首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescence, circular dichroism and sedimentation through cesium chloride gradient techniques were performed to study the physical properties of the binding of the bisbenzimidazole dye Hoechst 33258 (H33258) to natural DNAs and synthetic polynucleotides of defined repeating units. These studies show that Hoechst 33258 exhibits at least two modes of interaction with duplex DNA: (1) a strong base pair specific mode which requires at least 4 consecutive AT base pairs and (2) a weaker mode of binding which is significantly reduced in the presence of high salt (0.4 M NaCl) and exhibits no apparent base specificity. The H33258 binding was found to be sensitive to the substitutions in the minor groove elements of a series of synthetic polynucleotides supporting the model of H33258 binding in the minor groove of the DNA with AT rich sequences. Similar mode of binding was predicted in natural DNAs by methylation of dye-DNA complexes. Footprint analysis of the complex of dye to a pBR322 fragment also supports that a minimum of 4 consecutive AT base pairs are required for H33258 binding to DNA.  相似文献   

2.
Fluorescence spectra of Hoechst 33258 bound to rat thymocytes were measured by flow cytometry. At low dye concentrations (less than or equal to 2 micrograms/ml) the fluorescence maximum was situated at 460 nm irrespective of solvent composition. With higher dye concentrations the fluorescence maximum was shifted upwards, the intensity decreased and the width of the fluorescence peak increased. Linear combinations of a spectrum obtained at a low dye concentration (0.5 microgram/ml, type 1 binding) and one obtained at a high dye concentration (42.4 micrograms/ml, type 2 binding) failed to reproduce spectra measured at intermediate dye concentrations (0.15 M NaCl). Hence, Hoechst 33258 forms at least three different fluorescing complexes with DNA in chromatin. The shift in the fluorescence maximum of the Hoechst 33258/chromatin complex towards higher wavelengths decreased with ionic strength. 25% ethanol in the 0.15 M NaCl staining buffer reduced the wavelength shift at high dye concentrations, indicating that the strength of type 2 binding depends on DNA conformation in addition to ionic strength. The fluorescence spectrum was independent of whether DNA in chromatin was complexed with histones or not. However, histone-depleted thymocytes fluoresced more intensely than cells in which DNA was complexed with histones, the difference being greater at low concentrations of Hoechst 33258. Hence, type 2 binding to DNA in chromatin appears to be less restricted by histones than type 1 binding.  相似文献   

3.
T Stokke  H B Steen 《Cytometry》1986,7(3):227-234
The binding of Hoechst 33258 to rat thymocytes, human lymphocytes, and NHIK 3025 tissue culture cells was studied by measuring the fluorescence and light scattering of the cells as functions of dye concentration using flow cytometry. The results indicated that there were two different modes of binding of Hoechst 33258 to chromatin in situ at physiological pH. Type 1 binding, which dominated at total dye/phosphate ratios below 0.1 (0.15, M), was characterized by a binding constant of the order 10(7) M-1 and fluorescence with high quantum yield. Further binding of the dye resulted in a reduced blue/green fluorescence ratio, indicating that secondary sites were occupied. Binding at secondary sites above a certain density (0.1 less than or equal to bound dye/phosphate less than or equal to 0.2) induced strong quenching of fluorescence and precipitation of chromatin. Precipitation was quantitated by measuring the large-angle (greater than or equal to 15 degrees) light scattering of the cells above 400 nm, i.e., outside the Hoechst 33258/DNA absorption spectrum, as a function of dye concentration. In contrast, the light scattering at 365 nm, i.e., within the absorption spectrum of Hoechst 33258/DNA, was independent of the total dye/phosphate ratio. The coefficient of variation of the light-scattering (greater than or equal to 400 nm) histograms decreased with Hoechst 33258 concentration. Type 2 binding to histone-depleted chromatin was cooperative (Hill-coefficient approximately 2) and the apparent binding constant was 2-3 X 10(5) M-1 as determined from quenching and precipitation data.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The interaction of Hoechst 33258 with DNA has been examined to help clarify the mechanisms of banding. 1. In agreement with previous studies Hoechst fluorescence is enhanced to a greater degree in AT-rich compared to GC-rich DNA. 2. Hoechst causes an increase in the DNA Tm which is greater at the higher AT content of the DNA. 3. There is a decrease in extinction coefficient and shift in the adsorption spectra to a higher wavelength when Hoechst binds to DNA. 4. DNA is completely precipitated at a ratio of one dye molecular per base pair, and this precipitation is not affected by salt. 5. There is no increase in viscosity or change in the circular dichroism of DNA when bound to Hoechst. These findings suggest Hoechst does not bind to DNA by intercalation or by ionic interaction with the phosphate groups, but rather binds by an attachment to the outside of the double DNA helix by interacting with the base pairs. This type of binding allows greater sensitivity to the base composition than occurs with intercalating agents. In this respect its binding is similar to that of dibutyl proflavine (Muller et al., 1973).  相似文献   

5.
The interaction of the bisbenzimidazole dye 33258 Hoechst with DNA and chromatin is characterized by changes in absorption, fluorescence, and circular dichroism measurements. At low dye/phosphate ratios, dye binding is accompanied by intense fluorescence and circular dichroism and exhibits little sensitivity to ionic strength. At higher dye/phosphate ratios, additional dye binding can be detected by further changes in absorptivity. This secondary binding is suppressed by increasing the ionic strength. A-T rich DNA sequences enhance both dye binding and fluorescence quantum yield, while chromosomal proteins apparently exclude the dye from approximately half of the sites available with DNA. Fluorescence of the free dye is sensitive to pH and, below pH 8, to quenching by iodide ion. Substitution of 5-bromodeoxyuridine (BrdU) for thymidine in synthetic polynucleotides, DNA, or unfixed chromatin quenches the fluorescence of bound dye. This suppression of dye fluorescence permits optical detection of BrdU incorporation associated with DNA synthesis in cytological chromosome preparations. Quenching of 33258 Hoechst fluorescence by BrdU can be abolished by appropriate alterations in solvent conditions, thereby revealing changes in dye fluorescence of microscopic specimens specifically due to BrdU incorporation.  相似文献   

6.
DNA extracts from sediment and water samples are often contaminated with coextracted humic-like impurities. Estuarine humic substances and vascular plant extract were used to evaluate the effect of the presence of such impurities on DNA hybridization and quantification. The presence of humic substances and vascular plant extract interfered with the fluorometric measurement of DNA concentration using Hoechst dye H33258 and PicoGreen reagent. Quantification of DNA amended with humic substances (20-80 ng/microl) using the Hoechst dye assay was more reliable than with PicoGreen reagent. A simple procedure was developed to improve the accuracy for determining the DNA concentration in the presence of humic substances. In samples containing up to 80 ng/microl of humic acids, the fluorescence of the samples were measured twice: first without Hoechst dye to ascertain any fluorescence from impurities in the DNA sample, followed with Hoechst dye addition to obtain the total sample fluorescence. The fluorescence of the Hoechst dye-DNA complex was calculated by subtracting the fluorescence of the impurities from the fluorescence of the sample. Vascular plant extract and humic substances reduced the binding of DNA onto the nylon membrane. Low amounts (<2.0 microg) of humic substances derived from estuarine waters did not affect the binding of 100 ng of target DNA to nylon membranes. DNA samples containing 1.0 microg of humic substances performed well in DNA hybridizations with DIG-labeled oliogonucleotide and chromosomal probes. Therefore, we suggest that DNA samples containing low concentrations of humic substances (<20 ng/microl) could be used in quantitative membrane hybridization without further purification.  相似文献   

7.
It was found recently that Hoechst 33258, a dsDNA fluorescent dye used in cytological studies, is an efficient inhibitor of the interaction of TATA-box-binding protein with DNA, DNA topoisomerase I, and DNA helicases. In addition it proved to be a radioprotector. Biological activity of Hoechst 33258 may be associated with dsDNA complexes of not only monomeric, but also dimeric type. In this work, the Hoechst 33258 interaction with poly(dG-dC).poly(dG-dC) was studied using UV-vis and fluorescent spectroscopy, circular and flow-type linear dichroism. It was found that Hoechst 33258 formed with poly(dG-dC).poly(dG-dC) complexes of three types, namely, monomeric, dimeric, and, apparently, tetrameric, and their spectral properties were studied. Complexes of monomeric and dimeric types competed with distamycin A, a minor groove ligand, for binding to poly(dG-dC).poly(dG-dC). We proposed that Hoechst 33258 both monomers and dimers form complexes of the external type with poly(dG-dC).poly(dG-dC) from the side of the minor groove.  相似文献   

8.
Abstract

In the present work, we employed UV-VIS spectroscopy, fluorescence methods, and circular dichroism spectroscopy (CD) to study the interaction of dye Hoechst 33258, Hoechst 33342, and their derivatives to poly[d(AT)]·poly[d(AT)], poly(dA)·poly(dT), and DNA dodecamer with the sequence 5′-CGTATATATACG-3′. We identified three types of complexes formed by Hoechst 33258, Hoechst 33342, and methylproamine with DNA, corresponding to the binding of each drug in monomer, dimer, and tetramer forms. In a dimer complex, two dye molecules are sandwiched in the same place of the minor DNA groove. Our data show that Hoechst 33258, Hoechst 33342, and methylproamine also form complexes of the third type that reflects binding of dye associates (probably tetramers) to DNA. Substitution of a hydrogen atom in the ortho position of the phenyl ring by a methyl group has a little effect on binding of monomers to DNA. However it reduces strength of binding of tetramers to DNA. In contrast, a Hoechst derivative containing the ortho-isopropyl group in the phenyl ring exhibits a low affinity to poly(dA)·poly(dT) and poly[d(AT)]·poly[d(AT)] and binds to DNA only in the monomer form. This can be attributed to a sterical hindrance caused by the ortho-isopropyl group for side-by-side accommodation of two dye molecules in the minor groove. Our experiments show that mode of binding of Hoechst 33258 derivatives and their affinity for DNA depend on substituents in the ortho position of the phenyl ring of the dye molecule. A statistical mechanical treatment of binding of Hoechst 33258 and its derivatives to a polynucleotide lattice is described and used for determination of binding parameters of Hoechst 33258 and its derivatives to poly[d(AT)]·poly[d(AT)] and poly(dA)·poly(dT).  相似文献   

9.
A new asymmetric cyanine dye has been synthesised and its interaction with different DNA has been investigated. In this dye, BEBO, the structure of the known intercalating cyanine dye BO has been extended with a benzothiazole substituent. The resulting crescent-shape of the molecule is similar to that of the well-known minor groove binder Hoechst 33258. Indeed, comparative studies of BO illustrate a considerable change in binding mode induced by this structural modification. Linear and circular dichroism studies indicate that BEBO binds in the minor groove to [poly (dA-dT)](2), but that the binding to calf thymus DNA is heterogeneous, although still with a significant contribution of minor groove binding. Similar to other DNA binding asymmetric cyanine dyes, BEBO has a large increase in fluorescence intensity upon binding and a relatively large quantum yield when bound. The minor groove binding of BEBO to [poly (dA-dT)](2) affords roughly a 180-fold increase in intensity, which is larger than to that of the commonly used minor groove binding probes DAPI and Hoechst 33258.  相似文献   

10.
In an EDTA/Hoechst 33258 assay system, a linear increase in fluorescence with increase in cell number between 2 X 10(3) and 1 X 10(5) was obtained if a dye concentration of 800 ng/ml was used. For a given number of cells, the enhancement of fluorescence was found to be greater than that of a theoretically equivalent of DNA. A standard curve for the assay was derived by plotting enhancement of fluorescence against cell number. The effect of storage on the fluorescence of intact monolayers, cellular or commercial DNA, or dye-DNA complexes made it essential that the assay was carried out on fresh samples.  相似文献   

11.
The authors studied accumulation of the fluorescent probe Hoechst 33258 in leukemia P 388 sensitive (P 388/0) and resistant to doxorubicin (P 388/DOX) cells. It was shown that intensity of fluorescence of the dye increased after binding with nuclear DNA during 25 min for both lines of the cells. Intensity of fluorescence was 40% greater in sensitive than resistant cells. If Triton X-100 was added no difference between two lines of the cell was observed. When doxorubicin was added to the cells with dye, the intensity of fluorescence decreased. It was suggested to use Hoechst 33258 for assessment extent doxorubicin accumulation in nuclei of the cells.  相似文献   

12.
A rapid method for investigation of the interaction of DNA and electroactive ligands based on an electrochemical equation for irreversible processes is presented. The binding constant (K) and the size of binding site (s) are simultaneously obtained from the dependence of the current on the amount of added DNA in voltammetry. A non-intercalative binder (Hoechst 33258) and two DNA-intercalators (mitoxantrone (MXT) and actinomycin D (AMD)) were examined in experiments. It was found that the binding constant of Hoechst 33258, mitoxantrone and actinomycin D, were 2.1 x 10(8), 8.9 x 10(9) and 9.1 x 10(9) cm(3) mol(-1); and the size of their binding sites were 4, 3 and 8, respectively. The study provides a convenient and sensitive approach for estimating affinity parameters and outlining the interaction between DNA and electroactive targeting compounds.  相似文献   

13.
Equilibrium binding experiments using fluorescence and absorption techniques have been performed throughout a wide concentration range (1 nM to 30 microM) of the dye Hoechst 33258 and several DNAs. The most stable complexes found with calf thymus DNA, poly[d(A-T)], d(CCGGAATTCCGG), and d(CGCGAATTCGCG) all have dissociation constants in the range (1-3) X 10(-9) M-1. Such complexes on calf thymus DNA occur with a frequency of about 1 binding site per 100 base pairs, and evidence is presented indicating a spectrum of sequence-dependent affinities with dissociation constants extending into the micromolar range. In addition to these sequence-specific binding sites on the DNA, the continuous-variation method of Job reveals distinct stoichiometries of dye-poly[d(A-T)] complexes corresponding to 1, 2, 3, 4, and 6 dyes per 5 A-T base pairs and even up to 1 and 2 (and possibly more) dyes per backbone phosphate. Models are suggested to account for these stoichiometries. With poly[d(G-C)] the stoichiometries are 1-2 dyes per 5 G-C pairs in addition to 1 and 2 dyes per backbone phosphate. Thermodynamic parameters for formation of the tightest binding complex between Hoechst 33258 and poly[d(A-T)] or d-(CCGGAATTCCGG) are determined. Hoechst 33258 binding to calf thymus DNA, chicken erythrocyte DNA, and poly[d(A-T)] exhibits an ionic strength dependence similar to that expected for a singly-charged positive ion. This ionic strength dependence remains unchanged in the presence of 25% ethanol, which decreases the affinity by 2 orders of magnitude. In addition, due to its strong binding, Hoechst 33258 easily displaces several intercalators from DNA.  相似文献   

14.
We examined the biophysical characteristics of the interaction of Hoechst 33258 and 33342 dyes with normal rat colorectal cells as functions of fixation and solution composition. Classical dye-binding techniques were used to investigate the stoichiometry and binding constants with whole cells, and quantitative fluorescence image analysis was used to specifically study nuclear dye binding in intact cells. In aqueous solution, H-33258 dye bound cooperatively with intact cells, with a binding constant of between 3-4 x 10(5). In ethanolic solution, binding appeared less cooperative, although Scatchard analysis could not be used. The binding constant was slightly lower (2 x 10(5)), but the total number of cell binding sites was decreased by a factor of 5, reflecting a great decrease in cytoplasmic sites. QFIA studies identified conditions optimal for DNA quantitation under which the fluorescence signal was independent of dye or cell concentration. The proportionality between absolute nuclear fluorescence intensity and DNA content was established, and the upper limit of DNA content of normal colorectal cells was also determined.  相似文献   

15.
We studied the chromatin structure of rat thymocytes fixed in 70% ethanol at 0-44 degrees C by flow cytometry and gel electrophoresis. The fluorescence of the DNA-specific dye mithramycin increased by 93% when thymocytes were exposed at 44 degrees C in the fixative compared to cells kept at 0 degrees C. Antibody labeling (X-ANA) of the core histones was 65% lower for the 44 degrees C-treated cells compared to the control cells (0 degree C). The emission anisotropies of the DNA-specific dye Hoechst 33258 bound to chromatin were 0.341 and 0.318 for thymocytes fixed at 0 degree C and 44 degrees C, respectively. Increased mobility of DNA in chromatin of 44 degrees C-treated cells, as revealed by the emission anisotropy of Hoechst 33258, was not due to denaturation of DNA but was probably caused by removal of constraints situated at short intervals (less than or equal to 50 BP) along the DNA helix. The short intervals between these constraints in chromatin fixed at 0 degree C suggests that they were histones. PAGE of 0.5 N H2SO4-extracted histones showed that the 44 degrees C treatment reduced total core histone content by 65% and that the different histones were lost in unequal amounts. The loss was about 75% and 54% for the histone pairs H3/H4 and H2A/H2B, respectively. The amount of H1 was reduced by about 25% on temperature treatment. The temperature-induced change in the chromatin structure of the cells in 70% ethanol was biphasic. A change in the three-dimensional structure of chromatin occurred for temperatures up to 20 degrees C (no histones were released but binding of mithramycin increased by approximately 15%, whereas the binding of X-ANA decreased by the same amount). Sixty-five percent of core histones were released in the second phase (20-44 degrees C), which may explain the further increase and decrease in the binding of mithramycin and X-ANA, respectively.  相似文献   

16.
17.
A benzimidazole derivative, Hoechst 33258 can induce decondensation of constitutive heterochromatin in the mouse derived L cell chromosomes when the compound is given in sufficiently high concentration (40 micrograms/ml) to the L cell culture. Hoechst 33258 at low concentration (1 micrograms/ml, 16 h) cannot produce this effect on L cell chromosomes. Bromodeoxyuridine (BUdR) incorporation for one cell cycle simultaneous with the Hoechst 33258 treatment at low concentration could decondense heterochromatin segments in metaphase chromosomes. The heterochromatin decondensation, however, was asymmetric; it was observed only on one chromatid and the other of a chromosome remained in condensed state. The observation of asymmetric decondensation of heterochromatin by Hoechst 33258 after BUdR incorporation for one cell cycle, the association of A-T rich satellite DNA to mouse heterochromatin, and available data on the specific binding of Hoechst 33258 to A-T base pairs of DNA and on the higher affinity of the compound to BUdR substituted DNA than to ordinary DNA implied that the binding of Hoechst 33258 molecules to A-T rich satellite DNA is the cause of heterochromatin decondensation.  相似文献   

18.
BACKGROUND: The chromosomal stain, Hoechst 33258, binds to the minor groove of the DNA double helix and specifically recognizes a run of four A-T base pairs. Extensive biochemical and biophysical studies have been aimed at understanding the binding of the dye to DNA at the atomic level. Among these studies there have been several crystal structure determinations and some preliminary structural studies by NMR. RESULTS: On the basis of our own previously reported NMR data, we have now determined the three-dimensional solution structure of the 1:1 complex between Hoechst 33258 and the self-complementary DNA duplex d(GTGGAATTCCAC)2. Two coexisting families of con formers, which exhibit differences in their intermolecular hydrogen bonding pattern, were found and the two terminal rings of the dye displayed greater internal mobility than the rest of the molecule. CONCLUSIONS: The observed multiple ligand-binding modes in the complex between Hoechst 33258 and DNA and differential internal mobility along the bound ligand provide a novel, dynamic picture of the specific inter actions between ligands that bind in the minor groove and DNA. The dynamic state revealed by these studies may account for some of the significant differences previously observed between different crystal structures of Hoechst 33258 complexed with a different DNA duplex, d(CGCGAATTCGCG)2.  相似文献   

19.
Buoyant density of DNA in CsCl gradients with Hoechst 33258 (bisbenzimide) was investigated as a function of guanine plus cytosine content of the DNA (%GC; in mole percent). A formula for calculating %GC from the refractive index (nD) of the isopycnic CsCl/Hoechst 33258 solution over the range of 0-75 %GC was established: %GC = 351762.28 X nD - 123778.66 X nD2 - 249789.47 (the coefficients must not be rounded off). The shape of this curve indicates that under these conditions, in contrast to dilute buffers, Hoechst 33258 binds to single AT base pairs on DNA. Resolution of DNA bands in CsCl/Hoechst 33258 gradients is 1.6 to 2.1 times better than comparative CsCl gradients without the dye. Potential application to %GC determination is discussed.  相似文献   

20.
The binding of Hoechst 33258 and DAPI to five different (A/T)4 sequences in a stable DNA hairpin was studied exploiting the substantial increase in dye fluorescence upon binding. The two dyes have comparable affinities for the AATT site (e.g. association constant K(a)=5.5 x 10(8) M(-1) for DAPI), and their affinities decrease in the series AATT > TAAT approximately equal to ATAT > TATA approximately equal to TTAA. The extreme values of K(a) differ by a factor of 200 for Hoechst 33258 but only 30 for DAPI. The binding kinetics of Hoechst 33258 were measured by stopped-flow under pseudo-first order conditions with an (A/T)4 site in excess. The lower-resolution experiments can be well represented by single exponential processes, corresponding to a single-step binding mechanism. The calculated association-rate parameters for the five (A/T)4 sites are similar (2.46 x 10(8) M(-1) s(-1) to 0.86 x 10(8) M(-1) s(-1)) and nearly diffusion-controlled, while the dissociation-rate parameters vary from 0.42 s(-1) to 96 s(-1). Thus the association constants are kinetically controlled and are close to their equilibrium-determined values. However, when obtained with increased signal-to-noise ratio, the kinetic traces for Hoechst 33258 binding at the AATT site reveal two components. The concentration dependencies of the two time constants and amplitudes are consistent with two different kinetically equivalent two-step models. In the first model, fast bimolecular binding is followed by an isomerization of the initial complex. In the second model, two single-step associations form two complexes that mutually exclude each other. For both models the four reaction-rate parameters are calculated. Finally, specific dissociation kinetics, using poly[d(A-5BrU)], show that the kinetics are even more complex than either two-step model. We correlate our results with the different binding orientations and locations of Hoechst 33258 in the DNA minor groove found in several structural studies in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号