首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Epidermal growth factor (EGF) in rat salivary glands is regulated by testosterone, thyroxin, and growth hormone (GH). Salivary glands of 45-day-old giant and dwarf male and female transgenic mice were examined histologically and by immunohistochemistry (IHC) for EGF. Male giants showed no significant differences from wild-type (WT) parotid and submandibular glands. However, their sublingual glands expressed EGF diffusely and strongly in granular cells within the striated ducts, where they were not found in WT mice. Submandibular gland ducts of female WT were different, having individual granular cells strongly positive for EGF and distributed sporadically along the striated duct walls. Neither female GH-antagonist dwarf mice nor GH-receptor knockout mice had any granular cells expressing EGF in any gland. Obvious presence of granular duct cells in the sublingual glands of giant male mice suggests GH-upregulated granular cell EGF expression. Furthermore, absence of granular duct cells from all glands in female GH-antagonist and GH-receptor knockout transgenic mice suggests that GH is necessary for the differentiation of the granular cell phenotype in female salivary glands.  相似文献   

2.
We have used a simple binomial model of stochastic transgene inactivation at the level of the chromosome or transgene, rather than the cellular level, for the analysis of two mouse transgenic lines that show variegated patterns of expression. This predicts the percentages of cells that express one, both or neither alleles of the transgene in homozygotes from the observed percentages of cells, which express the transgene in hemizygotes. It adequately explained the relationship between the numbers of cells expressing the transgene in hemizygous and homozygous mosaic 21OH/LacZ mouse adrenals and mosaic BLG/7 mouse mammary glands. The binomial model also predicted that a small proportion of cells in mosaic mammary glands of BLG/7 homozygotes would express both BLG/7 alleles but published data indicated that all cells expressing the transgene showed monoallelic expression. Although it didn’t fit all of the BLG/7 data as precisely as a more complex model, which used several ad hoc assumptions to explain these results, the simple binomial model was able to explain the relationship in observed transgene expression frequencies between hemizygous and homozygous mosaic tissues for both 21OH/LacZ and BLG/7 mice. It may prove to be a useful general model for analysing other transgenic animals showing mosaic transgene expression.  相似文献   

3.
4.
The epidermal growth factor (EGF) family of peptides signals through the erbB family of receptor tyrosine kinases and plays important roles in development and tumorigenesis. Both EGF and transforming growth factor (TGF)-alpha only bind to erbB1 and activate it. The precursor of EGF is distinct from that of TGF-alpha in having eight additional EGF-like repeats. We have recently shown that the EGF precursor without these repeats is biologically active and leads to hypospermatogenesis in transgenic mice. Here we present evidence that the growth of transgenic mice widely expressing this engineered EGF precursor is also stunted. These mice were consistently born at half the normal weight and reached almost 80% of normal weight at adulthood. The mechanism involved a reduction of serum insulin-like growth factor-binding protein-3. Chondrocyte development in the growth plate was affected, and osteoblasts accumulated in the endosteum and periosteum. Besides these novel findings on the in vivo effects of EGF on bone development, we observed no sign of tumor formation in our transgenic animals. In contrast to previous reports on TGF-alpha transgenic mice, we show that the biological functions of EGF and TGF-alpha are clearly distinct.  相似文献   

5.
Morphology of extant felids is regarded as highly conservative. Most previous studies have focussed on skull morphology, so a vacuum exists about morphofunctional variation in postcranium and its role in structuring ensembles of felids in different continents. The African felid ensemble is particularly rich in ecologically specialized felids. We studied the ecomorphology of this ensemble using 31 cranial and 93 postcranial morphometric variables measured in 49 specimens of all 10 African species. We took a multivariate approach controlling for phylogeny, with and without body size correction. Postcranial and skull + postcranial analyses (but not skull‐only analyses) allowed for a complete segregation of species in morphospace. Morphofunctional factors segregating species included body size, bite force, zeugopodial lengths and osteological features related to parasagittal leg movement. A general gradient of bodily proportions was recovered: lightly built, long‐legged felids with small heads and weak bite forces vs. the opposite. Three loose groups were recognized: small terrestrial felids, mid‐to‐large sized scansorial felids and specialized Acinonyx jubatus and Leptailurus serval. As predicted from a previous study, the assembling of the African felid ensemble during the Plio‐Pleistocene occurred by the arrival of distinct felid lineages that occupied then vacant areas of morphospace, later diversifying in the continent.  相似文献   

6.
The effect of stress on human growth hormone (hGH) secretion was studied in transgenic mice. Experiments were conducted on fourth, fifth, and sixth generation male mice carrying a fusion gene, consisting of the promoter sequence of the mouse metallothionein I gene ligated to the hGH structural gene (mMT-I/hGH). In animals adapted to a controlled photoperiod, basal (unstimulated) levels of plasma hGH exhibited a diurnal cycling, with peak values occurring during the later half of the light period (15.5 +/- 1.0 vs 10.7 +/- 0.9 ng/ml, mean +/- SE, light versus dark, respectively). Food deprivation (5 days) led to elevated levels of plasma hGH (11.0 +/- 0.7 vs 32.0 +/- 4.2 ng/ml, preversus post-fast, respectively) accompanied by weight loss (49.5 +/- 0.8 vs 34.3 +/- 0.7 g), and hypoglycemia (7.8 +/- 0.2 vs 5.0 +/- 0.3 mM); glucose administration (5% drinking solution ad libitum) blocked the changes in levels of plasma hGH (12.2 +/- 1.1 vs 13.8 +/- 0.8 ng/ml) and plasma glucose (7.4 +/- 0.3 vs 7.9 +/- 0.5 mM), although the animals still sustained significant weight loss (44.9 +/- 1.6 vs 35.2 +/- 1.1 g). Vigorous exercise (swimming, 4 hr) produced a small but significant increase in plasma hGH, 12.1 +/- 1.1 ng/ml (1 hr pre-swim) vs 16.7 +/- 0.6 ng/ml (immediately post-swim). These findings indicate that the mMT-I/hGH transgene is responsive to the physiologic status of the host animal. Taken together with information regarding the heterologous components of the fusion gene, these data are consistent with the view that the hGH (structural) sequence may play a role in the response to stress.  相似文献   

7.
8.
Ovarian follicle apoptosis in bovine growth hormone transgenic mice   总被引:8,自引:0,他引:8  
Growth hormone directly or via insulin like-growth factor-I has been shown to inhibit preovulatory follicle apoptosis, which is the underlying mechanism of follicular atresia. We studied the levels of apoptosis in the ovaries of transgenic mice expressing bovine growth hormone. Female bovine growth hormone transgenic mice (n = 10) and nontransgenic litter mates (n = 8) were killed at early proestrus. Ovaries were collected, sectioned, and processed using a nonradioactive in situ method for apoptosis detection. Follicles were classified and counted on the basis of size and level of apoptosis. Our results demonstrate that the percentage of ovarian follicles containing apoptotic cells was lower in transgenic versus normal mice (30% vs. 46%; P < 0.05). The percentage of follicles undergoing heavy apoptosis was lower (P < 0.05) in transgenic versus control animals in preovulatory and early antral follicles, but it was not different in preantral follicles. The percentage of healthy preovulatory follicles was also higher in transgenic versus normal mice (7.4% vs. 4.3%; P < 0.05). These results indicate that growth hormone overexpression in transgenic mice significantly decreases follicle apoptosis, and thus atresia in the mouse ovary, therefore leading to increased propensity for ovulation in these animals.  相似文献   

9.
Homoplasy is a ubiquitous phenomenon in phylogenetic investigations, but it is rarely investigated on its own. As a case study in the pattern and basis of homoplasy in primates, the atelid postcranium is discussed here. Characters available from Ford's ([1986] in Erwin J, Swindler DR, eds: Comparative Primate Biology I: Systematics, Evolution, and Anatomy (New York: Alan R. Liss), p 73-135; [1994] in Fleagle JG, Kay RF, eds: Anthropoid Origins (New York: Plenum Press), p 595-674) analyses of New World monkeys are mapped onto alternative phylogenetic trees for the family Atelidae to contrast patterns of character evolution and to develop explanatory hypotheses for differences in the trees. In an unrooted phylogenetic network, pitheciines do not group together because those pitheciines that routinely adopt hind limb suspensory postures (Chiropotes, Cacajao) share traits with atelines. Ford's (1986) work on phylogeny has shown that these traits are homoplastic and also identified potential synapomorphies of a clade comprised of modern pitheciins and atelines. However, following that work, congruence between studies of craniodental and molecular data suggested a still broader definition of atelids (including Callicebus and Cebupithecia), and in this case only one trait may define atelids, and several traits arise in parallel. The homoplastic characters in this phylogeny suggest that the phylogenetic signal in this set of postcranial data is overwhelmed by parallel adaptations to the use of climbing behaviors in all of Ford's atelids and suspensory postures in a more restricted set of taxa. These parallelisms probably indicate a bias of selective pressures in the South American environment, especially given the frequent, independent evolution of suspensory mammals there. This highlights the fact that homoplasy can be a dominant source of similarity in data partitions strongly influenced by a particular behavioral regime, in this case positional behavior.  相似文献   

10.
The in vivo role of epidermal growth factor (EGF) is not well defined even though its effects on culture cells were well studied. To understand the developmental, physiological, and pathological roles of EGF, we have generated transgenic mice widely expressing human EGF with the use of the beta-actin promoter. EGF and transforming growth factor alpha (TGFalpha) bind with equal affinity to the EGF receptor, a transmembrane tyrosine kinase, to trigger various biological responses. EGF and TGFalpha signaling are implicated in the development of the reproductive system. EGF also plays a physiological role in reproduction. Removal of the salivary gland in rodents, which reduces circulating EGF, reduces spermatogenesis, which can be corrected by EGF replacement. Here we show that in our transgenic males, only few post-meiosis II gametes were found, and the mice were sterile. This resembles a common cause of infertility in humans. Furthermore, the transgenic males had reduced serum testosterone. Our findings contrast the previous report on transgenic mice overexpressing TGFalpha in testis, which showed normal spermatogenesis. These data suggest that EGF is the active ligand for EGF receptor reported in germ cells, and proper EGF expression is important for completion of spermatogenesis.  相似文献   

11.
12.
Pharmacokinetics of radioiodinated human growth hormone (hGH) and ovine growth hormone (oGH) were studied in normal mice and in transgenic mice carrying the bovine growth hormone (bGH) gene fused to phosphoenolpyruvate carboxykinase promoter/regulator (PEPCK-bGH). Multiexponential plasma decay curves were obtained in both normal and transgenic mice after a125I-oGH injection and pharmacokinetic parameters were estimated by fitting blood concentration data to a three compartment model. The half-life for the rapid compartment was shorter in transgenic than in normal mice (t1/2:1.2±0.3 vs. 2.2±0.5 min). The slow compartment had a t1/2 of 160±23 min for transgenic and 70±8 min for normal mice while the middle compartment had a t1/2 of approximately 10 min for both groups of mice. The mean residence times were 167±24 and 55±5 min for transgenic and normal mice, respectively. Specific liver uptake of radioactivity after injection of125I-oGH or125I-hGH was found in both groups of animals. Specificity studies indicated that, similarly to normal mice, livers of transgenic mice possess a mixed population of somatotropic and lactogenic receptors. Uptake of labelled hGH by the liver was dose-dependent and the doses that prevented 50% of liver uptake (ED50%) were 8 and 165 g per 50 g body weight for normal and transgenic mice, respectively. Thesein vivo results confirm and extend previousin vitro findings that a life-long excess of bGH increases hepatic somatotropic and lactogenic receptors. Since elevation in growth hormone (GH) receptors was reported to be associated with an increase in GH binding protein (GHBP), we suspect that both the increase in the mean residence time and the reduction in specific uptake of GH in the livers of transgenic mice may be the result of an increase in GHBP levels.  相似文献   

13.
One of the primary goals of traditional livestock breeding is to improve growth rate and optimise body size. Growth rate can be significantly increased by integrating a growth hormone (GH) transgene under the control of a ubiquitous promoter, but while such animals do demonstrate increased growth there are also serious deleterious side-effects to the animals health. Here we report the generation and initial characterization of transgenic mice that carried a porcine BAC encoding the porcine GH gene. We show that GH expression is restricted specifically to the pituitary, is associated with elevated IGF-1 levels, and results in growth enhancement. No negative effects to the health of the transgenic animals were detected. This initial characterisation supports the use of BAC pGH transgene in livestock studies.  相似文献   

14.
Transgenic mice overexpressing human transforming growth factor-alpha (TGF-alpha) develop emphysema and fibrosis during postnatal alveologenesis. To assess dose-related pulmonary alterations, four distinct transgenic lines expressing different amounts of TGF-alpha in the distal lung under control of the surfactant protein C (SP-C) promoter were characterized. Mean lung homogenate TGF-alpha levels ranged from 388 +/- 40 pg/ml in the lowest expressing line to 1,247 +/- 33 pg/ml in the highest expressing line. Histological assessment demonstrated progressive alveolar airspace size changes that were more severe in the higher expressing TGF-alpha lines. Pleural and parenchymal fibrosis were only detected in the highest expressing line (line 28), and increasing terminal airspace area was associated with increasing TGF-alpha expression. Hysteresis on pressure-volume curves was significantly reduced in line 28 mice compared with other lines of mice. There were no differences in bronchoalveolar lavage fluid cell count or differential that would indicate any evidence of lung inflammation among all transgenic lines. Proliferating cells were increased in line 28 without alterations of numbers of type II cells. We conclude that TGF-alpha lung remodeling in transgenic mice is dose dependent and is independent of pulmonary inflammation.  相似文献   

15.
The results of experiments on the transfer of bovine gene for growth hormone into mice and rabbits are presented. The gene was transferred by the technique of microinjection into the zygote. In all cases transgene in rabbits occurred to be changed. In two transgenic mice the bovine growth hormone gene represented some tandem arranged copies. One of the mice had accelerated growth. This phenotypic changes is found to be inheritable.  相似文献   

16.
17.
To characterize long-term actions and interactions of growth hormone (GH) and insulin-like growth factor-II (IGF-II) on postnatal body and organ growth, hemizygous phosphoenolpyruvate carboxykinase (PEPCK)-human IGF-II transgenic mice were crossed with hemizygous PEPCK-bovine GH transgenic mice. The latter are characterized by two-fold increased serum levels of IGF-I and exhibit markedly increased body, skeletal and organ growth. Four different genetic groups were obtained: mice harbouring the IGF-II transgene (I), the bGH transgene (B), or both transgenes (IB), and non- transgenic controls (C). These groups of mice have previously been studied for circulating IGF-I levels (Wolf et al., 1995a), whereas the present study deals with body and organ growth. Growth curves (week 3 to 12) were estimated by regression with linear and quadratic components of age on body weight and exhibited significantly (p < 0.001) greater linear coefficients in B and IB than in I and C mice. The linear coefficients of male I and C mice were significantly (p < 0.001) greater than those of their female counterparts, whereas this sex-related difference was absent in the bGH transgenic groups. The weights of internal organs as well as the weights of abdominal fat, skin and carcass were recorded from 3.5- to 8- month-old mice. In addition, organ weight-to-body weight-ratios (relative organ weights) were calculated. Except for the weight of abdominal fat, absolute organ weights were as a rule significantly greater in B and IB than in I and C mice. IGF-II overproduction as a tendency increased the weights of kidneys, adrenal glands, pancreas and uterus both in the absence and presence of the bGH transgene. Analysis of relative organ weights demonstrated significant (p < 0.05) effects of elevated IGF- II on the relative growth of kidneys (males and females) and adrenal glands (females), confirming our previous report on organ growth of PEPCK-IGF-II transgenic mice. In females, IGF-II and GH overproduction were additive in stimulating the growth of spleen and uterus, providing evidence for tissue-specific postnatal growth promoting effects by IGF-II in the presence of elevated IGF-I  相似文献   

18.
Accumulation of the amyloid-beta peptide (Abeta) in the brain is crucial for development of Alzheimer's disease. Expression of transforming growth factor-beta1 (TGF-beta1), an immunosuppressive cytokine, has been correlated in vivo with Abeta accumulation in transgenic mice and recently with Abeta clearance by activated microglia. Here, we demonstrate that TGF-beta1 drives the production of Abeta40/42 by astrocytes leading to Abeta production in TGF-beta1 transgenic mice. First, TGF-beta1 induces the overexpression of the amyloid precursor protein (APP) in astrocytes but not in neurons, involving a highly conserved TGF-beta1-responsive element in the 5'-untranslated region (+54/+74) of the APP promoter. Second, we demonstrated an increased release of soluble APP-beta which led to TGF-beta1-induced Abeta generation in both murine and human astrocytes. These results demonstrate that TGF-beta1 potentiates Abeta production in human astrocytes and may enhance the formation of plaques burden in the brain of Alzheimer's disease patients.  相似文献   

19.
Insulin-like growth factor 1 (IGF-1) mediates many of the actions of growth hormone. Overexpression of IGF-1 was reported to have endocrine and paracrine/autocrine effects on somatic growth in transgenic mice. To study the paracrine/autocrine effects of IGF-1 in mammary gland, transgenic mice were produced by pronuclear microinjection of a construct containing a bovine alpha-lactalbumin (alpha-LA) promoter linked to an ovine IGF-1 cNDA. This alpha-LA promoter has previously been shown to direct expression of a human factor VIII gene specifically to the mammary gland of transgenic mice. Three transgenic mouse lines were established as a result of microinjection of 398 embryos. Transgene expression was found in mammary gland at day 1 of lactation from these three lines. Progeny test were carried out by mating two transgenic males/one transgenic female to two nontransgenic females/one nontransgenic male. Mice from one line (line 1225) were all nonexpressors and the other (line 1372) failed to produce offspring. Milk yield was analyzed in the line 1137 that produced 10 mice, of which three were transgenic females and three nontransgenic females. All of the three transgenic females showed integration of the transgene and expressed transgene IGF-1 mRNA in the mammary gland. Milk yields from days 5, 10, and 15 of lactation were significant greater in transgenic expressors than in their nontransgenic littermates. Specifically, there is 17.9% increase in total milk yield from these three days for transgenics compared with nontransgenics. These results demonstrate that local overexpression of IGF-1 in transgenic mice is capable to stimulating milk yield during the first lactation.  相似文献   

20.
Akt/protein kinase B promotes organ growth in transgenic mice   总被引:24,自引:0,他引:24       下载免费PDF全文
One of the least-understood areas in biology is the determination of the size of animals and their organs. In Drosophila, components of the insulin receptor phosphoinositide 3-kinase (PI3K) pathway determine body, organ, and cell size. Several biochemical studies have suggested that Akt/protein kinase B is one of the important downstream targets of PI3K. To examine the role of Akt in the regulation of organ size in mammals, we have generated and characterized transgenic mice expressing constitutively active Akt (caAkt) or kinase-deficient Akt (kdAkt) specifically in the heart. The heart weight of caAkt transgenic mice was increased 2.0-fold compared with that of nontransgenic mice. The increase in heart size was associated with a comparable increase in myocyte cell size in caAkt mice. The kdAkt mutant protein attenuated the constitutively active PI3K-induced overgrowth of the heart, and the caAkt mutant protein circumvented cardiac growth retardation induced by a kinase-deficient PI3K mutant protein. Rapamycin attenuated caAkt-induced overgrowth of the heart, suggesting that the mammalian target of rapamycin (mTOR) or effectors of mTOR mediated caAkt-induced heart growth. In conclusion, Akt is sufficient to induce a marked increase in heart size and is likely to be one of the effectors of the PI3K pathway in mediating heart growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号