, to the river. Wet season phytoplankton biovolume and cell concentrations were higher than in the dry season and comprised the majority of the annual phytoplankton biomass load. High discharges served to both temporally connect the river to off-channel phytoplankton sources as well as dilute these sources. In the dry season, the Daly River was groundwater-fed and disconnected from off-channel phytoplankton sources and dominated by a potamoplanktonic population of Cryptomonas and Peridinium. River phytoplankton were determined by the seasonal discharge regime which drove water quality and underpinned a shift from highly productive, spatially extensive off-channel sources in the wet season to less productive more spatially confined in-channel sources in the dry season.  相似文献   

20.
Large grazers are visible and valuable indicators of the effects of projected changes in temperature and drought on grasslands. The grasslands of the Great Plains have supported the greatest number of bison (Bison bison; Linnaeus, 1758) since prehistoric times. We tested the hypothesis that body mass (BM, kg) and asymptotic body mass (ABM, kg) of Bison decline with rising temperature and increasing drought over both temporal and spatial scales along the Great Plains. Temporally, we modeled the relationship of annual measures of BM and height (H, m) of 5,781 Bison at Wind Cave National Park (WICA) from 1966 to 2015. We used Gompertz equations of BM against age to estimate ABM in decadal cohorts; both females and males decreased from the 1960s to the 2010s. Male ABM was variable but consistently larger (699 vs. 441 kg) than female ABM. We used local mean decadal temperature (MDT) and local mean decadal Palmer Drought Severity Index (dPDSI) to model the effects of climate on ABM. Drought decreased ABM temporally (?16 kg/local dPDSI) at WICA. Spatially, we used photogrammetry to measure body height (HE) of 773 Bison to estimate BME in 19 herds from Saskatchewan to Texas, including WICA. Drought also decreased ABM spatially (?16 kg/local dPDSI) along the Great Plains. Temperature decreased ABM both temporally at WICA (?115 kg/°C local MDT) and spatially (?1 kg/°C local MDT) along the Great Plains. Our data indicate that temperature and drought drive Bison ABM presumably by affecting seasonal mass gain. Bison body size is likely to decline over the next five decades throughout the Great Plains due to projected increases in temperatures and both the frequency and intensity of drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号