首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myocardial contractility and Ca2+-pump function of sarcoplasmic reticulum (SR) were studied on hearts of untreated, thyroidectomized and thyroxine-treated rats. In hypothyroid rats the contractile force, the maximum velocity of tension development and relaxation significantly decreased (by 73.2%, 68.2%; and 67.8%, respectively), while the time to peak tension was prolonged (by 25.9%) as compared with the control group. In hyperthyroidism opposite changes were found. Since the transport of calcium opposite changes were found. Since the transport of calcium by SR plays an important role in controlling contraction and, first of all, relaxation of muscle, function of the sarcoplasmic reticulum was also investigated under the above experimental conditions. In thyroidectomized rats the rate of Ca2+-uptake and Ca2+-activated ATPase activity of SR significantly decreased (by 31.7% and 61.0%, respectively), while Ca2+-binding remained unchanged. After thyroxine treatment both the Ca2+-uptake and binding capacity of SR were even decreased (by 25.6% and 12.9%, respectively), in spite of an increase in Ca2+-activated ATPase activity (by 67.3%). These changes in Ca2+ transport function of cardiac SR may only partially be responsible for the abnormalities in contraction and relaxation observed in hearts from hypo- and hyperthyroid rats.  相似文献   

2.
The sarco/endoplasmic reticulum (SR) Ca(2+)-ATPase SERCA2a has a key role in controlling cardiac contraction and relaxation. In hypothyroidism, decreased expression of the thyroid hormone (TH)-responsive SERCA2 gene contributes to slowed SR Ca(2+) reuptake and relaxation. We investigated whether cardiac expression of a TH-insensitive SERCA2a cDNA minigene can rescue SR Ca(2+) handling and contractile function in female SERCA2a-transgenic rats (TG) with experimental hypothyroidism. Wild-type rats (WT) and TG were rendered hypothyroid by 6-N-propyl-2-thiouracil treatment for 6 wk; control rats received no treatment. In vivo measured left ventricular (LV) hemodynamic parameters were compared with SERCA2a expression and function in LV tissue. Hypothyroidism decreased LV peak systolic pressure, dP/dt(max), and dP/dt(min) in both WT and TG. However, loss of function was less in TG. Thus slowed relaxation in hypothyroidism was found to be 1.5-fold faster in TG compared with WT (P < 0.05). In parallel, a 1.4-fold higher V(max) value of homogenate SR Ca(2+) uptake was observed in hypothyroid TG (P < 0.05 vs. hypothyroid WT), and the hypothyroidism-caused decline of LV SERCA2a mRNA expression in TG by -24% was markedly less than the decrease of -49% in WT (P < 0.05). A linear relationship was observed between the SERCA2a/PLB mRNA ratio values and the V(max) values of SR Ca(2+) uptake when the respective data of all experimental groups were plotted together (r = 0.90). The data show that expression of the TH-insensitive SERCA2a minigene compensates for loss of expressional activity of the TH-responsive native SERCA2a gene in the female hypothyroid rat heart. However, SR Ca(2+) uptake and in vivo heart function were only partially rescued.  相似文献   

3.
Developmental changes in cardiac sarcoplasmic reticulum in sheep   总被引:4,自引:0,他引:4  
Physiologic studies suggest that the myocardium from fetal and newborn sheep functions at a higher contractile state with decreased contractile reserve when compared to the myocardium of adult sheep. To investigate the role of Ca2+ transport by the sarcoplasmic reticulum (SR) in this phenomenon, we studied functional properties and protein composition of cardiac SR vesicles isolated from fetal and maternal sheep. Active accumulation of Ca2+ and the density of the Ca2+ pump protein were decreased 60% (p less than 0.01) in fetal SR vesicles; however Ca2+-dependent ATPase activity was decreased only 30% (p less than 0.01). This decreased difference in Ca2+-dependent ATPase activities was accounted for by the higher turnover number measured for the Ca2+ pump of fetal SR vesicles (1.6-fold increased, p less than 0.01). Ryanodine, an alkaloid which blocks Ca2+ efflux from cardiac SR vesicles, stimulated Ca2+ uptake more effectively in fetal SR vesicles, suggesting that these vesicles had a higher passive Ca2+ permeability during conditions of active Ca2+ transport. Protein compositional studies showed that the content of phospholamban was decreased in fetal SR vesicles and was correlated with the decrease in the density of Ca2+ pumps. In contrast, the content of calsequestrin and the density of [3H]nitrendipine-binding sites were increased approximately 2-fold in fetal SR vesicles. These functional and compositional differences between SR vesicles isolated from fetal and maternal sheep may indicate that there is relatively more junctional SR in fetal hearts. Since the SR regulates muscle contraction by modulating intracellular Ca2+ concentration, it is possible that developmental alterations in cardiac SR may contribute to the decreased myocardial contractile reserve noted in fetal sheep.  相似文献   

4.
Studies were conducted to examine the effects of chronic adrenalectomy (Adx) and adrenalectomy plus glucocorticoid replacement therapy on rat cardiac contractile protein ATPase activities. The Ca2+-dependent Mg-ATPase activity of myofibrils isolated from rat ventricles 3 weeks postadrenalectomy (Adx) was significantly decreased at all pCa2+ concentrations (P less than 0.01), compared to sham-operated (SO) rats. Similarly, Ca2+-, K+-EDTA, and actin-activated myosin ATPase activities of Adx rat hearts were markedly decreased below that of SO rats (P less than 0.01). Dexamethasone administration to Adx rats prevented the decrease of Ca2+- and K+-ATPase activities of myosin, but not of myofibrillar Ca2+-dependent Mg-ATPase or actin-activated myosin Mg-ATPase activities. These studies suggest that glucocorticoid insufficiency induced by adrenalectomy results in altered myocardial contractile protein ATPase activity which may underlie impaired cardiac performance.  相似文献   

5.
The effects of gramicidin S (GS), an antibiotic, on the rat heart membrane ATPases and contractile activity of the right ventricle strips were investigated. GS inhibited sarcolemmal Ca2+-stimulated ATPase (IC50 = 3 microM), Ca2+/Mg2+ ATPase which is activated by millimolar Ca2+ or Mg2+ (IC50 = 3.4 microM), and sarcoplasmic reticulum Ca2+-stimulated ATPase (IC50 = 6 microM). The type of inhibition for the sarcolemmal Ca2+/Mg2+ ATPase by GS was apparently uncompetitive, while that for Ca2+-stimulated ATPases in sarcolemma or sarcoplasmic reticulum was of mixed type. Other ATPases, including mitochondrial ATPase, sarcolemmal Na+-K+ ATPase, and myofibrillar ATPase, were not inhibited by this agent. GS also decreased the rat right ventricle maximum force development (half-maximal inhibitory concentration was 2-4 microM), maximum velocity of contraction, and maximum velocity of relaxation. The resting tension was increased by GS to over 200%. The contractile actions of GS were mostly irreversible upon washing the muscle 3 times over a 10-min period. Decreased Ca2+, Mg2+, Na+, K+ concentrations in the perfusate increased the effects of GS. These findings showed that GS was a potent inhibitor of divalent cation ATPases of heart sarcolemma and sarcoplasmic reticulum and it is suggested that these membrane effects may explain the cardiodepressant action of this agent.  相似文献   

6.
The effect of Na-K adenosinetriphosphatase (ATPase) on relaxation induced by isoproterenol, prostaglandin E2, sodium nitroprusside, and forskolin, a specific stimulant of adenylate cyclase, was investigated in canine tracheal smooth muscle strips. Relaxation in response to isoproterenol, prostaglandin E2, and forskolin was significantly decreased after inhibition of the Na-K ATPase by ouabain or a potassium-free medium, but relaxation to sodium nitroprusside was not affected. Relaxation to isoproterenol was greater in muscles contracted by 5-hydroxytryptamine than in those contracted by acetylcholine. The stimulation of Na-K ATPase activity with potassium also caused differences in relaxation between tissues contracted with 5-hydroxytryptamine or acetylcholine. Relaxation caused by isoproterenol by activation of the Na-K-ATPase was also decreased by the Ca2+-channel antagonists, verapamil and diltiazem. The results suggest 1) Na-K ATPase activity modulates relaxation caused by isoproterenol, prostaglandin E2, and forskolin in canine tracheal smooth muscle, 2) isoproterenol or activation of the Na-K ATPase may cause relaxation partly by reducing Ca2+ influx through potential-dependent Ca2+ channels, and 3) the differences in the inhibitory effects of isoproterenol and Na-K ATPase activity on muscles contracted by acetylcholine and 5-hydroxytryptamine could be due to differences between these contractile agents in their dependence on extracellular Ca2+ for activation.  相似文献   

7.
The effect of thapsigargin on the activity of various enzymes involved in the Ca(2+)-homeostasis of cardiac muscle and on the contractile activity of isolated cardiomyocytes was investigated. Thapsigargin was found to be a potent and specific inhibitor of the Ca(2+)-pump of striated muscle SR (IC50 in the low nanomolar range). A strong reduction of the Vmax of the Ca(2+)-pump was observed while the Km (Ca2+) was only slightly affected. Reduction of the Vmax was caused by the inability of the ATPase to form the Ca(2+)-dependent acylphosphate intermediate. Thapsigargin did not change the passive permeability characteristics nor the function of the Ca(2+)-release channels of the cisternal compartments of the SR. In addition, no significant effects of thapsigargin on other ATPases, such as the Ca(2+)-ATPase and the Na+/K(+)-ATPase of the plasma membrane as well as the actomyosin ATPase could be detected. The contractile activity of paced adult rat cardiomyocytes was completely abolished by 300 nM thapsigargin. At lower concentrations the drug prolonged considerably the contraction-relaxation cycle, in particular the relaxation phase. The intracellular Ca(2+)-transients elicited by electrical stimulation (as measured by the changes in Fluo-3 fluorescence) decreased in parallel and the time needed to lower free Ca2+ down to the resting level increased. In conclusion, the results indicate that selective inhibition of the Ca(2+)-pump of the SR by thapsigargin accounts for the functional degeneration of myocytes treated with the drug.  相似文献   

8.
GM1对肌质网Ca~(2+)-ATPase活性及膜流动性的影响   总被引:2,自引:0,他引:2  
外源性GM1对肌质网Ca2+-ATPase的水解及转运活性都有明显的抑制作用.在GM1浓度为0~8nmol/mg蛋白质范围内抑制作用具有浓度依赖性.当GM1浓度达到8nmol/mg蛋白质时,酶活性受到最大抑制,此时水解活性降低51%,转运活性降低49%.荧光偏振测定结果表明:GM1参入后,肌质网膜流动性降低.  相似文献   

9.
Isolated rat hearts perfused with 100 microM hypochlorous acid (HOCl), a powerful oxidant produced by activated neutrophils, exhibited progressive impairment of contractile performance suggestive of a cytosolic Ca2+ overload (increased left ventricular end-diastolic pressure, increased aortic root perfusion pressure, and depressed pulse pressure). Sarcoplasmic reticulum (SR) enriched microsomal preparations isolated from HOCl-perfused hearts showed a significant decline, when compared with control hearts, in both Ca2+ ATPase activity (123 +/- 40 vs. 473 +/- 46 nmol Pi.mg-1 protein.min-1) and Ca2+ uptake (12 +/- 5 vs. 46 +/- 4 nmol Ca2+.mg-1 protein.min-1). The sulfhydryl content in Ca2+ ATPase and other proteins, as determined by [14C]iodoacetamide binding, was also progressively depleted in HOCl-perfused hearts. Perfusion of the HOCl-treated hearts with dithiothreitol (DTT), a disulfide reducing agent, resulted in a time-dependent attenuation, and eventual partial reversal, of the dysfunction in both contractility and SR Ca2+ ATPase activity. Protein thiol levels were concomitantly restored to near control values. The data indicate that HOCl-induced contractile dysfunction in heart is related to the inactivation of the SR Ca2+ ATPase as a result of thiol oxidation and suggest that DTT is capable of reversing this dysfunction in situ by reducing the oxidized sulfhydryls in the Ca2+ ATPase.  相似文献   

10.
Corticosteroids are thought to be involved in the maintenance of normal myocardial function by mechanisms incompletely understood. This study investigated the potential therapeutic benefit of the synthetic glucocorticoid, dexamethasone, in reversing age-associated deterioration in cardiac contractile performance and Ca2+ sequestration function of the sarcoplasmic reticulum. Dexamethasone was administered to senescent (26-28-month old), male Fischer 344 rats at a rate of 4 microg/h for 5 days via subcutaneously implanted osmotic mini pumps. Control rats received vehicle solution in similar manner. Contractile performance was assessed in Langendorff-perfused, electrically paced hearts from control and dexamethasone-treated rats. The results obtained showed that dexamethasone-treatment of aged rats resulted in significant improvement in myocardial contractile performance as evidenced by (i) increase (approximately 30-60%) in developed peak tension at a wide range of beating frequencies (2-6 Hz), (ii) unaltered time to peak tension, and (iii) decrease (approximately 8-15%) in time to half-relaxation. Also, SR isolated from dexamethasone-treated rats displayed approximately 2-fold higher rates of ATP-energized Ca2+ uptake compared to SR from control rats. The deficits in contractile performance of the senescent heart (prolonged contraction duration and diminished contractile force) are reversible through a glucocorticoid-mediated improvement in SR Ca2+ pump function.  相似文献   

11.
12.
Rats were trained with two running protocols previously demonstrated to result in enhanced cardiac performance. Control groups included free-eating sedentary animals and food-restricted animals in which the body weights were the same as the runners. Calcium binding by isolated sarcoplasmic reticulum (SR) was slightly but significantly increased in SR from runners at low but not high calcium concentrations at 15 s and 1 min. Calcium uptake in the presence of 1 mM oxalate was increased in SR from runners. Actomyosin ATPase activity was increased by 10% (P less than 0.001) with one running protocol but not with the other. Myosin Ca2+ ATPase activity and actin-activated ATPase activity were also slightly increased in hearts of runners. In food-restricted cardiac actomyosin ATPase was significantly decreased. Actomyosin ATPase activity was found to be normal in hearts of sedentary animals subjected to water immersion without exercise. Therefore, physical training of rats by running, which produces a cardiac mechanical advantage similar to training by swimming, is not accompanied by cardiac biochemical changes of the same magnitude as in the hearts of swimmers.  相似文献   

13.
This study investigated the adaptations of skeletal muscle sarcoplasmic reticulum (SR) Ca2+ uptake, relaxation, and fiber types in young (YW) and elderly women (EW) to high-resistance training. Seventeen YW (18-32 yr) and 11 EW (64-79 yr) were assessed for 1) electrically evoked relaxation time and rate of the quadriceps femoris; and 2) maximal rates of SR Ca2+ uptake and Ca2+-ATPase activity and relative fiber-type areas, analyzed from muscle biopsies of the vastus lateralis. EW had significantly slower relaxation rates and times, decreased SR Ca2+ uptake and Ca2+-ATPase activity, and a larger relative type I fiber area than did YW. A subgroup of 9 young (YWT) and 10 elderly women (EWT) performed 12 wk of high-resistance training (8 repetition maximum) of the quadriceps and underwent identical testing procedures pre- and posttraining. EWT significantly increased their SR Ca2+ uptake and Ca2+-ATPase activity in response to training but showed no alterations in speed of relaxation or relative fiber-type areas. In YWT none of the variables was altered after resistance training. These findings suggest that 1) a reduced SR Ca2+ uptake in skeletal muscle of elderly women was partially reversed with resistance training and 2) SR Ca2+ uptake in the vastus lateralis was not the rate-limiting mechanism for the slowing of relaxation measured from electrically evoked quadriceps muscle of elderly women.  相似文献   

14.
Aging is associated with a slowing of skeletal muscle contractile properties, including a decreased rate of relaxation. In rats, the age-related decrease in the maximal rate of relaxation is reversed after 4-wk administration with the beta2-adrenoceptor agonist (beta2-agonist) fenoterol. Given the critical role of the sarcoplasmic reticulum (SR) in regulating intracellular Ca2+ transients and ultimately the time course of muscle contraction and relaxation, we tested the hypothesis that the mechanisms of action of fenoterol are mediated by alterations in SR proteins. Sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) kinetic properties were assessed in muscle homogenates and enriched SR membranes isolated from the red (RG) and white (WG) portions of the gastrocnemius muscle in adult (16 mo) and aged (28 mo) F344 rats that had been administered fenoterol for 4 wk (1.4 mg/kg/day ip, in saline) or vehicle only. Aging was associated with a 29% decrease in the maximal activity (Vmax) of SERCA in the RG but not in the WG muscles. Fenoterol treatment increased the Vmax of SERCA and SERCA1 protein levels in RG and WG. In the RG, fenoterol administration reversed an age-related selective nitration of the SERCA2a isoform. Our findings demonstrate that the mechanisms underlying age-related changes in contractile properties are fiber type dependent, whereas the effects of fenoterol administration are independent of age and fiber type.  相似文献   

15.
Thyrotoxicosis in rabbits was induced by prolonged intraperitoneal injection of L-thyroxin. The development of thyroxicosis was assoiated with a decreased Ca2+ accumulation rate by sarcoplasmic reticulum (SR) fragments and a lowered Ca2+ dependent ATPase activity. As compared to the analogous parameters in normal animals. Ca2+ accumulation rate and ATPase activity of thyrotoxicosis animals decreased by 60 and 25%, respectively. The changes in the specific parameters of SR were also observed during incubation of normal SR samples in the medium containing thyroxin (10-5 M). The changes seen in SR functioning in thyrotoxicosis animals are likely to be related to structural rearrangements of lipoprotein surroundings of Ca-ATPase.  相似文献   

16.
Although dilated cardiomyopathy (DCM) is known to result in cardiac contractile dysfunction, the underlying mechanisms are unclear. The sarcoplasmic reticulum (SR) is the main regulator of intracellular Ca2+ required for cardiac contraction and relaxation. We therefore hypothesized that abnormalities in both SR function and regulation will contribute to cardiac contractile dysfunction of the J2N-k cardiomyopathic hamster, an appropriate model of DCM. Echocardiographic assessment indicated contractile dysfunction, because the ejection fraction, fractional shortening, cardiac output, and heart rate were all significantly reduced in J2N-k hamsters compared with controls. Depressed cardiac function was associated with decreased cardiac SR Ca2+ uptake in the cardiomyopathic hamsters. Reduced SR Ca2+ uptake could be further linked to a decrease in the expression of the SR Ca2+-ATPase and cAMP-dependent protein kinase (PKA)-mediated phospholamban (PLB) phosphorylation at serine-16. Depressed PLB phosphorylation was paralleled with a reduction in the activity of SR-associated PKA, as well as an elevation in protein phosphatase activity in J2N-k hamster. The results of this study suggest that an alteration in SR function and its regulation contribute to cardiac contractile dysfunction in the J2N-k cardiomyopathic hamster. sarcoplasmic reticulum; cardiomyopathy; cAMP-dependent protein kinase; Ca2+/calmodulin-dependent protein kinase; sarco(endo)plasmic reticulum ATPase; phospholamban  相似文献   

17.
Transgenic (TG) mice expressing a Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitory peptide targeted to the cardiac myocyte longitudinal sarcoplasmic reticulum (LSR) display reduced phospholamban phosphorylation at Thr17 and develop dilated myopathy when stressed by gestation and parturition (Ji Y, Li B, Reed TD, Lorenz JN, Kaetzel MA, and Dedman JR. J Biol Chem 278: 25063-25071, 2003). In the present study, these animals (TG) are evaluated for the effect of inhibition of sarcoplasmic reticulum (SR) CaMKII activity on the contractile characteristics and Ca2+ cycling of myocytes. Analysis of isolated work-performing hearts demonstrated moderate decreases in the maximal rates of contraction and relaxation (+/-dP/dt) in TG mice. The response of the TG hearts to increases in load is reduced. The TG hearts respond to isoproterenol (Iso) in a dose-dependent manner; the contractile properties were reduced in parallel to wild-type hearts. Assessment of isolated cardiomyocytes from TG mice revealed 40-47% decrease in the maximal rates of myocyte shortening and relengthening under both basal and Iso-stimulated conditions. Although twitch Ca2+ transient amplitudes were not significantly altered, the rate of twitch intracellular Ca2+ concentration decline was reduced by approximately 47% in TG myocytes, indicating decreased SR Ca2+ uptake function. Caffeine-induced Ca2+ transients indicated unaltered SR Ca2+ content and Na+/Ca2+ exchange function. Phosphorylation assays revealed an approximately 30% decrease in the phosphorylation of ryanodine receptor Ser2809. Iso stimulation increased the phosphorylation of both phospholamban Ser16 and the ryanodine receptor Ser2809 but not phospholamban Thr17 in TG mice. This study demonstrates that inhibition of SR CaMKII activity at the LSR results in alterations in cardiac contractility and Ca2+ handling in TG hearts.  相似文献   

18.
The effects of the thyroid state on oxidative damage, antioxidant capacity, susceptibility to in vitro oxidative stress and Ca(2+)-induced permeabilization of mitochondria from rat tissues (liver, heart, and gastrocnemious muscle) were examined. Hypothyroidism was induced by administering methimazole in drinking water for 15 d. Hyperthyroidism was elicited by a 10 d treatment of hypothyroid rats with triiodothyronine (10 micro g/100 g body weight). Mitochondrial levels of hydroperoxides and protein-bound carbonyls significantly decreased in hypothyroid tissues and were reported above euthroid values in hypothyroid rats after T(3) treatment. Mitochondrial vitamin E levels were not affected by changes of animal thyroid state. Mitochondrial Coenzyme Q9 levels decreased in liver and heart from hypothyroid rats and increased in all hyperthyroid tissues, while Coenzyme Q10 levels decreased in hypothyroid liver and increased in all hyperthyroid tissues. The antioxidant capacity of mitochondria was not significantly different in hypothyroid and euthyroid tissues, whereas it decreased in the hyperthyroid ones. Susceptibility to in vitro oxidative challenge decreased in mitochondria from hypothyroid tissues and increased in mitochondria from hyperthyroid tissues, while susceptibility to Ca(2+)-induced swelling decreased only in hypothyroid liver mitochondria and increased in mitochondria from all hyperthyroid tissues. The tissue-dependence of the mitochondrial susceptibility to stressful conditions in altered thyroid states can be explained by different thyroid hormone-induced changes in mitochondrial ROS production and relative amounts of mitochondrial hemoproteins and antioxidants. We suggest that susceptibilities to oxidants and Ca(2+)-induced swelling may have important implications for the thyroid hormone regulation of the turnover of proteins and whole mitochondria, respectively.  相似文献   

19.
This study investigated Ca2+ -cycling properties of sarcoplasmic reticulum (SR) in right ventricle (RV) and left ventricle (LV) of normal rat myocardium. Intracellular Ca2+ transients and contractile function were monitored in freshly isolated myocytes from RV and LV. SR in RV displayed nearly fourfold lower rates of ATP-energized Ca2+ uptake in vitro than SR of LV. The Ca2+ concentration required for half-maximal activation of Ca2+ transport was nearly twofold higher in SR of RV. The lower Ca2+ -sequestering activity of SR in RV was accompanied by a matching decrement in Ca2+ -induced phosphoenzyme formation during the catalytic cycle of the Ca2+ -pumping ATPase (SERCA2). Western immunoblot analysis showed that protein levels of Ca2+ -ATPase and its inhibitor phospholamban (PLN) were only approximately 15% lower in SR of RV than in SR of LV. Coimmunoprecipitation experiments revealed that PLN-bound, functionally inert Ca2+ -ATPase molecules in SR of RV greatly exceed (> 50%) that in SR of LV. Endogenous Ca2+/calmodulin-dependent protein kinase-mediated phosphorylation of SR substrates did not abolish the huge disparity in SR Ca2+ pump function between RV and LV. Intracellular Ca2+ transients, evoked by electrical field stimulation, were significantly prolonged in RV myocytes compared with LV myocytes, mainly because of slow decay of intracellular Ca2+ concentration. The slow decay of intracellular Ca2+ concentration in RV and consequent decrease in the speed of RV relaxation may promote temporal synchrony of the end of diastole in RV and LV. The preponderance of functionally silent SR Ca2+ pumps in RV reflects a higher diastolic reserve required to protect and maintain RV function in the face of a sudden rise in afterload or resistance in the pulmonary circulation.  相似文献   

20.
Effects of exercise of varying duration on sarcoplasmic reticulum function   总被引:5,自引:0,他引:5  
Sarcoplasmic reticulum (SR) Ca2+ uptake and Ca2+-Mg2+-ATPase activity were examined in muscle homogenates and the purified SR fraction of the superficial and deep fibers of the gastrocnemius and vastus muscles of the rat after treadmill runs of 20 or 45 min or to exhaustion (avg time to exhaustion 140 min). Vesicle intactness and cross-contamination of isolated SR were estimated using a calcium ionophore and mitochondrial and sarcolemmal marker enzymes, respectively. Present findings confirm previously reported fiber-type specific depression in the initial rate and maximum capacity of Ca2+ uptake and altered ATPase activity after exercise. Depression of the Ca2+-stimulated ATPase activity of the enzyme was evident after greater than or equal to 20 min of exercise in SR isolated from the deep fibers of these muscles. The lowered ATPase activity was followed by a depression in the initial rate of Ca2+ uptake in both muscle homogenates and isolated SR fractions after greater than or equal to 45 min of exercise. Maximum Ca2+ uptake capacity was lower in isolated SR only after exhaustive exercise. Ca2+ uptake and Ca2+-sensitive ATPase activity were not affected at any duration of exercise in SR isolated from superficial fibers of these muscles; however, the Mg2+-dependent ATPase activity was increased after 45 min and exhaustive exercise bouts. The alterations in SR function could not be attributed to disrupted vesicles or differential contamination in the SR from exercise groups and were reinforced by similar changes in Ca2+ uptake in crude muscle homogenates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号